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The mass lowest  limit of a black hole: the hydrodynamic approach to 1 

quantum gravity  2 

 3 

 4 
Abstract: In this work the quantum gravitational equations are derived by using the quantum hydrodynamic 5 
approach that allows to define the energy-impulse tensor density of the gravitational equation..  The outputs 6 
of the work show that the quantum  uncertainty principle opposes itself to the gravitational collapse so that an 7 
equilibrium condition becomes possible. In this case, when the maximum collapse is reached, all the mass is 8 
inside the gravitational radius of the black hole if it is larger than the Planck's one.   9 
The quantum-gravitational equations of motion show that the quantum potential generates a repulsive force 10 
that opposes itself to the gravitational collapse. The eigenstates in a central symmetric black hole realize 11 
themselves when the repulsive force of the quantum potential becomes equal to the gravitational one. The 12 
work shows that, in the case of maximum collapse, the mass of the black hole is concentrated inside a sphere 13 
whose radius is two times its Compton length. The mass  minimum is determined requiring that the 14 
gravitational radius is bigger than or at least equal to the radius of the state of maximum collapse.   15 
 16 
PACS: 04.60.-m 17 
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1. Introduction 20 

One of the unsolved problems of the theoretical physics is that of unifying the general relativity with the 21 
quantum mechanics. The former theory concerns the gravitation dynamics on large cosmological scale in a 22 
fully classical ambit, the latter one concerns, mainly, the atomic or sub-atomic quantum phenomena and the 23 
fundamental interactions [1-9].  24 
The wide spread convincement among physicists that the general relativity and the quantum mechanics are 25 
incompatible each other derives by the complexity of harmonizing the two models.  26 
Actually, the incongruity between the two approaches comes from another big problem of the modern 27 
physics that is to unify the quantum mechanics [2] with the classical one in which the general relativity is 28 
built in.  29 
Although the quantum theory of gravity (QG) is needed in order to achieve a complete physical description 30 
of world, difficulties arise when one attempts to introduce the usual prescriptions of quantum field theories 31 
into the force of gravity [3]. The problem comes from the fact that the resulting theory is not renormalizable 32 
and therefore cannot be utilized to obtain meaningful physical predictions.  33 
As a result, more deep approaches have been proposed to solve the problem of QG such as the string theory 34 
the loop quantum gravity [10] and the theory of casual fermion system [11]. 35 
Strictly speaking, the QG aims only to describe the quantum behavior of the gravitation and does not mean 36 
the unification of the fundamental interactions into a single mathematical framework. Nevertheless, the 37 
extension of the theory to the fundamental forces would be a direct consequence once the quantum 38 
mechanics and the classical general relativity were made compatible. 39 
The objective of this work is to derive the quantum gravitational equation by using the quantum 40 
hydrodynamic approach and give a physical  result.  41 
The quantum hydrodynamic formulation describes, with the help of a self-interacting potential  (named 42 
quantum potential) [12-13] the evolution of the wave function of a particle through two real variables, the 43 

spatial particle density 
2||ψ  and its action S that gives rise to the momentum field of the particle  44 

)p,
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q
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i−−=−=

∂
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µµ .  The biunique relation between the solution of the standard quantum 45 

mechanics and that one of the hydrodynamic model is completed by the quantization that is given by 46 

