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A 2D formulation for the helium atom using a four-3 

spinor Dirac-like equation and the discussion of an 4 

approximate ground state solution. 5 
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ABSTRACT  8 
We present a two-dimensional analysis of the two-electron problem which comes from the classical 
conservation theorems and from which we obtain a version of the Dirac equation for the helium atom. 
Approximate solutions for this equation are discussed in two different methods, although in principle it can 
be solved analytically. One method is variational, of the Hylleraas type, the execution of which is left for a 
later communication. In contrast, the other method will have a more complete treatment, in which the set 
of equations will be separated into its angular and radial components. Furthermore, an exact solution for 
the angular component will be displayed as well as an approximate solution for the radial component, 
valid only for the fundamental state of the atom. 
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1. INTRODUCTION  14 
 15 
Since the beginning of quantum chemistry in the 1920s the implementation of purely computational 16 

calculations of the Hartree-Fock type [1] has prevailed, due to their high performance and easy 17 

implementation, over more analytical structures such as those of the Hylleraas type [2]. Nevertheless 18 

some authors have tried to give an analytical basis to their iterative calculations, some of which have 19 

become the source of inspiration to start this line of work [3-6]. 20 

 21 

Following this analytical aim [7,8], we try to explore the Classical Theorems of Conservation before any 22 

quantization procedure is performed. We believe that they can reduce the dimensions of the coordinate 23 

systems that are necessary to formulate the problem in the quantum domain. More recently [9], we 24 

demonstrated that it is possible to use, in the analytical solution of the Dirac equation [10] for the 25 

hydrogen atom, Dirac 2x2 matrices rather than the usual 4x4 matrices, which leads to a considerable 26 

reduction in complexity of the problem. Moreover, our method led us to a new approach to the relativistic 27 

Hylleraas procedure in which the Dirac equation is derived from an extremum problem. This procedure 28 

was used to carry out numeric calculations for hydrogen-like atoms that resulted in extremely accurate 29 

energy eigenvalues with respect to the exact values, which are well known [11]. 30 

 31 

 32 



In this paper we treat the problem of the helium atom in a similar way to what we did in the case of the 33 

hydrogen atom. This treatment has allowed us to use Dirac 4x4 matrices instead of the 16x16 matrices of 34 

the Breit theory for the same atom [12], although it should be mentioned that we do not consider here the 35 

time retardation effects. Therefore we have developed a dual procedure: on the one hand we obtain a 36 

Dirac-like system of partial differential equations and on the other a Lagrangian density to carry out a 37 

variational calculation of the Hylleraas type, whose execution is however left to an upcoming article. 38 

 39 

For the Dirac-like procedure we take into account the trivial fact of the Theory of Relativity that we cannot 40 

add together the geodesics of individual particles. Then we consider a system formed by a single electron 41 

plus the nucleus, i.e., the He+ ion, as a substrate on which an outer electron is introduced gradually 42 

through a penetration parameter. The gradual superposition of the corresponding Hamiltonians yields a 43 

system of differential equations that is dependent on the parameter of penetration, which should be used 44 

at the end of the calculation to obtain the minimum energy of the two-electron system. Considering now 45 

the Hylleraas-like procedure, the Hamiltonian is used in the traditional way in which the system is treated 46 

as a whole, without distinction of individual equations for each electron. For both procedures we try to 47 

express the system of equations in a truly covariant form, in which we can introduce later the retardation 48 

effects without breaking this fundamental requirement of the Theory of Relativity. 49 

 50 

In the last section of the paper we separate the angular and radial components of the Dirac-like system of 51 

partial differential equations for the helium atom [13]. We find the angular eigenfunctions that allow us to 52 

separate the system of radial equations and an asymptotic form of the wave function that is a solution of 53 

this system for the ground state of the atom. From this we get a determination of the atom energy 54 

eigenvalue that agrees with the experimental data within 0.1% of accuracy and we also check that it 55 

tends to the exact value of the ion energy when the outer electron is displaced to infinity. 56 

