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Abstract 5 
The major characteristic of the single-band Hubbard model (HM) is to redistribute electrons at a uniform 6 

lattice separation distance within the molecular lattice. Hence, it is only linearly dependent on lattice 7 

separations distance. Thus the single-band Hubbard model does not consider the lattice gradient encountered 8 

by interacting electrons as they hop from one lattice point to another. The linear dependence of the single-9 

band HM only on lattice separations would certainly not provide a thorough understanding of the interplay 10 

between interacting electrons. Consequently, we have in this study developed a gradient Hamiltonian model 11 

to solve the associated defects pose by the limitations of the single band Hubbard model. Thus, we utilized the 12 

single-band HM and the gradient Hamiltonian model to study the behaviour of two interacting electrons on a 13 

two dimensional (2D) 9X9 square lattice.  It is revealed in this study that the results of the ground-state 14 

energies produced by the gradient Hamiltonian model are more favourable when compared to those of the 15 

single-band Hubbard model. We have also shown in this work, that the repulsive Coulomb interaction which in 16 

part leads to the strong electronic correlations, would indicate that the two electron system prefer not to 17 

condense into s-wave superconducting singlet state (s = 0), at high positive values of the interaction strength.  18 

Keywords: gradient Hamiltonian model, correlation time, single-band Hubbard model, ground-state energy, 19 

interacting electrons and variational parameters. 20 

 21 
1.0 Introduction. 22 
The single band Hubbard model (HM) is the simplest Hamiltonian containing the essence of strong correlation. 23 
Notwithstanding its apparent simplicity, our understanding of the physics of the Hubbard model is still limited. 24 
In fact, although its thermodynamics was clarified by many authors (Takahashi, 1977) various important 25 
quantities such as momentum distribution and correlation functions, which require an explicit form of the 26 
wave function, have not been properly explored (Ogata and Shiba, 1992).  27 
 28 
The single band Hubbard model (HM) is linearly dependent only on lattice separations. However, it does not 29 
consider the lattice gradient encountered by interacting electrons as they hop from one lattice site to another. 30 
The linear dependence of the Hubbard model only on the lattice separations would certainly not provide a 31 
true comprehensive quantum picture of the interplay between the two interacting electrons. It is clear that 32 
one of the major consequences of the HM is to redistribute the electrons along the lattice sites when agitated. 33 
However, we have in this study, extended the Hubbard model by including gradient parameters in order to 34 
solve the associated defects pose by the limitations of the single-band HM.  35 
 36 
A particle like an electron, that has charge and spin always feels the presence of a similar particle nearby 37 
because of the Coulomb and spin interactions between them. So long as these interactions are taken into 38 
account in a realistic model, the motion of each electron is said to be correlated. The physical properties of 39 
several materials cannot be described in terms of any simple independent electron picture; rather the 40 
electrons behave cooperatively in a correlated manner (Stintzing and Zwerger, 1997). The interaction between 41 
these particles depends then in some way on their relative positions and velocities. We assume for the sake of 42 
simplicity that their interaction does not depend on their spins.  43 
  44 
Electron correlation plays an important role in describing the electronic structure and properties of molecular 45 
systems.  Dispersion forces are also due to electron correlation. The theoretical description of strongly 46 
interacting electrons poses a difficult problem. Exact solutions of specific models usually are impossible, except 47 
for certain one-dimensional models. Fortunately, such exact solutions are rarely required when comparing 48 
with experiment (Xi - Wen et al, 2013).  49 
  50 
Most measurements, only probe correlations on energy scales small compared to the Fermi energy so that 51 
only the low – energy sector of a given model is of importance. Moreover, only at low energies can we hope to 52 
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excite only a few degrees of freedom, for which a meaningful comparison to theoretical predictions can be 53 
attempted (Johannes, 2008).   54 
 55 
One of the first steps in most theoretical approaches to the electronic structure of molecules is the use of 56 
mean – field models or orbital models. Typically, an orbital model such as Hartree – Fock self – consistent – 57 
field theory provides an excellent starting point which accounts for the bulk ( 99≈ %) of the total energy of the 58 

molecule (Hehre et al. 1986).  59 
 60 
However, the component of the energy left out in such a model, which results from the neglect of 61 
instantaneous interactions (correlations) between electrons, is crucial for the description of chemical bond 62 
formation. The term “electron correlation energy’’ is usually defined as the difference between the exact non-63 
relativistic energy of the system and the Hartree – Fock (HF) energy. Electron correlation is critical for the 64 
accurate and quantitative evaluation of molecular energies (Knecht et. al., 2014).    65 
 66 
Interacting electrons are key ingredients for understanding the properties of various classes of materials, 67 
ranging from the energetically most favourable shape of small molecules to the magnetic and 68 
superconductivity instabilities of lattice electron systems, such as high-Tc superconductors and heavy fermions 69 
compounds (van Bemmel et al. 1994). 70 
 71 
In probability theory and statistics, correlation, also called correlation coefficient, indicates the strength and 72 
direction of a linear relationship between two random variables. In general statistical usage, correlation or co-73 
relation refers to the departure of two variables from independence, although correlation does not imply 74 
causation (Fleig, 2012). 75 
 76 
Electron correlation effects, as defined above, are clearly not directly observable. Correlation is not a 77 
perturbation that can be turned on or off to have any physical consequences. Rather, it is a measure of the 78 
errors that are inherent in HF theory or orbital models. This may lead to some ambiguities. While HF is well – 79 
defined and unique for closed – shell molecules, several versions of HF theory are used for open-shell 80 
molecules (Krishnan and James, 1996).     81 
 82 
The organization of this paper is as follows. In section 2 we provide the method of this study by giving a brief 83 
description of the single - band Hubbard Hamiltonian and the gradient Hamiltonian model. We also present in 84 
this section an analytical solution for the two particles interaction in a 9 X 9 cluster of the square lattice. In 85 
section 3 we present results emanating from this study. The result emanating from this study is discussed in 86 
section 4. This paper is finally brought to an end with concluding remarks in section 5 and this is immediately 87 
followed by list of references.  88 
 89 
1.1 Research Methodology 90 
In this study, we applied the gradient Hamiltonian model on the correlated trial wave-function. The action of 91 
the gradient Hamiltonian model on the correlated trial wave-function is thus studied by means of variational 92 