imposing the irrotational condition to the momentum field µp  [12].  47 
The quantum properties, stemming from the quantum potential, break the scale invariance of the space. This 48 
leads to the fact that the laws of physics depend by the size of the problem so that the classical behavior 49 
cannot be maintained at a very small scale [12-17] (see appendix A). The aversion of quantum mechanics to 50 
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the concentration of a particle in a point is due, in the quantum hydrodynamic description, to the so called 51 
quantum potential that leads to a larger repulsive force higher is the concentration of the  wave packet. If this 52 
quantum effect is considered for the BH collapse, it follows that it stops at a certain point. For the collapse of 53 
a very small mass this final point will not be beyond the horizon of the events and it will not generate a BH. 54 
Similarly to the classical mechanics, the quantum hydrodynamic equations of motion can be derived by a 55 
Lagrangian function, that obeys to the principle of minimum action, and that can be expressed as a function 56 
of the energy-impulse tensor.  57 
Thanks to this analogy, the derivation of the gravity equation for a spatial particle mass density that obeys to 58 
the quantum law of motion can be straightforwardly obtained . 59 
The paper is organized as follows: in the first section the Lagrangian formulation of the quantum 60 
hydrodynamic model  in the non-euclidean space is derived. In the second one, the energy-impulse tensor 61 
density of the quantum particle mass distribution is formulated  for the gravitational equation.   62 
In the last section the smallest mass value of a Schwarzchild BH is calculated. 63 
 64 
 65 
 66 
2. The quantum hydrodynamic equations of motion in non-euclidean 67 
space  68 
 69 

In the first part of this section we will introduce the quantum hydrodynamic equations (QHEs) where, given 70 

the wave function ]
iS

exp[||
h

ψψ = , the quantum dynamics are solved as a function of ||ψ andS , where 71 

2||ψ is the particle spatial density and   )p,
c

E
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q
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∂
∂

µµ its momentum. 72 

For the purpose of this work we derive the QHEs by using the Lagrangian approach. This will allow to obtain the 73 

impulse-energy tensor for the quantum gravitational equation in a straightforward manner.  74 

The quantum hydrodynamic equations corresponding to the Klein-Gordon one read [18]   75 
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is the 4-current.  85 

It is worth noting that equation (1) is the hydrodynamic homologous of the classic Hamilton-Jacobi equation 86 

(HJE)  and that is coupled to the current conservation equation (2) through the quantum potential. 87 

Moreover, being in the hydrodynamic analogy 88 
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it follows that 91 
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Moreover, by using (5), equation (1) leads to  100 
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 (where the minus sign considers the negative energy states (i.e., antiparticles, see section 4))  where the 106 

quantum potential (see section 4) reads 107 
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and , finally, by using (8) that 111 
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Thence, the quantum hydrodynamic Lagrangian equations of motion read 115 
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where the lower minus sign still accounts for the antiparticles.  121 
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The motion equation can be obtained by inserting )q,q(
p

&
µ from  (13) into (14). The so obtained equation is 122 

coupled to the conservation equation (2) through the quantum potential  quV  .  123 

For 0→h  it follows that 0→quV and the classical equations of motion are recovered. 124 
Thence, the hydrodynamic motion equation deriving by (1) (just for matter or antimatter without mixed 125 
superposition of states) read 126 
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where dt
c
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=  and where the quantum energy-impulse tensor 
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so that, finally, the motion equation reads 135 
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where µµ
γ

q
c

u &= .  138 

It must be noted that the hydrodynamic solutions given by (19) represent an ensemble wider than that of the 139 

standard quantum mechanics since not all the field solutions µp  warrant the existence of the action integral 140 

S  so that the irrotational condition of the action gradient [12] (similar to the Bohr-Sommerfeld quantization)  141 

has to be imposed in order to find the genuine quantum solutions  (see appendix B).  142 

Equation (16) (following the method described in appendix B) can be used to find the eigenstates of matter 143 

n+ψ , by considering the upper positive sign, and of antimatter n−ψ , by using the lower minus sign, that 144 

allow to obtain the generic wave function 
( )∑ −−++−+ +=+=

n
nnnn aa ψψψψψ

, where 145 

∑ +++ =
n

nna ψψ
 and ∑ −−− =

n
nna ψψ

.  146 

It must be noted that the equations (13-14) describe the quantum evolution of pure matter or antimatter states 147 

(as we need for the calculation in section 3.3). The more general treatment including the superposition of 148 

states of matter and antimatter is given elsewhere [19]. 149 

Finally, for the solution of the gravitational problem, equation (19) in non-euclidean space reads  150 