 57 
 58 
2. THEORY 59 
 60 
In the infinity mass nucleus rest frame, the relativistic classical Hamiltonians for the individual electrons of 61 

the Helium atom in natural units 1c= =h   and 2 1 /137eα = ≅  are 62 
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where 2 2
12 1 2 1 22 cosr r r r r θ= + − .  We see that the repulsion energy entries fully for each electron in this 64 

case, on the other hand, if we consider the energy of the whole system, not taking into account the 65 

electrons individually, we arrive at the usual classical Hamiltonian 66 
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α α α= + + + − − +p p ,                                 (1c)             67 

in which the repulsion energy entries only once. 68 



 69 

Still in the infinity mass nucleus rest frame, we choose to use a coordinate system in which the motion 70 

occurs in the plane defined by the nucleus and the two electrons, i.e., 0zp = ,  whose z axis may be 71 

moving at constant velocity with respect to the z axis of another inertial system, so that the system is 72 

invariant against space translations in this direction. In this frame, the only non vanishing components of 73 

the classical angular momentum of each electron 1 1 1= ×J r p  and 2 2 2= ×J r p and of the total angular 74 

momentum 1 2= +J J J  are their z components, namely, 1 1 1 1 1z y xJ x p y p= − , 2 2 2 2 2z y xJ x p y p= −  and 75 

1 2z z zJ J J= + respectively. Now, we know from Classical Mechanics  [14]  that the Poisson Bracket for 76 

each electron angular momentum with respect to the Classical Hamiltonian (1c) is not null and that they 77 

are symmetric with respect to each other, i.e., { } { }3
1 1 2 12 2, sin ,z zH J r r r H Jθ−= = − , in which 2 1θ θ θ= − , so 78 

that the summation  of them is null and hence the total angular momentum zJ  becomes a constant of the 79 

motion. This happens because the repulsion force between the electrons  is a non central force and 80 

hence it produces a torque in each electron that makes it oscillating about the axis that join the nucleus to 81 

the other electron. In the Poisson Bracket it appears due to the implicit derivatives of 121/ r with respect to 82 

1 1,x y  or 2 2,x y , which produces the symmetric terms because ( ) ( )2 2

12 1 2 1 2r x x y y= − + − in Cartesian 83 

coordinates. Therefore, a 2D formulation of the problem is, at least in principle, perfectly possible and we 84 

shall present two possibilities of it below. 85 

 86 

In this way, besides the usual Hamiltonian for the whole system (1c), an alternative approach for the 87 

problem  would be to define an effective Hamiltonian function  for the two electron system which would be 88 

composed of a inner Hamitonian  1H  of the ion eH +  and another Hamiltonian 2H  which would take into 89 

account an outer  electron, which is superposed to the former through a penetration factor σ , that is  90 

                                ( ) 1 21 2H H Hσ σ σ= − + .                                                   (1d)             91 

We see that 0σ =  corresponds to the ion limit when 12r → ∞  and the electron 2 is not present; on the 92 

other hand, 1σ =  correspond to the limit when the two electrons form a single system with perfectly 93 

symmetric positions so that the system Hamiltonian becomes two times the Hamiltonian of one of the 94 

electrons, which was chosen by convenience to be the electron 2. In fact, it will be seen that 12r  95 

becomes a function of σ , so that the equations of the system are solved for 12r = constant and then, at 96 

the final of the calculation, this constant is varied through σ  in order the equilibrium configuration may be 97 

obtained. 98 

 99 



We now search for a Dirac equation corresponding to the quantization of the classical Eqs. (1c) and (1d), 100 

in the infinity mass nucleus rest frame. The quantization is done in a way similar to that performed by 101 

Breit [12], in which each square root is “linearized” individually:  102 

                           ( )22 2 5 3 0
1 1 1y xm p p mγ γ γ+ = − +p ,                                              (2a) 103 

                           ( )22 2 1 2 0
2 2 2y xm p p mγ γ γ+ = − +p .                                             (2b) 104 

We need five 4 4×  anticommuting matrices, which are the four usual µγ  Dirac matrices together with 105 

the 5γ  matrix which always appears connected with Dirac´s theory: 106 
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where xσ , yσ , zσ  are the Pauli spin matrices.  As is well known1, the γ  matrices obey 108 

2µ ν ν µ µνγ γ γ γ δ+ = , for , 0,1,2,3,5µ ν = , that is, are unitary and anticommute in pairs, as required to 109 

make equal the two sides of Eqs.(2).  110 

 111 

By using the momentum operators 1 1i= − ∇p  and 2 2i= − ∇p ,  the  linear Hamiltonian-like matrix 112 

operator associated with Eq.(1c) and Eq.(1d) becomes 113 

          ( ) ( )
1 1 2 2

1 2 12

3 5 2 1 02 2
2ˆ

x y x y
r r r

H i i m
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     
.   (4b) 115 

In our coordinate system the total angular momentum operator becomes the z component alone, i.e.  116 

                                            
1 1 2 21 1 2 2

ˆ
z x y x yJ iy ix iy ix= ∂ − ∂ + ∂ − ∂ .                                          (5) 117 