technique.  93 

2.0 Mathematical Theory 94 
2.1 The single-band Hubbard Hamiltonian (HM).  95 
The single-band Hubbard Hamiltonian (HM) (Hubbard. J, 1963) reads;

 

96 

                                             

( ) ↓↑
+ ∑∑ ++−= i

i
i

ij
ji nnUchCCtH

σ
σσ ..                                              (2.1) 97 

where ji,  denotes nearest-neighbour (NN) sites, ( )σσ ji CC +
 is the creation (annihilation) operator with 98 

electron spin  ↑=σ or ↓  at site i , and σσσ iii CCn +=  is usually known to be the occupation number operator, 99 

..ch ( σσ ij CC +
) is the hermitian conjugate . The transfer integral ijt  is written as ttij = , which means that all 100 

hopping processes have the same probability. The parameter U is the on-site Coulomb interaction. It is worth 101 

mentioning that in principle, the parameter U is positive because it is a direct Coulomb integral. 102 

 103 
 104 
 105 
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2.2 The gradient Hamiltonian model (GHM).  106 
The single band Hubbard model (HM) has some limitations as it is only linearly dependent on lattice 107 
separations. It does not consider the lattice gradient encountered by interacting electrons as they hop from 108 
one lattice point to another within the cluster lattice. The linear dependence of the single-band HM only on 109 
lattice separations would certainly not provide a thorough understanding of the interplay between interacting 110 
electrons. Consequently, we have in this work, extended the single-band Hubbard model by introducing 111 
gradient displacement parameters. We hope that the inclusion of the gradient displacement parameters will 112 
help to resolve the associated defects pose by the limitations of the single-band HM on application to the 113 
determination of some quantum quantities. The gradient Hamiltonian model read as follows: 114 
 115 

                     

( ) ↓↑
+ ∑∑ ++−= i

i
i

ij
ji nnUchCCtH

σ
σσ .. − dt ∑

− ji
lβtan                             (2.2)                116 

Now, 
d
ijt =

dt is the diagonal kinetic hopping term or transfer integral between two lattice sites, lβtan is the 117 

angle between any diagonal lattice and l represent the diagonal lattice separations while the other symbols 118 

retain their usual meaning. 119 
 120 
2.3 The correlated variational trial wave function (CVTWF) 121 
The correlated trial wave function given by Chen and Mei (1989) is of the form

  
122 

                               
+↓↑=Ψ ∑ iiX i

i

, { }∑
≠

−
↑↓−↓↑

ji
ji

jijiX ,,

   

                                    (2.3)     123 

where ( ),...,2,1,0=iX i  are the variational parameters and σσ ji ,  is the eigen state of a given 124 

electronic state, l  is the lattice separation. The variational parameters indicate the probability of electrons 125 

being found or located at any of the lattice sites. However, because of the symmetry property of (2.3) we can 126 
recast it as follows. 127 

                                                                     
llX

l

Ψ=Ψ ∑                                                                          (2.4) 128 

In this current study the complete details of the basis set of the two dimensional (2D) N X N lattices can be 129 
found in (Akpojotor et al. 2002) and Enaibe (2003). However, because of the complexity of the lattice basis set 130 
we are only going to enumerate in the tables below the relevant information that are suitable to our study. 131 
  132 

Let us consider the coordinates of a 2D N X N square lattice which is represented by ),( 11 yx and ),( 22 yx . 133 

Suppose one electron is located at the first coordinate while the other electron is located at the second 134 
coordinate. Then we can write that the diagonal lattice separation is given by the expression135 

( ) ( )2
21

2
21 aa yyxx −− + , also for linear lattice separation it is either Kaaxx 2,121 =− and 021 =− yy  or 136 

K,2,121 aayy =−
 

and 01 =− xx ), while for the on-site lattice separation we have that137 

02121 =−=− yyxx , then the corresponding diagonal lattice separation angle is given by )/(tan xy ∆∆=β . 138 

The various values of lβtan are enumerated in Table 2.2. The reader should note that there are two basic 139 

separations in lattice separation 4=l or diagonal lattice separation distance ad 5= . There are also a total of 140 

11 diagonal lattice separations while linear lattice separations are neglected in the second summation of (2.2).  141 

 
142 

 143 

  144 
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Table 2.1: Relevant information derived from the basis set of the geometry of 2D 9 x 9 square lattice. 145 

Lattice separation l  

and actual  lattice 

separation 

distance ld  

 