 151 
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with the conservation equation 154 
 155 

0
1 =










∂
∂−

∂
∂

− ν
µν

µ ψ
q

S
||gg

qg
    

   
(21) 156 

    157 
where  158 

( )||gg
g||m

Vqu ψ
ψ ν

µνµ ∂−∂
−

−= 12
h

,   
   

(22) 159 

where gµν  is the metric tensor and where
21

| g | J
g µν= = − , where J  is the jacobian of the transformation 160 

of the Galilean co-ordinates to non-euclidean ones. 161 
 162 
 163 
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3. The quantum energy-impulse tensor density  165 
 166 

Given the hydrodynamic Lagrangian function dVdVL||L
~

  ∫∫ == L2ψ , its spatial density L  reads 167 
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that, by using the variational calculus, leads to the quantum impulse energy tensor density (QEITD) [16] 170 
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that reads 174 
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2||m ±ψ   
 

        (26) 180 
 181 
are the mass densities of matter or antimatter where the minus sign refers to antimatter.  182 
In non-euclidean space the covariant QEITD reads 183 
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3.1 The quantum gravitational equation for spinless uncharged particles 187 
 188 

Equation (19) in the classical limit (i.e., 00 →→ quV,h ) gives  189 
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it follows that the energy-impulse tensor leads to the same mass motion of the classical one that reads 195 

ν
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mc2

=T  (given that the PD behaves like dust matter [12]).  196 

Just from the mechanical point of view, thence, the impulse energy tensor has a freedom of choice so that all 197 
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On the other hand, from gravitational point of view, the curvature of space associated to the QEITDs of type 199 
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would be different as a function of )t,q(  &Λ .  Therefore to end with the correct form of )t,q(  &Λ  we must 201 
require that the classical Einstein equation as well as the correct Galilean gravitational field must be 202 
recovered in the classical limit.  203 
By imposing this condition the explicit expression  204 
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Thence, the quantum gravitational equation for particles and antiparticles respectively reads [20] 209 
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In the classical limit, where particles are localized and distinguishable, we can approximate them by the 215 
point-like distribution 216 
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while in the quantum case they are defined by the solution of the quantum equation. 223 

Moreover, if in the classical gravity, the equation (32) defining the tensor νµg , has to be solved with the 224 

mass motion equation (19) (given that νµg  itself depends by the motion of the masses) in the quantum case 225 

the set up is a little bit more complicated since the motion equation (19) as well as the gravitational equations 226 

(32-33) are coupled to the mass conservation equations (21) through ||ψ  that is present into the quantum 227 

potential. 228 

Finally, noting that the quantum motion equation (19) is equivalent to the HJE equation (1) (see appendix C) 229 

and that, with the irrotational condition of the action gradient, equations (1,19)  lead to the same solutions of 230 

the Klein-Gordon  equation [18], we can write the equations of quantum gravity in the standard notations as 231 
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 238 
 239 
3.2 Quantum dynamics in a central symmetric gravitational field 240 
 241 
 242 
In the classical gravity, the dynamics in a central symmetric gravitational field is simplified if the symmetry 243 
is maintained along the evolution of the motion. For the quantum case, the condition of central symmetry has 244 
to be owned by the eigenfunctions. The same criterion applies to the hydrodynamic motion equations so that 245 
the stationary equilibrium condition, that characterizes the eigenstates, has  a central symmetric geometry.  246 
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Due to the quantum potential form that generates a repulsive force when the matter concentrates itself more 247 
and more, the point-like gravitational collapse in the center of such a black hole is  not possible in the 248 
quantum case. 249 
In order to investigate this aspect, it is useful to note that the quantum gravitational equations, without the 250 
quantum potential, perfectly realize the case of motion of incoherent matter [12]. In this case the solution 251 
depends by the mass distribution and by the radial velocity. In classical gravity, the solution can be expressed 252 
in a synchronous system in quiet with all masses [21] following the identity   253 
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that, considering the last infinitesimal shell of  matter that collapses in a central gravitational field, leads to 265 
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 269 
with r that approaches to zero leading to a  point-like collapse in the center of the BH [21]. 270 
In the quantum case we can observe that the dynamics approach the classical output (41) for large masses 271 