Now, as it is well known, the operator ˆ
zJ  does not commute with Ĥ  or Ĥσ . However, it can be verified 118 

immediately that total angular operator 1 1
1 22 2

ˆ ˆ
z z zM J α α= + + , which includes the electron spins, 119 

commutes with both Ĥ  and Ĥσ ,  that is ˆ ˆ, 0H M  =   as well as ˆ ˆ, 0H Mσ  =  . Here, in the definition of 120 

the operator M̂  were introduced the two-electron spin matrices 5 3
1,
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z
z
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σ

α γ γ
σ
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= − =  

 
  and  121 

                                                      
1 There are several possibilities of defining these matrices according to the rules of the Clifford Algebra; we have 

chosen the only one that makes all products µ νγ γ  to be real and positive along with µγ be diagonal for 0µ =  and 

anti-diagonal for 0µ > . These conditions are necessary for the Eq.(6b) and  Eq.(8) below reduce to the one-electron 

2D Dirac equation [9] when 0σ → , which is a fundamental contour condition of our approach. 



2 1
2,

0

0
z

z
z

i
σ

α γ γ
σ

− 
= − =  − 

 and the diagonalization problems to be solved become therefore Ĥ Eψ ψ=  122 

or Ĥ Eσψ ψ=  and ˆ jMψ ψ= , where ( )1 2 3 4, , ,ψ χ χ χ χ=  is a four-spinor.  123 

 124 

Now, in order to get a truly covariant equation, we left-multiply the energy eigenvalue problem by 0γ , for 125 

both operators in (4), so that we get 126 

        ( ) ( ) ( )
1 1 2 2

0 0 5 0 3 0 1 0 2
12 2 0x y x yE i i mφ γ γ γ γ γ γ γ γ γ ψ − + ∂ − ∂ + ∂ − ∂ + =  ,                    (6a) 127 

( ) ( )( ) ( ) ( )
1 1 2 2

0 0 5 0 3 0 1 0 2
12 1 2 1 0x y x yE i i mσφ γ σ γ γ γ γ σ γ γ γ γ σ ψ − + − ∂ − ∂ + ∂ − ∂ + + =  , (6b) 128 

where 12
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r r r
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( ) ( )

12
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2 1 14

r r rσ
σ α σ ασαφ

− +
= − − + are the total potential energy 129 

functions. It may immediately be seen that Eqs.(6) can be put in the explicit covariant form 130 

1 1 1 2 2 2 0µ µ
µ µσ ζ π σ ζ π ψ + =  , by rewriting them in terms of the matrix operators ( )0 5 0 3 0

1 1, , ,µζ γ γ γ γ γ= − , 131 

( )0 1 0 2 0
2 1, , ,µζ γ γ γ γ γ= −  and the effective momentum operators 132 
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σ σ
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= − ∂ − ∂ − + − 
 

, where 1,2k = ; 1 2 1σ σ= = , 3 2σ =  for (6a) and 1 1σ σ= − , 133 

2 2σ σ= , 3 1σ =   for (6b). 134 

 135 

Explicitly, Eq.(6a) becomes the following system of linear partial differential equations 136 

               ( ) ( )
1 1 2 21 3 4 0x y x yq i iχ χ χ+ − ∂ + ∂ + −∂ + ∂ = ,                                      (7a) 137 

               ( ) ( )
1 1 2 22 4 3 0x y x yq i iχ χ χ+ + ∂ − ∂ − ∂ + ∂ = ,                                         (7b)  138 

              ( ) ( )
1 1 2 23 1 2 0x y x yq i iχ χ χ− + −∂ + ∂ + −∂ + ∂ = ,                                     (7c) 139 

               ( ) ( )
1 1 2 24 2 1 0x y x yq i iχ χ χ− + ∂ + ∂ − ∂ + ∂ = ,                                        (7d) 140 

and Eq.(6b) as well becomes  141 

           ( )( ) ( )
1 1 2 21 3 41 2 0x y x yq i iσ χ σ χ σ χ+ − − ∂ + ∂ + −∂ + ∂ = ,                              (8a) 142 

            ( )( ) ( )
1 1 2 22 4 31 2 0x y x yq i iσ χ σ χ σ χ+ + − ∂ − ∂ − ∂ + ∂ = ,                               (8b) 143 

          ( )( ) ( )
1 1 2 23 1 21 2 0x y x yq i iσ χ σ χ σ χ− + − −∂ + ∂ + −∂ + ∂ = ,                            (8c) 144 