Total number 

of nearest 

neighbour 

sites at a 

separation 

length l  

Pair 

wave 

function 

lΨ  

Total 

number of 

Pair 

electronic 

states  

Number of 

different 

pair electronic 

states 

at lattice 

separation l  

)( 2Nl ×σ  

Representative 

2 D Pair electronic 

states for each 

separation l  

↓↑ 2211 , yxyx  

l  
Separation 

Distance ld  
lσ  lΨ  

ll
ΨΨ  

0 0  1 0ψ  81  81811 =×  
     

↓↑ 11,11  

1 a  4  1ψ  324  324814 =×  ↓↑ 12,11  

2 a2  4  2ψ
 

324  324814 =×  ↓↑ 22,11  

3 a2  4  3ψ  324  324814 =×  ↓↑ 13,11  

*4 a5  

 

8
 

 
4ψ

 
648  

324814 =×  ↓↑ 23,11  

324814 =×  ↓↑ 32,11  

5 a8  4
 5ψ

 
324  324814 =×  ↓↑ 33,11  

6 a3
 4  6ψ          324  324814 =×  

      
↓↑ 14,11  

7 a10
 

8  7ψ  648  648818 =×  
      

↓↑ 24,11  

8 a13
 

8  8ψ  648  648818 =×  
      

↓↑ 34,11  

9 a18
 

4  9ψ  324  324814 =×  
      

↓↑ 44,11  

10 a4  4  10ψ  324  324814 =×  
      

↓↑ 15,11  

11 a17
 

8  11ψ  648  648818 =×  
      

↓↑ 25,11  

12 a20
 

8  12ψ  648  648818 =×  
      

↓↑ 35,11  

13 a25  8  13ψ  648  648818 =×  
     

↓↑ 45,11  

14 a32
 

4  14ψ
 

324  324814 =×  
     

↓↑ 55,11  

Total number of electronic states 

9=N ;
 

2)( NN × =6561 
6561 6561 

6561
 

*Note that there are two basic diagonal separations length in 4=l .  146 

  147 
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Table 2.2: Relevant information derived from the basis set of the geometry of 2D 9 x 9 square lattice. 148 

Lattice Separation l  

and actual  lattice 

separation 

distance ld  

 

Pair wave 

function 

lΨ   

mA
10

101
0 −=  

NN 

number of 

sites at a 

separation 

length l  

Total 

number of 

Pair 

electronic 

states  

Angle between 

two diagonal 

lattice separation  

and their ratio 

Representative 

2 D Pair electronic 

states for each 

separation l  

↓↑ 2211 , yxyx  

l  
Separation 

Distance d  

Separation 

Distance )(m  
lσ  

ll
ΨΨ  

lβtan  lD  

0 
0ψ  0  0  1 81  -- -- 

     
↓↑ 11,11  

1 1ψ  a  1
10

10
−×  4  324  -- -- ↓↑ 12,11  

2 2ψ  a2  
10

102
−×  4  324  1 0.0494 ↓↑ 22,11  

3 3ψ  a2  2
10

10
−×  4  324  -- -- ↓↑ 13,11  

*4 4ψ  a5  

 

5
10

10
−×  

 

8  

324  2 0.0494 ↓↑ 23,11  

324  0.5 0.0494
 

↓↑ 32,11  

5 5ψ  a8  8
10

10
−×  4  324  1 0.0494 ↓↑ 33,11  

6 6ψ  a3
 3

10
10

−×  4          324  -- -- 
     

↓↑ 14,11  

7 7ψ  a10
 

10
10

10
−×  8  648  3 0.0988 

     
↓↑ 24,11  

8 8ψ  a13
 

13
10

10
−×  8  648  1.5 0.0988 

     
↓↑ 34,11  

9 9ψ  a18
 

18
10

10
−×  4  324  1 0.0494

      
↓↑ 44,11  

10 10ψ  a4  4
10

10
−×  4  324  -- -- 

     
↓↑ 15,11  

11 11ψ  a17
 

17
10

10
−×  8  648  4 0.0988 

     
↓↑ 25,11  

12 12ψ  a20
 

20
10

10
−×  8  648  2 0.0988 

     
↓↑ 35,11  

13 13ψ  a25  25
10

10
−×  8  648  1.33 0.0988

 
     

↓↑ 45,11  

14 14ψ
 

a32
 

32
10

10
−×  4  324  1 0.0494

      
↓↑ 55,11  

Total number of electronic states 

9=N ;
 

6561)( 2 =× NN  

 

6561 

   

 149 

The ratio lD  is found from the division of the pair electronic states in each separation by the total number of 150 

electronic states.  151 
 152 

 153 

 154 

 155 

 156 

 157 

 158 
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Table 2.3: Relevant information derived from the diagonal basis set of the geometry of 2D 9 x 9 lattice. 159 

Diagonal 

Lattice 

separation 

l  

Diagonal 

lattice Pair 

wave 

function 

 

Actual  

diagonal 

lattice 

separation 

distance 

ld  

 

Actual 

separation 

distance 

ld  x 10
-10 

(m) 

 

Diagonal 

Lattice 

)( ly φ
 

(Degree) 

Diagonal 

Lattice 

)( ly φ
 

(Radian) 

Diagonal pair 

electronic states for  

each separation 
 

 

2 2ψ  a2  
1.414 2β (45

0
) 0.7855 

 
↓↑ 22,11  

*4 4ψ
 

 

a5  
 

2.236 

1

4β (63.43
0
)
 