since it holds 
m

Vqu
1→∝  .  272 

On the other hand, for mass concentration on very short distances when the quantum potential grows in a 273 
sensible manner and can be of order of 2mc , it can give an appreciable inertial contribution in the motion 274 
equation (20) through the term 275 
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so that the departure from the classical output is expected.  279 
Following the quantum hydrodynamic protocol [12] (see appendix C) the eigenstates are defined by their 280 
stationary “equilibrium” condition that reads 281 
 282 

),,,(u 0001=µ            (44) 283 
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 286 
The  condition of null total force (45) is achieved when the quantum force (i.e., minus the gradient of the 287 
quantum potential) is equal and contrary to the external ones (see example in appendix C).  288 
In the quantum case, the presence of quantum potential does not allow us to write the Einstein equation in a 289 
synchronous system. Therefore, we can only impose the central symmetry that reads [18,21] 290 
 291 
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that inserted into the gravity equation leads to [21] 297 
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where the apex and the dot over the letter mean derivation respect to r and ct, respectively. Moreover, the 305 

quantum potential in this case reads 306 
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It is worth noting that for ∞→m  the gravitational radius 2
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0R , representing the sphere inside which the mass concentrate itself in the stationary equilibrium state, goes 309 

to zero since 0
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m

Vqu  .  In this case, the point-like collapse up to (macroscopically speaking) 310 

00 =R  is possible.  311 

On the other hand, when 0→m  the gravitational radius gR  tends to zero, while both the quantum 312 

potential 
m

Vqu
1∝  and, hence,the radius 0R  may sensibly grow.  313 

Moreover, given that to have a BH, all the mass has to be contained inside the gravitational radius, it follows 314 

that the minimal allowable mass minimum for a BH is the smallest one for which it holds the condition 315 

gRR ≤0  . 316 

Being )m(R min0  the highest value of 0R  smaller than gR , thence, for gRrR ≅<0  (with 317 

gRR →0 )the quantum potential can approximately read (see appendix D) 318 
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Assuming that in the stationary equilibrium distribution (eigenstate) the mass is concentrated in a sphere of 322 

radius 0R  for 0Rr >  we can  use the gravitational equation with the approximation of null mass that reads 323 
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leading to approximated equation 344 
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Moreover, by setting ε+= gRr  with gR<<ε  , (61) reads 348 
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leading to the zero-order approximated solution  352 
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Moreover, since in order to have a BH, all the mass must be inside the gravitational radius, by posing 361 
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4. Comments 371 

Even if the hydrodynamic description was formulated contemporaneously to the Schrödinger equation [19], 372 

due to the low mathematical manageability, it is much less popular that the latter.  373 

Nevertheless, the interest in the quantum hydrodynamic model has been never interrupted since its 374 

formulation by Madelung [22-25]. This because it has proven to be very effective in describing systems 375 

larger than a single atom where fluctuations and quantum decoherence become important in defining their 376 

evolution [26].  377 

Moreover, due to the classical-like form, the hydrodynamic description is suitable for the connection between 378 

quantum concepts (probabilities) and classical ones such as trajectories [27-29]. Moreover, it embodies the 379 

antiparticle states as negative energy ones in agreement with the outputs of standard quantum mechanics 380 

where, an antimatter particle, identified by the complex conjugated of the wave function, that propagates 381 

forward in time with negative energy, is equivalent to a particle of matter with positive energy that 382 

propagates backward in time [12].   383 

The property of the hydrodynamic quantum description of being a bridge between the quantum mechanics 384 

and the classical one, allows the straightforward generalization of the Einstein gravity (a pure classical 385 

theory) to the quantum case, leading to a model with clear mathematical statements. 386 