        ( )( ) ( )
1 1 2 24 2 11 2 0x y x yq i iσ χ σ χ σ χ− + − ∂ + ∂ − ∂ + ∂ = ,                                (8d) 145 



in which the new potential functions ( )122q m Eφ± = ± −  and ( ) ( )121q m Eσ σσ φ± = + ± −  were introduced 146 

for shortness.  147 

 148 

At this point we shall need to split the paper in two parts. In the first one, we shall present a variational 149 

version of Eqs.(7) that allows us to make numerical calculations of the energy eigenvalues in the 150 

Hylleraas scheme, as we did with high accuracy in the case of one-electron atoms [11]. But we shall only 151 

introduce the problem, which will be treated fully in a next paper. To do this, firstly we solve the last two 152 

equations of (7) for 3χ  and 4χ , what yields  153 
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1 1 2 21 2

3

x y x yi i
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= ,              (9) 154 

then we substitute them into the first two of (7), left-multiply each one  by the complex conjugated vectors  155 

1χ ∗  and 2χ ∗  respectively and sum up the resulting equations to form a real quadratic function in ( )1 2,χ χ   156 

which defines the following Lagrangean density 157 
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The extremum problem  159 

                                          1 2 1 2 0Ldx dx dy dyδ =∫                                                            (11)     
 160 

is then solved, in the same way as done with the hydrogen-like atoms [11], by the requirement that the 161 

integral in (11) be stable against small variations of the algebraic forms of ( )1 2,χ χ  about the 162 

corresponding exact solutions of (7) or some suitable approximation of them:  163 

                                   2 121
0

N

ap c r r rµ ν λ
µνλ

µ ν λ
χ χ

+ + =
= ∑l l l                                                     (12)     

 164 

for 1,2=l  in which apχl  are the approximations for the exact solutions of (7), c µνλl are the variational 165 

coefficients corresponding to each function apχl  and N is the least integer necessary to a given order of 166 

precision to be reached. The variation becomes thus 167 

                              

1 2 1 2

0,1,2,...

  0,
N

Ldx dx dy dy
c µνλ =

∂ =
∂ ∫

l
                                           (13)     

 168 

which produces two systems of linear equations in c µνλl , the determinants of which generate a 169 

polynomial function on the atom energy, the  roots of which yield the energy eigenvalues for the atom.  It 170 



should be remarked that the need to know apχl  in advance is in fact the great limitation of the Hylleraas 171 

methodology because, in practice, only asymptotic solutions are known, so that the use of arbitrary 172 

intermediary functions becomes the only way to perform the calculation. It is by this reason that we are 173 

proposing below the sigma variation procedure, in which we retain the almost exact form of the one-174 

electron solution and perform the variation through a macro parameter that is related to the average 175 

values of the radial variables. The Hylleraas-like problem will be reconsidered formally in a next paper.  176 

 177 
3. APPROXIMATE GROUND STATE SOLUTION FOR THE SIGMA HAMILTONIAN 178 
 179 

Now, considering the second part of the paper, we shall perform the variation through the parameter 180 

sigma which allows using one-electron solutions to provide an analytical approximation for the solution of 181 

the Eqs.(8). Thus, in order to separate the angular part of Eqs.(8), we must first address the angular 182 

momentum problem, ˆ jMψ ψ= , which  written  in the polar coordinates of  the electrons 1 and  2 183 

becomes ( ) ( )
1 2 k k ki jθ θ χ λ χ∂ + ∂ = + , where 1 1λ = , 2 1λ = − , 3 4 0λ λ= = ,  are the diagonal values of 184 

( )1
1 22 z zα α− +  and 1 2j j j= + . In accordance, the most general forms for the solutions of the angular 185 

equation are the set of eigenfunctions  186 

                   ki
k kf eχ Φ= ,  ( )1 2 12, ,k kf f r r r= ,   1,.., 4k = ,                                     (14) 187 

where the phase functions are  188 

          ( ) ( )1 1
1 1 1 2 2 12 2j j gθ θΦ = + + + + ,    ( ) ( )1 1

2 1 1 2 2 22 2j j gθ θΦ = − + − + ,                 (15a,b)        189 

         ( ) ( )1 1
3 1 1 2 2 32 2j j gθ θΦ = − + + + ,    ( ) ( )1 1

4 1 1 2 2 42 2j j gθ θΦ = + + − + ,                (15c,d)        190 

with ( )1 2 12, ,k kg g r r r= . Since 12 12 1 2( , , )r r r r θ= , the dependence of kf and  kg on 12r  has evidently no 191 

effect on the values of the angular momentum, but this dependence is necessary when considering a 192 

complete solution of the problem in the radial variables 1 2 12, ,r r r .  193 

 194 

Formally, the substitution of kχ  in Eq.(8) makes all complex phases and angular variables vanish and 195 

yields a new set  of linear equations depending only on the radial variables 1 2 12, ,r r r . To see this we 196 

consider the first order derivatives appearing in (8) expressed in the polar system ( )1 2 1 2, , ,r r θ θ  and 197 

considering also the implicit dependence of the Cartesian coordinates in 12 12 1 2( , , )r r r r θ= , from this we 198 

get the following differential operators 199 
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1
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,                                              (16a)        200 