1.1072 
        

↓↑ 23,11
 

2

4β (26.56
0
) 0.4636 ↓↑ 32,11  

5 5ψ  a8  
2.828 5β (45

0
) 0.7855 ↓↑ 33,11  

7 7ψ  a10  
3.162 7β (71.56

0
) 1.2492 ↓↑ 24,11  

8 8ψ  a13  
3.605 8β (56.31

0
) 0.9829 ↓↑ 34,11  

9 9ψ  a18  
4.242 9β (45

0
) 0.7855 ↓↑ 44,11  

11 11ψ  a17  4.123 11β (75.96
0
) 1.3259 ↓↑ 25,11  

12 12ψ  a20  
4.472 12β (63.43

0
) 1.1072 ↓↑ 35,11  

13 13ψ  a25  
5-000 13β (53.12

0
) 0.9272 ↓↑ 45,11  

14 14ψ
 a32  

5.656 14β (45
0
) 0.7855 ↓↑ 55,11  

 160 

Now when the correlated variational trial wave-function given by (2.4) is written out in full on account of the 161 
information enumerated in Tables 2.1 and 2.2   we get 162 

Ψ = 00 ψX + 11 ψX + 22 ψX + 3X 3ψ + 4X 4ψ + 5X 5ψ + 6X 6ψ + 7X 7ψ + 8X 8ψ + 163 

            9X 9ψ + 10X 10ψ + 11X 11ψ + 12X 12ψ + 13X 13ψ + 14X 14ψ
  
                                   (2.5) 164 

When we carefully use equations (2.2) to act on equation (2.3) and with proper information provided in Tables 165 
2.1 and 2.3 above we can conveniently solve for the wave function and the total energy possess by the two 166 
interacting electrons. However, to get at these two significant quantum quantities there are two important 167 
conditions which must be duly followed. The conditions are as follows: 168 
 169 
(i) the field strength tensor  170 

                                                                        



≠

=
=

jiiff

jiiff
ji ji

0

1
δ                                                              (2.6) 171 

(ii)  the  Marshal rule for non-conservation of parity (Weng et al.,  1997)                         172 

                                                   
↑↓−=↓↑ ijji ,,                                                             (2.7)     173 

Hence we can establish that the inner product ΨΨ  of the variational guess trial wave function is given by  174 

ΨΨ = 00
2
0 ψψX + 11

2
1 ψψX + 22

2
2 ψψX + 33

2
3 ψψX + 44

2
4 ψψX + 55

2
5 ψψX + 66

2
6 ψψX +   175 

                77
2
7 ψψX + 88

2
8 ψψX + 99

2
9 ψψX + 1010

2
10 ψψX + 1111

2
11 ψψX + 1212

2
12 ψψX + 176 

                 1313
2
13 ψψX + 1414

2
14 ψψX                                                                                                              (2.8) 177 

ΨΨ = { 2

0
81 X +

2
14X +

2
24X +

2
34X +

2
44X +

2
54X +

2
64X +

2
78X +

2
88X +

2
94X +

2
104X +

2
118X +

2
128X +

2
138X +    178 

                 }2
144X                                                                                                                                                    (2.9) 179 
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180 

{ ++++++−=Ψ 124231210110 422482 ψψψψψψ XXXXXXtH +132 ψX181 

+432 ψX +632 ψX ++ 3424 44 ψψ XX ++ 7454 24 ψψ XX +452 ψX +852 ψX 362 ψX +182 

+762 ψX ++ 47106 22 ψψ XX +++ 1178767 224 ψψψ XXX +584 ψX ++ 9878 42 ψψ XX
    

183 

13989128 222 ψψψ XXX ++ + +++ 11101010610 222 ψψψ XXX ++ 1011711 42 ψψ XX  184 

++ 12111111 22 ψψ XX ++ 1112812 22 ψψ XX +12122 ψX +13122 ψX ++ 1213913 24 ψψ XX185 

++ 14131313 42 ψψ XX }0014141314 42 ψψψ XUXX −+  186 

 187 

{ 22
2

2 tan ψβXt
d− + 4X ( 4

1
4

2
tan ψβ + 4

2
4

2
tan ψβ )+ 55

2
5 tan ψβX + 77

2
7 tan ψβX +188 

88
2

8 tan ψβX + 99
2

9 tan ψβX + 1111
2

11 tan ψβX + 1212
2

12 tan ψβX + 1313
2

13 tan ψβX +189 

}1414
2

14 tan ψβX                                                                                                                                               (2.10) 190 

 
191 

{ +++++ΨΨ −= 442331221001110 22482 ψψψψψψψψψψ XXXXXH t192 

+1124 ψψX +1132 ψψX +4432 ψψX +6632 ψψX ++ 334224 44 ψψψψ XX193 

++ 774554 24 ψψψψ XX +4452 ψψX +8852 ψψX 3362 ψψX + +7762 ψψX194 

++ 44710106 22 ψψψψ XX +++ 11117887667 224 ψψψψψψ XXX +5584 ψψX195 

++ 998778 42 ψψψψ XX
    1313988912128 222 ψψψψψψ XXX ++ + +66102 ψψX196 

++ 111110101010 22 ψψψψ XX ++ 1010117711 42 ψψψψ XX  ++ 121211111111 22 ψψψψ XX197 