Furthermore, since the hydrodynamic approach, once the irrotational condition, of the gradient of the action,  387 

is applied, becomes equivalent to the quantum one  [12,25], the results can be expressed in the standard 388 

quantum formalism with a set of equations that are independent by the hydrodynamic approach and that 389 

appear well defined. 390 

The hydrodynamic quantum gravity has shown to succeed to determine the minimal mass of a black hole.  391 

The model  depicts the quantum gravitational behavior in a classical-like way by means of the self-interaction 392 

of the quantum potential that accounts for the quantum properties such as non-locality, uncertainty principle 393 

and so on [12]. In fact, if a wave-packet is concentrated in a smaller and smaller spatial domain, the quantum 394 

potential grows and generates larger and larger repulsive force that tends to enlarge it. Furthermore, since the 395 
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quantum potential is basically a quantum kinetic energy term, its increase leads to the widening of the wave-396 

packet of momenta. Its real existence has been experimentally proven by the Bohm-Aharonov effect. 397 

 398 

5. Conclusions 399 

In this work the quantum gravitational equations are derived with the help of  the quantum hydrodynamic 400 

description that allows to define the energy-impulse tensor density that couples the gravitational equation to 401 

the quantum one. The work shows that the uncertainty principle, described here by the quantum potential, 402 

generates a force that opposes itself to the gravitational one. In this way an equilibrium condition becomes 403 

possible. In this case, when the maximum gravitational collapse is reached (when the repulsive force of the 404 

quantum potential is equal to the gravitational one) the BH mass is practically concentrated inside a sphere 405 

whose radius 
mc

R
h2

0 =  is two times the Compton length of the black hole. The minimum BH mass, equal 406 

to the Planck mass 
G

c
mp

h=  , follows by requiring that the gravitational radius 2

2

c

Gm
Rg =  must be 407 

bigger than 0R .   408 

 409 
 410 
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 461 

Appendix A 462 

The quantum potential and the breaking of the scale invariance of space 463 

In this section we illustrate how the vacuum properties on small scale are affected by the quantum potential. 464 

One of the physical quantities that clearly show breaking of scale invariance of vacuum is the spectrum of the 465 

vacuum fluctuations.  466 

The quantum potential finds its definition in the frame of the quantum hydrodynamic representation.  For 467 

sake of simplicity, we analyze here the hydrodynamic motion equations in the low velocity limit.  468 

The generalization to the  relativistic limit is straightforward since the expression of the quantum potential 469 

remains unaltered.  470 

In the quantum hydrodynamic approach, the motion of the particle density (q,t)(q,t) || 2n ψ= , with velocity 471 

m

S
q

)t,q(∇
=

•
, is equivalent to the quantum problem (Schrödinger equation)  applied to a wave function 472 

]S
i

[exp|| (q,t)(q,t)(q,t)
h

ψψ = , and  is defined by the equations [12]  473 

0nn =∇+∂
•

• )q( (q,t)(q,t)t ,
       

(A.1) 474 

m

S

m

p

p

H
q

)t,q(∇
==

∂
∂=

•

,
       

(A.2) 475 

)VH(p qu+−∇=
•

,        (A.3) 476 

∫ −−= •
t

t
)(qu)q( )VV

m

pp
(dtS

0

n2       (A.4) 477 

where the Hamiltonian of the system is )q(V
m

pp
H += •

2
 and where quV  is the quantum potential that 478 

reads 479 
 480 

2121
2

nn
2

//
qu )

m
(V ∇∇−= •

−h
.       (A.5) 481 

For  macroscopic objects (when the ratio 
m2

2
h

  is very small) the limit of 0→h  can be applied and 482 

equations (A.1-A.4) lead to the classical equation of motion. Even, such simplification tout court is not 483 

mathematically correct, the stochasticity must be introduced to justify it  [14,16].  484 