1 2

2

2 2 2
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i

x y

r e r ei
i e r r

r r

θ θ
θ

θ

± ±
±   −∂ ± ∂ = ∂ ± ∂ − ∂ 

 
.                                             (16b)        201 

Substituting the solution (14) together with the operators  (16) into (8) and next separating it in their real 202 

and imaginary parts would bring two sets of linear partial differential equations in the radial variables 203 

1 2 12, ,r r r connecting kf  and kg  with their derivatives, whose analytical solution is completely out of hand 204 

at the moment. 205 

 206 

However, in this work, we shall limit ourselves to search for solutions satisfying the constraint 12rρ = = 207 

constant, so that in effect we arrive at ( )1 2,k kf f r r=  and further assume that 0kg = , which will simplify 208 

considerably the resulting equations and also yields the variational relation ( )ρ ρ σ=  that will be used to 209 

get the equilibrium configuration of the system. In these circumstances, we arrive at a unique system of 210 

equations given by the real part of (8), the imaginary one vanishing identically,   that is 211 

( )
1 1

1 23 2 4 2
1 3 4

1 1 2 2

1 2 0
j jf f

q f f f
r r r rσ σ σ+

   − −∂ ∂− − + − − =   ∂ ∂   
,                        (17a) 212 
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1 234 2 2
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q f f f
r r r rσ σ σ+

   + +∂∂+ − + − + =   ∂ ∂   
,                        (17b) 213 
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,                         (17c) 214 

( )
1 1

1 22 2 1 2
4 2 1

1 1 2 2

1 2 0
j jf f

q f f f
r r r rσ σ σ−

   − +∂ ∂+ − − − + =   ∂ ∂   
.                        (17d) 215 

Since the limitations described above do not allow us to get general solutions, we shall limit ourselves to 216 

get the simplest solution of Eq.(17), valid only for the ground state of the atom: 217 

                  1 1 2 2 1 2

1

1 2
0

r r s s
k kf e a r rβ β µ ν

µν
µ ν

− − + +

+ =

= ∑ ,      1,2,3,4k = ,                                    (18) 218 

because the approximation made above restricts severely the possibility of obtaining energy sub-states,  219 

which depend strongly on power series of higher degrees. The substitution of Eq.(18), together with its 220 

first derivatives  221 

        1 1 2 2 1 2

1
11

1 1 1 2
0 1

r r s s
k k

s
r f e a r r

r
β β µ ν

µν
µ ν

µ β− − + − +

+ =

 +∂ = − 
 

∑ ,      1,2,3,4k = ,                         (19a) 222 

         1 1 2 2 1 2

1
12

2 2 1 2
0 2

r r s s
k k

s
r f e a r r

r
β β µ ν

µν
µ ν

ν β− − + + −

+ =

 +∂ = − 
 

∑ ,                                                 (19b) 223 

 into the system (17) yields the new set of equations (summation on ,µ ν is omitted for shortness): 224 



( ) ( )
1 1

1 1 2 22 2
2 1 1 3 2 4

1 2 1 2

2 1 4
1 2 0

j s j s
a a a

r r r rρ µν µν µν
α σ ασγ σ β σ β

 −     − − − −
− − + − + + + =    

    
 225 

                                                                                                                                                   (20a) 226 

( ) ( )
1 1

2 2 1 12 2
2 2 2 3 1 4

1 2 2 1

2 1 4
2 1 0

j s j s
a a a

r r r rρ µν µν µν
α σ ασγ σ β σ β

 −     + + + +
− − + − + − − =    

    
 227 

 (20b) 228 

( ) ( )
1 1

2 2 1 12 2
1 3 2 2 1 1

1 2 2 1

2 1 4
2 1 0

j s j s
a a a

r r r rρ µν µν µν
α σ ασγ σ β σ β

 −     − − + +
+ + + + + − − =    

    
 229 

(20c) 230 

( ) ( )
1 1

1 1 2 22 2
1 4 1 2 2 1

1 2 1 2

2 1 4
1 2 0

j s j s
a a a

r r r rρ µν µν µν
α σ ασγ σ β σ β

 −     − − + +
+ + − − + + − =    

    
 231 

(20d) 232 

where ( ) ( )
1

1
1 m Eρ

σ α
γ σ

ρ
+

= + + −  and ( ) ( )
2

1
1 m Eρ

σ α
γ σ

ρ
+

= + − + .  233 

 234 

Now we start with the determination of the coefficients and parameters by observing that the system of 235 

equations formed by each negative power 1/ 1r  and 1/ 2r   must vanish separately in order the coefficients 236 