++ 1111128812 22 ψψψψ XX +1212122 ψψX +1313122 ψψX ++ 1212139913 24 ψψψψ XX198 

++ 141413131313 42 ψψψψ XX }000141414131314 42 ψψψψψψ XUXX −+  199 

 200 

{ 222
2

2 tan ψψβXt
d− + 4X ( 44

1
4

2
tan ψψβ + 44

2
4

2
tan ψψβ )+ 555

2
5 tan ψψβX +201 

777
2

7 tan ψψβX + 888
2

8 tan ψψβX + 999
2

9 tan ψψβX + 111111
2

11 tan ψψβX +202 

121212
2

12 tan ψψβX + 131313
2

13 tan ψψβX + }141414
2

14 tan ψψβX                                                    (2.11) 203 

 
204 

{ +++++++−=ΨΨ 54634342312110 32163232163216))(81( XXXXXXXXXXXXXXtH205 

+7432 XX ++++++++ 13912898117871067685 3232323232163232 XXXXXXXXXXXXXXXX206 

++ 12111110 3232 XXXX ++ 14131312 3232 XXXX }2
0

2
14

2
13

2
12

2
11

2
10 )4/(4161616168 XtUXXXXX −+++ +207 

{ +− 2
2
2 tan4)()81( βXt

d
4

2
4X  (

1
4tan β +

2
4tanβ ) + 5

2
5 tan4 βX + 8 7

2
7 tan βX + 8 8

2
8 tanβX + 4

2
9X  9tanβ + 8208 

11
2
11 tan βX + 8 12

2
12 tanβX + 8 13

2
13 tanβX + 4

2
14X }14tanβ                                                                             (2.12) 209 

Again we should understand that the values of 
ll

ΨΨ is stated in Tables 2.1 - 2.2.  210 

2.4 The variational theory 211 
Configuration interaction is based on the variational principle in which the trial wave-function being expressed 212 
as a linear combination of Slater determinants. The expansion coefficients are determined by imposing that 213 
the energy should be a minimum. The variational method consists in evaluating the integral 214 

                                      
=ΨΨ=ΨΨ HE g Ψ++Ψ dtut HHH                                                  

   
(2.13) 215 

Where gE is the correlated ground-state energy while Ψ is the guessed trial wave function. We can now 216 

differentially minimize (2.14) using the below equations.  217 
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ΨΨ
∂

∂
=ΨΨ

∂
∂

+
∂
∂

ΨΨ H
XX

E
X

E

ii
g

i

g

                                                  

(2.14) 218 

Subject to the condition that the correlated ground state energy of the two interacting electrons is a constant 219 
of the motion, that is 220 

                                                                    

0=
∂
∂

i

g

X

E
           ;    3,2,1,0=∀ i

                                                          
 (2.15) 221 

Hence upon the substitution of (2.9) and (2.12) into (2.14) and also dividing all through the resulting equation 222 
by t81 we get 223 

 224 

E { 2

0
X +

2
14X +

2
24X +

2
34X +

2
44X +

2
54X +

2
64X +

2
78X +

2
88X +

2
94X +

2
104X +

2
118X +

2
128X +

2
138X + 4 }2

14
X   

= 225 

{ ++++− 42312110 32163216 XXXXXXXX +++ 546343 321632 XXXXXX +7432 XX +8532 XX226 

+++ 8710676 321632 XXXXXX +11732 XX +++ 13912898 323232 XXXXXX ++ 12111110 3232 XXXX227 

++ 14131312 3232 XXXX ++ 2
11

2
10 168 XX }2

0
2
14

2
13

2
12 )4/(4161616 XtUXXX −++ { +− 22

2
2 tan4 βDX 4

2
4X   228 

(
1
4

1
4 tan βD +

2
4D

2
4tanβ ) + 55

2
5 tan4 βDX + 8 77

2
7 tanβDX + 8 88

2
8 tanβDX + 4

2
9X 99 tanβD + 8 1111

2
11 tan βDX229 

+ 8 1212
2
12 tanβDX + 8 1313

2
13 tanβDX + 4 }1414

2
14 tanβDX                                                                               (2.16) 230 

 231 

Where tU 4/ is the interaction strength between the two interacting electrons and tEE g /= is the total 232 

energy possess by the two interacting electrons as they hop from one lattice site to another.  Also ttD d
l /=

 
233 

 ( l =2, 4, 5, 7, 8, 9, 11, 12, 13, 14) are the ratios of the individual diagonal kinetic hopping to the total number 234 

of lattice separations or total kinetic hopping sites respectively. For example, 6561/3242 =D (0.0494). 235 

Now with the use of (2.14) we can carefully transform the equation given by (2.16) into a homogeneous eigen 236 
value problem of the form 237 

                                                                                 
[ ] 0=− ll XIA λ                                                                            (2.17) 238 

 239 

Where A is an N X N matrix which takes the dimension of the number of separations, lλ is the eigen value or 240 

the total energy lE  to be determined, I is the identity matrix which is also of the same order as A , iX  are 241 

the various eigen vectors or simply the variational parameters corresponding to each eigen value.  242 
 243 
After careful simplifications we shall realize a 15 x 15 matrix from (2.17) and from the resulting matrix we can 244 
now determine the total energies and the corresponding variational parameters for various arbitrary values of 245 
the interaction strength. 246 
 247 
2.5 CALCULATION OF THE CORRELATION TIME 248 
The rate at which the force )(tF   agitating the motion of the electrons is can be characterized by some 249 

correlation time τ which measures roughly the mean time between two successive maxima (or minima) of the 250 

fluctuating function )(tF . Correlation time is quite small on a macroscopic scale. The ordinary statistical 251 

average of a function of position lx  and angular displacement lφ at a given time over all systems of the lattice 252 

may be written as 253 

                                                                

∑∑= ),(),(
1

);,( tytxy
N

txy ll φφ                                               (2.18) 254 

Where N is the total number of sites ( l for only the diagonal separation length). The operations of taking a 255 

time derivative and taking an ensemble average commute since one can interchange the order of 256 

differentiation and summation. The Mean velocity of the interacting electrons  257 
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                                            =v  