Actually, since the non local characteristics of quantum mechanics can be generated also by an infinitesimal 485 

quantum potential, it can be disregarded when random fluctuations overcame it and produce quantum 486 

decoherence [14,16,30].   487 
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If we consider the fluctuations of the variable (q,t)(q,t) || 2n ψ=  in the vacuum, as shown in ref.[14-16] 488 
equation (1) can be derived as the deterministic limit of the stochastic equation   489 

)T,t,q((q,t)(q,t)t )q( η+−∇=∂
•

• nn       (A.6) 490 

For the sufficiently general case, to be of practical interest, )T,t,q(η  can be assumed Gaussian with null 491 
correlation time and independent noises on different co-ordinates. In this case, the stochastic partial 492 
differential equation (A.6) is supplemented by the relation [16] 493 
 494 

αβτλ δτδληηηη βαβα )()(G,, )q()q()t,q()t,q(  >>=<< ++    (A.7) 495 

where kT, )q()q( >∝< βα ηη  [16] where T is the amplitude parameter of the noise (e.g., the temperature 496 

of an ideal gas thermostat in equilibrium with the vacuum [14,16]) and )(G λ is the shape of the spatial 497 
correlation function of the noise η .  498 

In order that the energy fluctuations of the quantum potential do not diverge, the shape of the spatial 499 
correlation function cannot be a delta-function (so that the spectrum of the spatial noise cannot be white) but 500 
owns the the correlation function  501 

])(exp[)(G
cT

lim
2

0
      

λ
λλ −=

→
.       (A.8)  502 

The noise spatial correlation function (A.8) is a direct consequence of the PD derivatives of the quantum potential  that 503 

give rise to an elastic-like contribution to the system energy that reads  504 

∫∫
∞

∞−

∞

∞−
∇∇−== • dq)

m
(dqVH //

)t,q()t,q()t,q(qu)t,q(qu
2121 n

2
n n 

2
h

,  (A.9) 505 

where large derivatives of t)(q,n  generate high quantum potential energy. This can be verified by calculating the 506 

quantum potential values due to the sinusoidal fluctuation of the wave function in the vacuum (i.e., 0=)q(V  ) (e.g., 507 

mono-dimensional case) 508 

qcos
λ
πψψ 2

0=          (A.10) 509 

that leads to  510 

22
22

2 2

2

22

2

2121








=
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−= •

−

λ
π

λ
π

λ
π

m
qcosqcos)

m
(V

//

qu
hh

   (A.11) 511 

 512 

showing that the energy of the quantum potential grows as the inverse squared of the the wave length of 513 

fluctuation.  514 

Therefore, the presence of components with near zero wave length λ  into the spectrum of fluctuations can  lead to  515 

fluctuations of  quantum potential with finite amplitude even in the case of null noise amplitude  (i.e., 0→T ).   516 

In this case the deterministic limit (A.1-A.3) contains additional solutions to the standard quantum mechanics (since 517 

fluctuations of the quantum potential would not be suppressed).  518 
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Thence, from the mathematical inspection of stochastic equation (A.6-A.7) it comes out that in order to obtain the 519 

quantum mechanics on microscopic scale, the additional conditions (A.8) must be included to the set of the  stochastic 520 

equations of the hydrodynamic quantum mechanics [14-16].  521 

A simple derivation  of the correlation function (A.8) can come by considering the spectrum of the PD fluctuations of 522 

the vacuum. Since each component of spatial  frequency λ
π2=k  brings the energy contribution of quantum 523 

potential (A.11), the probability that it happens  is 524 








 >+<
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VV
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E
expp