00ka  do not vanish: 237 

                                      ( )1
100 1 1 30022 0a j s aα− + − − = ,                                                 (21a) 238 

                                   ( )1
200 1 1 40022 0a j s aα− + + + = ,                                                 (21b) 239 

                                  ( )1
1 1 100 3002 2 0j s a aα− + + + = ,                                                  (21c) 240 

                                  ( )1
1 1 200 4002 2 0j s a aα− − − + = ,                                                  (21d) 241 

and equally 242 

                               ( )1
100 2 2 40024 0a j s aα− + − − = ,                                                  (22a) 243 

                            ( )1
200 2 2 30024 0a j s aα− − + + = ,                                                  (22b)       244 

                               ( )1
2 2 100 4002 4 0j s a aα− + + + = ,                                                  (22c) 245 

       ( )1
2 2 200 3002 4 0j s a aα− − + = .                                                  (22d)                                                                              246 

For this condition  to be fulfilled it is necessary that the determinants of the systems (21) and (22) vanish, 247 

from which we get 2 21
1 12 4s j α= − + −   and 2 21

2 22 4s j α= − + − . 248 

 249 



Now get back to the original system (20), assume that k ka aµν νµ= ,   for 0,1µ ν≠ = ,  and equate the 250 

coefficients of the system of equations for the same powers, from which we get the system of recurrence 251 

equations  252 

    ( ) ( ) ( )2 100 1 300 2 400 110 1 310 2 4101 2 2 1 1 2 0a a a a s a s aργ σ β σβ α σ σ σ+ − + − + − − − = ,        (23a)  253 

   ( ) ( ) ( )2 200 2 300 1 400 210 2 310 1 4102 1 2 1 2 1 0a a a a s a s aργ σβ σ β α σ σ σ+ + − − + − + − = ,              (23b) 254 

    ( ) ( ) ( )1 100 2 200 1 300 310 1 110 2 2101 2 2 1 1 2 0a a a a s a s aρσ β σβ γ α σ σ σ− + + + + − − − = ,               (23c) 255 

    ( ) ( ) ( )2 100 1 200 1 400 410 2 110 1 2102 1 2 1 2 1 0a a a a s a s aρσβ σ β γ α σ σ σ− − + + + − + − = .               (23d) 256 

In order the series (18) can stop, the part of the coefficients 00ka  in the recurrence must vanish separately 257 

of that of the coefficients ka µν  for 0,1µ ν≠ = , that is 258 

         ( )2 100 1 300 2 4001 2 0a a aργ σ β σβ+ − + = ,                                              (25a)  259 

                   ( )2 200 2 300 1 4002 1 0a a aργ σβ σ β+ + − = ,                                                 (25b)  260 

                     ( ) 1 100 2 200 1 3001 2 0a a aρσ β σβ γ− + + = ,                                                 (25c) 261 

      ( )2 100 1 200 1 4002 1 0a a aρσβ σ β γ− − + = ,                                                 (25d) 262 

and also 263 

         ( ) ( )110 1 310 2 4102 1 1 2 0a s a s aα σ σ σ− + − − − = ,                                            (26a)   264 

     ( ) ( )210 2 310 1 4102 1 2 1 0a s a s aα σ σ σ− + − + − = ,                                            (26b)   265 

    ( ) ( )310 1 110 2 2102 1 1 2 0a s a s aα σ σ σ+ − − − = ,                                            (26c)   266 

     ( ) ( )410 2 110 1 2102 1 2 1 0a s a s aα σ σ σ+ − + − = .                                             (26d)   267 

Therefore in order the system  (25) have a non trivial solution its determinant must vanish, from what we 268 

get 
2 2

1 2 2

1

4

1
ρ ργ γ σ β

β
σ

−
=

−
 as a function of 2β  and the other parameters.  269 

 270 

Now, the non trivial solution for the homogeneous system of equations (25) in the coefficients 00ka  can be 271 

obtained  from the  kernel associated to 1β , whose basis is given by the two linearly independent column 272 

vectors 273 

              