∑ ∑= ),(),(

1
);,( tytxy

Ndt

d
txy

dt

d
ll φφ                                          (2.19) 258 

                                            =v ∑ ∑ 







= ),(),(

1
);,( tytxy

dt

d

N
txy

dt

d
ll φφ                                          (2.20) 259 

                                               =v ),(),();,( tytxy
dt

d
txy

dt

d
ll φφ =                                                           (2.21) 260 

                               =v ),(),(),(),();,( ty
dt

d
txytxy

dt

d
tytxy

dt

d
llll φφφ +=                                     (2.22) 261 

The mean acceleration a  of the interacting electrons becomes 262 

                    =a  ),(),(),(),();,(
2

2

2

2

txy
dt

d
tytxy

dt

d
ty

dt

d
txy

dt

d

dt

vd
llll φφφ +== +  263 

                                                 

),(),(),(),(
2

2

ty
dt

d
txyty

dt

d
txy

dt

d
llll φφ +                                                  (2.23) 264 

                      =a  ),(),(),(),(),(),(2
2

2

2

2

2

2

ty
dt

d
txytxy

dt

d
tytytxy

dt

d

dt

vd
llllll φφφ ++=

         

  (2.24) 265 

We can now multiply through (2.24) by µ  (the reduced mass of the two interacting electrons). The 266 

multiplication will simply translate the acceleration of the two interacting electrons into force. It should also be 267 
made known that the force responsible for the acceleration of the electrons can be described as a sum of both 268 
the internal )(tF and external )(tζ forces. That is                                                   269 

        

)()(),(),(),(),(),(),(2
2

2

2

2

2

2

tFtty
dt

d
txytxy

dt

d
tytytxy

dt

d
llllll +=++ 








ζφφφµ

      

    

  

(2.25) 270 

        

)()(),(),(),(),(),(),(2
2

2

2

2

2

2

tFtty
dt

d
txytxy

dt

d
tytytxy

dt

d
llllll +=++ 








ζφφφµ

            

(2.26) 271 

                      

)()(),(),(),(),(2
2

2

2

2

tFttytxy
dt

d
tytxy

dt

d
llll +=+ 








ζφφµ                                              (2.27) 272 

Where )(tζ is the external force. By integrating all through the equation given by (2.27) we get 273 

                   

dttFtytxy
dt

d
tytxy

dt

d
llll ∫+=+ 








)(),(),(),(),(2 τζφφµ                                               (2.28) 274 

                                           ∫∫ ′+= tddttFtytxy ll )(),(),(3
2τζφµ                                                                   (2.29) 275 

                               ∫∫ ′+= tddttytxytytxy llll dt
d

),(),(.),(),(3 2

2

φµττζφµ                                            (2.30) 276 

                                         
),(),(.),(),(3 tytxytytxy llll φµττζφµ +=                                                      (2.31) 277 

                                                             
),(),(2. tytxy ll φµττζ =                                                                            (2.32) 278 

                                                       

),(),(2. tytxyvv ll φµττζ =                                                                            (2.33) 279 

                                                           
)()(2 llll yxyvE φµτ =

                                                                              
  (2.34) 280 

                                                                l

l
l E

yxyv l )()(2 φµ
τ =                                                                             (2.35) 281 

Where we have introduced the same constraint for both lE and lτ ( l = 2, 4, 5, 7, 8, 9, 11, 12, 13, 14) and also 282 

suppressed t  in (2.35) for clarity of purpose. Thus vE l τζ= is the correlated ground-state energy which is 283 

the same as the total energy of the interacting electrons and it has a unit of kgm
2
/s

2 
or simply Joules J. The 284 

Amstrong is the quantum analogue of length in classical mechanics. The reduced mass µ has the usual unit of 285 
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kg
 
with a value of 

31101.9 −× kg, the unit of the mean velocity of electron v is -0.00028 m/s and finally the 286 

gradient parameter lφ is in radian. Hence the unit of the correlation time lτ is seconds s .  287 

To obtain the value of )( lxy the calculation is simply done as follows:
 

)( lxy = lX ×  ld
10

10
−×

 
(meters). This 288 

calculation would certainly convert the ordinary values of the variational parameters to the dimension of 289 

length meters. 290 

3.0         Presentation of Results. 291 

The results emerging from the matrix given by (2.17) are shown in Table 3.1 while results of the correlation 292 

time lτ which is given by equation (2.35) are enumerated in Tables 3.2. We should also note that the result of 293 

the single-band HM with respect to the interaction strength is denoted as previous study while that of the 294 
gradient Hamiltonian model is denoted as present study. 295 

Table3.1. shows the calculated values of the variational parameters lX and the total energies lE possess by 296 

the interacting electrons as a function of some arbitrary values of the interaction strength tu 4/ . 297 
  

tu 4/  

Present and 

*Previous 

study 

 

Total 

Energy 

lE  

Variational  Parameters 

lX  ( =l 0, 1, 2, 3, 4, 5, 6) 