qu)q(
       (A.12) 525 

that, for the empty vacuum (i.e., 0=)q(V  ), leads to the expression: 526 






−=


















−=


















−=




















>







<
−=




 ><−∝

kT

c

mc
expexp

mkT
exp

kT

m
exp

kT

Vqu
expp

c

λλ
πλ

λ
π

λ
π

hhh

h

2

2

2

2

2

222

22

    (A.13)  527 

where 528 

212
2

/c
)mkT(

h=λ          (A.14) 529 

From (A.13) it follows that the spatial frequency spectrum  )()(
λ
π2

pkS ∝  of the vacuum fluctuations is not 530 

white.  531 

Fluctuations with  smaller wave length have larger energy (and lower probability of happening) so that when λ  is 532 

smaller than cλ  their amplitude goes quickly to zero. 533 

Given the spatial frequency spectrum )(p)k(S
λ
π2∝ , the spatial correlation function of the vacuum  534 

fluctuation reads 535 

 536 























−∝



















−∝∝ ∫∫
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221
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c
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exp

dkkexp]ikexp[dkS]ikexp[G

λ
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λ
π

λλλλ

           

   (A.15)  537 

that gives (A.8). 538 

The fact that the vacuum fluctuations do not have a white spectrum but have a length “built in”  (i.e., the De Broglie 539 

thermal wavelength cλ  )  shows the breaking of the its scale invariance: The properties of the space on a small scale 540 
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are very different from those ones we know on macroscopic scale. When the physical length of  a system is smaller 541 

than cλ  , the deterministic limit of (A.6) (i.e., the quantum mechanics) applies [31] and we have the emerging of the 542 

quantum behavior [16]. 543 

 544 

Appendix B 545 

Analysis of the quantization condition in the quantum hydrodynamic description 546 
 547 
 548 
If we look at the mathematical manageability of QHEs of quantum mechanics (A.1-A.5) no one would 549 

consider  them.  550 

Nevertheless, the QHEs attract much attention by researchers. The motivation resides in the formal analogy 551 

with the classical mechanics that is appropriate to study those phenomena connecting the quantum behavior 552 

and the classical one.  553 

In order to establish the hydrodynamic analogy, the gradient of action (A.4) has to be considered as the 554 

momentum of the particle.  When we do that, we broaden the solutions so that not all solutions of the 555 

hydrodynamic equations can be solutions of the Schrödinger problem.  556 

As well described in ref.[12], the state of a particle in the QHEs is defined by the real functions 557 

(q, t)
n2|| =ψ   and   )t,q(Sp ∇= . 558 

The restriction of the solutions of the QHEs to those ones of the standard quantum problem comes from 559 

additional conditions that must be imposed  in order to obtain the quantization of the action.  560 

The integrability of the action gradient, in order to have the scalar action function S, is warranted if the 561 

probability fluid is irrotational, that being 562 

 563 

∫∫ •• =∇=
q

q

q

q
)t,q( pdlSdlS

00

           (B.1) 564 

is warranted by the condition 565 
 566 

0  =×∇ p          (B.2) 567 
 568 
so  that it holds 569 

0      ==Γ ∫
•

• qmdlc         (B.3) 570 

 571 
Moreover, since the action is contained in the exponential argument of the  wave function, all the multiples of  572 

hπ2 , with 573 

                     00 ...,,,,nnpdlSnSS
q

q
)t,q()t,q()t,q(n 321022

0
0

=++=+= ∫ • hh ππ  (B.4) 574 

are accepted.  575 
 576 
 577 
 578 

Solving the quantum eigenstates in the hydrodynamic description 579 
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 580 
In this section we will show how the problem of finding the quantum eigenstates can be carried out in the 581 

hydrodynamic description. Since the method does not change either in classic approach or in the relativistic 582 

one, we give here an example in the simple classical case of an harmonic oscillator. 583 