( ) 1 2

2 2
1

1 /

  2 /

          1

          0

ρ

ρ

σ β γ
σβ γψ

− − 
 

− =  
 
 
 

,                  ( )
2 2

1 2
2

  2 /

1 /

          0

          1

ρ

ρ

σβ γ
σ β γψ

− 
 

− − =  
 
 
 

 ,                          (27a,b) 274 



out of  which 300 1 400 2a aψ ψ ψ= +   is a general kernel vector. These basis vectors generate by its turn 275 

relations among the power series coefficients given by ( )100 1 300 21 /a a ρσ β γ= − − , 200 2 300 22 /a a ρσβ γ= − , 276 

400 0a =   for the former vector and 100 2 400 22 /a a ρσβ γ= − , ( )200 1 400 21 /a a ρσ β γ= − − , 300 0a =  for the later 277 

one.  278 

 279 

The last step in order to be able to make the evaluation of the energy eigenvalue of the system is as 280 

follows. First form a null line vector corresponding to the system (23), i.e.,  [ ]23 ,23 ,23 ,23R a b c d=  and 281 

second make a contraction of  it with one of the kernel vectors. Since it may be seen that both kernel 282 

vectors produce the same energy eigenvalue, so that the solutions in 300a  and 400a   are degenerated, we 283 

have chosen to make the contraction with the first kernel vector, that is, 1 0Rψ = . This operation, as 284 

expected, eliminates the coefficients  00ka  and produces a new relation connecting  the coefficients 10ka : 285 

( ) ( ) ( )

( ) ( )

2
1 2

1 1 110 2 2 210
2 2

2

1 2
1 1 2 2 2 310

2

2 1 2 13 3
1 2

2 2

13 3
4 2 1 0

2 2

s j a s j a

s j s j a

ρ ρ

ρ

α σ β α σ β
σ σ

γ γ

σ β
σ β α σ

γ

 −  + 
 − − + + + − − + +  

      

 −   + + − + + + + + =    
     

.              (28) 286 

Third, decrease the indices µ by one step, in order we can obtain another relation for the coefficients 00ka , 287 

and use the relation given by the kernel vector 1ψ  to eliminate them: 288 

( ) ( ) ( ) ( )

( ) ( )

2
1 221 2

1 1 2 2
2 2 2 2

2

1 2
1 1 2 2 2

2

2 1 2 11 1
1 1 4

2 2

11 1
4 2 1 0.

2 2

s j s j

s j s j

ρ ρ ρ ρ

ρ

α σ β α σ ββ βσ σ σ
γ γ γ γ

σ β
σ β α σ

γ

 −  +  − − − + + − − − − + +  
      

−   + + − + + + + + =   
   

  (29) 289 

Before we can follow, we should note that the determinant of the system (26) is not null, so that the only 290 

possible solution for (26) is the trivial solution, i.e., 10 0ka = , so that the solution (18) for the system of 291 

differential equations reduces to the elementary form 292 

                                   1 2 1 1 2 2
00 1 2k k

s s r rf a r r e β β− −= ,      1, 2, 3, 4k = ,                                           (30) 293 

where we have redefined the coefficients 00ka  as ( )100 1 21 /a ρσ β γ= − − , 200 2 22 /a ρσβ γ= − , 300 1a =  and 294 

400 0a = .   295 

 296 

Now, we write by convenience 2 1hβ β= ,  where h is to be determined below.   As a consequence, 297 

substituting 1β  found above and after a little of algebra, we get from (29)  298 



  
( ) ( ) ( )

( )( ) ( )

22 22 2 2
1 2

1 2 2 2 31
1 22 2

4 1 1 4

1 4

h

s h s

ρ ρ

ρ ρ

α σ σ σ γ γ
γ γ

σ σ

 + − + −
 =

− + + +
 ,                                  (31) 299 

which is the fundamental  relation that connects  the electron parameters. Next, we substitute into (31) 300 

the expressions for  1ργ  and 2ργ  defined above to get finally an algebraic expression for the energy 301 

eigenvalues we are searching for 302 

       
( ) ( )

( ) ( )
( )( ) ( )

2 22 2 2

2 2 31
1 22 2

1 1

4 1 1 4
1

1 4

m
E

h

s h s

α σ σ
ρ α σ σ σ

σ σ

+ +
= +

 + − +
 +

− + + +

.                              (32) 303 

However, this is not yet the final step, since we still need to find out a value for h and the connection 304 

between σ and ρ , so that we can obtain a numerical evaluation of the atom energy. This is done by 305 

considering the values of the radii for which the probability given by the radial function (30) is a maximum, 306 

that is, for which the first derivatives (19) vanish. From this come the relations 10 1 1/r s β=  and  307 