0X  1X  2X  3X  4X  5X  6X  

50 
Present -9.1542 0.0090 0.2353 0.3576 0.3530 0.5786 0.3365 0.2234 

Previous -9.0412 0.0093 0.2426 0.3640 0.3596 0.5802 0.3374 0.2226 

40 
Present -9.1551 0.0112 0.2359 0.3577 0.3531 0.5785 0.3364 0.2233 

Previous -9.0422 0.0115 0.2432 0.3642 0.3596 0.5801 0.3373 0.2225 

30 Present -9.1565 0.0147 0.2367 0.3580 0.3531 0.5784 0.3362 0.2232 

 Previous -9.0437 0.0151 0.2441 0.3645 0.3597 0.5799 0.3371 0.2224 

20 
Present -9.1592 0.0214 0.2384 0.3585 0.3532 0.5782 0.3358 0.2229 

Previous -9.0466 0.0221 0.2458 0.3650 0.3597 0.5797 0.3367 0.2221 

10 
Present -9.1666 0.0395 0.2427 0.3598 0.3534 0.5774 0.3347 0.2221 

Previous -9.0546 0.0408 0.2503 0.3663 0.3598 0.5788 0.3355 0.2212 

5 
Present -9.1784 0.0684 0.2495 0.3616 0.3534 0.5758 0.3328 0.2206 

Previous -9.0673 0.0708 0.2573 0.3680 0.3597 0.5769 0.3334 0.2197 

 

0 

Present -9.2549 0.2469 0.2857 0.3646 0.3457 0.5534 0.3140 0.2072 

Previous -9.1511 0.2576 0.2946 0.3700 0.3505 0.5519 0.3127 0.2052 

-1 
Present -9.3727 0.4704 0.3159 0.3471 0.3160 0.4931 0.2723 0.1786 

Previous -9.2824 0.4909 0.3241 0.3486 0.3160 0.4848 0.2668 0.1741 

-1.5 
Present -9.5956 0.7151 0.3214 0.2897 0.2476 0.3699 0.1949 0.1268 

Previous -9.5312 0.7353 0.3245 0.2848 0.2419 0.3540 0.1853 0.1200 

-2.0 
Present -10.3333 0.9172 0.2675 0.1693 0.1264 0.1677 0.0778 0.0501 

Previous -10.3135 0.9215 0.2665 0.1651 0.1225 0.1591 0.0731 0.0471 

-2.5 
Present -11.7220 0.9680 0.2084 0.0954 0.0625 0.0700 0.0271 0.0178 

Previous -10.3135 0.9215 0.2665 0.1651 0.1225 0.1591 0.0731 0.0471 

-5 
Present -20.8093 0.9946 0.1006 0.0206 0.0110 0.0065 0.0013 0.0012 

Previous -20.8092 0.9946 0.1006 0.0206 0.0110 0.0065 0.0013 0.0012 

-10 
Present -40.4010 0.9987 0.0501 0.0050 0.0026 0.0008 0.0001 0.0001 

Previous -40.4010 0.9987 0.0501 0.0050 0.0026 0.0008 0.0001 0.0001 

-15 
Present -60.2670 0.9994 0.0334 0.0022 0.0011 0.0002 0.0000 0.0000 

Previous -60.2670 0.9994 0.0334 0.0022 0.0011 0.0002 0.0000 0.0000 

 298 

  299 
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Table 3.1.  Extention. For 141−=l  300 

 

tu 4/  

Total 

Energy 

lE  

Variational  Parameters 

lX  ( =l 7, 8, 9, 10, 11, 12, 13, 14) 

7X  8X  9X  10X  11X  12X  13X  14X  

50 
-9.1542 0.2592 0.1873 0.1222 0.1511 0.1585 0.1255 0.0908 0.0712 

-9.0412 0.2503 0.1823 0.1192 0.1463 0.1462 0.1181 0.0870 0.0690 

40 
-9.1551 0.2590 0.1872 0.1221 0.1510 0.1584 0.1254 0.0907 0.0711 

-9.0422 0.2502 0.1824 0.1191 0.1462 0.1461 0.1180 0.0869 0.0690 

30 -9.1565 0.2589 0.1870 0.1219 0.1508 0.1582 0.1252 0.0906 0.0709 

 -9.0437 0.2500 0.1822 0.1190 0.1460 0.1459 0.1178 0.0868 0.0688 

20 
-9.1592 0.2585 0.1866 0.1216 0.1505 0.1578 0.1249 0.0902 0.0706 

-9.0466 0.2496 0.1818 0.1186 0.1456 0.1455 0.1174 0.0864 0.0685 

10 
-9.1666 0.2575 0.1856 0.1206 0.1495 0.1568 0.1239 0.0894 0.0699 

-9.0546 0.2485 0.1807 0.1176 0.1446 0.1445 0.1165 0.0856 0.0677 

5 
-9.1784 0.2556 0.1838 0.1191 0.1478 0.1550 0.1223 0.0880 0.0686 

-9.0673 0.2466 0.1788 0.1160 0.1430 0.1427 0.1148 0.0841 0.0664 

 

0 

-9.2549 0.2391 0.1692 0.1073 0.1349 0.1411 0.1100 0.0778 0.0598 

-9.1511 0.2294 0.1635 0.1037 0.1296 0.1290 0.1024 0.0736 0.0572 

-1 
-9.3727 0.2048 0.1416 0.0871 0.1115 0.1162 0.0890 0.0614 0.0461 

-9.2824 0.1934 0.1344 0.0823 0.1051 0.1042 0.0811 0.0567 0.0429 

-1.5 
-9.5956 0.1437 0.0954 0.0555 0.0734 0.0759 0.0564 0.0372 0.0268 

-9.5312 0.1316 0.0875 0.0505 0.0668 0.0658 0.0494 0.0328 0.0238 

-2.0 
-10.3333 0.0546 0.0323 0.0162 0.0234 0.0237 0.0161 0.0093 0.0059 

-10.3135 0.0496 0.0293 0.0145 0.0211 0.0204 0.0139 0.0081 0.0051 

-2.5 
-11.7220 0.0180 0.0090 0.0037 0.0061 0.0059 0.0035 0.0017 0.0009 

-10.3135 0.0496 0.0293 0.0145 0.0211 0.0204 0.0139 0.0081 0.0051 

-5 
-20.8093 0.0008 0.0002 0.0000 0.0002 0.0001 0.0000 0.0000 0.0000 

-20.8092 0.0008 0.0002 0.0000 0.0002 0.0001 0.0000 0.0000 0.0000 

 