20 2 2/r s β=  among the most likely orbital radii and the points of maxima of the radial part of the wave 308 

function. 309 

 310 

Further we assume  that 12rρ =  at the equilibrium configuration may be approximated by 10 20r rρ = +  311 

and also a linear connection 10 20r rσ=   between  the electron  equilibrium radii which assures the contour 312 

condition 20r → ∞ when 0σ → . From these relations we finally get 2 1/h s sσ= .  At this point we have 313 

finally fulfilled all the steps toward getting an expression for the energy eigenvalues in terms of the basic 314 

electron properties along with the variation factor σ: 315 

                                        
2 2

1 2

2 (1 ) (1 )m m
E

C C

σ α σ σ+ += + ,                                                  (33) 316 

where use has been made of the parameters   317 

22 3 2 2 2 2 4 231
1 1 1 2 2 1 22 2(1 ) ( ) 4 ( ) 4 (1 ) (1 ) 4C s s s s s sσ σ α σ σ σ   = − + + + + + − +    ,              (34a) 318 

                       
2 2 2 2 4 2

1 2

2 22 3 31
1 1 2 22 2

4 (1 ) (1 ) 4
1

(1 ) ( ) 4 ( )

s s
C

s s s s

α σ σ σ

σ σ

 + − + = +
 − + + + 

.                                        (34b) 319 

We also get, together with Eq.(33), a determination of the equilibrium distance between the electrons as a 320 

function of σ , i.e.,  1

2 (1 )

C

m
ρ

σ α σ
=

+
, as was aimed at the beginning of the paper. And finally the 321 

equilibrium radii  becomes 10 1
r

σ ρ
σ

=
+

   and 20 1
r

ρ
σ

=
+

. 322 



 323 

At this point we can make a plot of the energy excess (1 )E E mσ∆ = − +  of the system against the 324 

effective mass (1 )mσ+ . After considering the unit conversion factors, the  Hartree 2 27m eVα ≅   and the 325 

Bohr radius 0 1/ ( ) 0.53a m Aα °= ≅ ,  we get dimensionless forms for the energy excess E∆ and for the 326 

distance ρ  as follows: 327 

                          
2

2
1 2

2 (1 ) (1 ) 1
1E

C C

σ σ σ σ
α

 + +∆ = + − − 
 

,                                          (35) 328 

                                              1

2 (1 )

Cρ
σ σ

=
+

.                                                                   (36) 329 

The plot of the energy excess (in au) as a function of σ is shown in Fig.1, from which we immediately see 330 

that the ion ground state limit 2E∆ = −  occurs for σ = 0 or ρ = ∞ .  The minimum of the energy excess for 331 

1 2 1j j= =  corresponds to the inner orbital state of the parahelium atom (or the state 1s-1s of the 332 

Spectroscopy). By solving the equation 0
d

E
dσ

∆ = , we see that the equilibrium value occurs 333 

approximately for  0.17753σ = , for whose value we get an energy ground state of 2.9059E∆ = − , which  334 

agrees with the experimental value 2.9033ExpE∆ = −  within 0.1% of accuracy. This means that the 335 

approximations done to get the determination of the ground state energy of the atom, although rather 336 

rough, were consistent with the dynamics of the physical system. Besides, the equilibrium radii found 337 

10 0.130r = , 20 0.732r =  and 0.862ρ =  seem also to be in a reasonable agreement with the known 338 

values [15].  339 



 340 
                Fig1. Excess energy variation E∆  in au against the dimensionless parameter σ. 341 

 342 
 343 
4. CONCLUSION 344 
 345 

In this work we have considered a 2D formulation of the Helium Atom, derived a four-spinor Dirac-like 346 

equation and found the suitable matrices. The work has been developed within two methods of approach: 347 

on the one hand through a total Hamiltonian in a Hylleraas context that ends in an extremum problem to 348 

be solved in a next paper. And on the other hand through a pair of Hamiltonians for an ion-atom and for 349 

an outer electron respectively. This second approach stands for a process controlled by a macro- 350 

parameter of variation which is connected with the average values of the radial variables and that 351 

contains  the ion helium atom ground state as a limit case.  For this case we have discussed the general 352 

structure of the equations, separated the system of equations, found the angular eigenfunctions that 353 

decouple the system and a solution for the radial equation, in the approximation of constant inter-electron 354 

distance. This made possible to calculate the ground state energy eigenvalue of the atom, whose value 355 

agrees with the experimental data within 0.1 % of accuracy.  356 

 357 
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