-10 

-40.4010 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 

-40.4010 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 

-15 
-60.2670 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 

-60.2670 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 

*The previous study was carried out by Chen and Mei (1989). 301 

 302 

  303 
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Table 3.2. Shows the calculated values of the Correlation time lτ for only the diagonal separations as a 304 

function of the interaction strength tu 4/ = U   for different values of the corresponding total energy lE . 305 

Diagonal 

lattice 

separation 

l  

Diagonal 

lattice 

separation
 

)( ly φ
 

(degree) 

Correlation time lτ for only the diagonal separations in (seconds) as a function of 

the total energy lE and for some selected U .  

U  50 20 5
 

-1
 

-2
 

-2.5
 

lE  -9.1542 -9.1592 -9.1784 -9.3727 -10.3333 -11.7220 

lτ
 

x10
-45

 
x10

-45

 
x10

-45

 
x10

-45

 
x10

-45

 x10
-45

 

2 2β (45
0
) 2τ  1.106 1.108 1.115 1.048 0.513 0.230 

*4 

1

4β (63.43
0
) 

1

4τ  3.987 3.981 3.957 3.319 1.133 0.377 

2

4β (26.56
0
) 

   

2

4τ  2.064 2.062 2.058 2.015 1.828 1.612 

5 5β (45
0
) 5τ  2.081 2.075 2.052 1.644 0.472 0.131 

7 7β (71.56
0
) 7τ  2.849 2.841 2.803 2.199 0.588 0.154 

8 8β (56.31
0
) 8τ  1.847 1.839 1.808 1.364 0.312 0.069 

9 9β (45
0
) 9τ  1.133 1.127 1.101 0.788 0.147 0.026 

11 11β (75.96
0
) 11τ  2.411 2.399 2.352 1.726 0.353 0.070 

12 12β (63.43
0
) 12τ  1.729 1.720 1.681 1.198 0.217 0.037 

13 13β (53.12
0
) 13τ  1.171 1.163 1.132 0.773 0.117 0.017 

14 14β (45
0
) 14τ  0.881 0.873 0.846 0.557 0.072 0.009 

 306 

4.0 Discussion of Results 307 

It is shown in Table 3.1 that as the interaction strength between the two electrons is decreased the total 308 

energies possess by the electrons also decrease and this is consistent with the two models we have employed 309 

in this study. However, our present model yielded lower results of the total energies which are quite 310 

preferable since the electrons would prefer to settle down in the region of minimum potential. The negative 311 

values of the total energies show that the interaction between the two electrons is attractive and not 312 

repulsive.  313 

The table also revealed that for higher positive interaction strength the variational parameters for larger 314 

separations are greater than those of the lower ones.  This is as a result of the fact that electrons prefer to stay 315 

far apart as possible so that the chance of finding them close to one another is reduced at high positive values 316 

of the interaction strength. 317 

Also from the table we found that for lower negative interaction strength the variational parameters for larger 318 

separations are smaller than those of the lower ones.  Thus when the interaction strength is increased more 319 

negatively the two electrons now prefer to stay very close to one another instead of remaining far apart from 320 

one another. Hence the chance of finding the electrons close to one another is increased at high negative 321 

values of the interaction strength. 322 

It is clear from the table that the results of the total energies for both models converge to the same value in 323 

the large negative interaction strength. The variational parameters also vanish or go to zero at a high negative 324 

value of the interaction strength and this is around 54/ −≤tu . 325 
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It is shown in Tables 3.2 that in the positive region of the interaction strength tu 4/ , the correlation time 2τ326 

initially increases in value as the interaction strength is decreased before it starts to decrease consistently with 327 

respect to negative increase in the interaction strength, this is around the value of 14/ −≤tu .  328 

Finally, the correlation times for the other diagonal lattice separations ( 4τ , 5τ , 5τ … 14τ )
 
consistently decreases 329 

for regimes of both positive and negative interaction strength. However, the values of the correlation times in 330 

the negative regime are much lower than those in the positive regime. Thus high negative interaction strength 331 

decreases the correlation time between electrons as they hop from one lattice site to another.      332 

5.0 Conclusion 333 

In this work, we utilized two types of Hamiltonian model to study the behaviour of two interacting electrons 334 

on a two dimensional (2D) 9 X 9 square lattice. The Hamiltonian is the single-band Hubbard model and the 335 

gradient Hamiltonian model. Obviously, the total energies of the two interacting electrons produced by the 336 

gradient Hamiltonian model are consistently lower than those of the original single-band Hubbard model. Thus 337 

the inclusion of the gradient parameters into the single band HM yielded better results of the ground-state 338 

energies. Hence the lower ground-state energy results produced by our new model are quite compactable 339 

with quantum requirements. Generally, it is established in this work that electron correlation is highly 340 

favoured within the limits of high negative interaction strength. 341 
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