In the hydrodynamic description, the eigenstates are identified by their property of stationarity that is given 584 

by the “equilibrium” condition  585 

 586 

 0 =
•
p            (B.5.a) 587 

 588 
(that happens when the force generated by the quantum potential exactly counterbalances that one stemming 589 

from the Hamiltonian potential) with the initial “stationary” condition 590 

 591 

 0  =
•
q .           (B.5.b) 592 

  .  593 

The initial condition (B.5.b) united to the equilibrium condition leads to the stationarity 0  =
•
q  along all 594 

times and, therefore, by (B.5.a) the eigenstates are irrotational.  595 

Since the quantum potential changes itself with the state of the system, more than one stationary state (each 596 

one with its own  nquV ) is possible and more than one quantized eigenvalues of the energy may exist.  597 

For a time independent Hamiltonian )q(V
m

p
H +=

2

2

, whose hydrodynamic energy reads 598 

[31] qu)q( VV
m

p
E ++=

2

2

, with eigenstates )q(nψ (for which it holds 0  ==
•
qmp ) it follows that 599 
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 602 

where )(VV nqunqu ψ= , and that 603 
 604 

)q(nnqu VEV −=          (B.7) 605 
 606 
where (B.7) is the differential equation, that in the quantum hydrodynamic description, allows to derive to the 607 
eigenstates.  608 

For instance, for a harmonic oscillator (i.e., 2
2

2
q

m
V )q(

ω= ) (B.7) reads 609 

22

22
1

2 qm
E||||)

m
(V nnnqu

ωψψ −=∇∇−= •
−h

.     (B.8) 610 

 611 
 If for (B.8)  we search a solution of type  612 
 613 

( )2aqexp| qn(q, t)
−= )( A| ψ ,        (B.9) 614 

 615 
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we obtain that 
h2

ωm
a =  and )()( H  A q

mnqn
h2

ω=
 (where (x)Hn represents the n-th Hermite polynomial). 616 

Therefore, the generic n-th eigenstate reads 617 
 618 
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 620 
From (B.10) it follows that the quantum potential of the n-th eigenstate reads 621 
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 624 
where it has been used the recurrence formula of the Hermite polynomials  625 

 626 
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that by (B.7) leads to 629 
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The same result comes by the calculation of the eigenvalues that read  632 
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where )q(
op V

qm
H +

∂
∂−=

2

22

2

h
 and where (q, t)(q, t)

*
(q, t)

ψψ=n . Moreover, by applying (B.14) to 636 

(A.2-A.3) it follows that 637 
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m
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q

)t,q(
,
        

(B.16)  640 

Confirming the stationary equilibrium condition of the eigenstates. 641 

 642 

Finally, it must be noted that since all the quantum states are given by the generic linear superposition of the 643 

eigenstates (owing the irrotational momentum field 0=
•
qm ) it follows that all quantum states are 644 

irrotational. Moreover, since the Schrödinger description is complete, do not exist others quantum irrotational 645 

states in the hydrodynamic description. 646 

In the relativistic case, the hydrodynamic solutions are determined by the eigenstates 647 

nn
−+ ψψ  ,   derived by the irrotational stationary equilibrium condition applied to the 648 

momentum fields of matter and antimatter of equation (23), respectively . 649 

 650 

 651 

 652 
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 653 
Appendix C  654 

The hydrodynamic HJE from the Lagrangian equation of motion  655 
 656 
The identity 657 
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 660 
that stems from the equations (13-14), with the help of  (10,12) leads to 661 
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that is the hydrodynamic HJE (1) 664 
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 668 

Appendix D 669 

The quantum potential in the region of space gRrR ≅<0  with gRR →0  670 
 671 
The balance between the quantum force and the gravitational one reads 672 
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 675 
that by inserting  the stationary condition (44) leads to 676 
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that in the vacuum space, for 0Rr >  , leads to 680 
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and to 683 
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that gives 687 
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Since gRR ≤0  and since that for the minimum allowable mass we have that 689 
 690 

gRR →0 ,          (D.6) 691 
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for gRrR <≈<0 ,  it follows that 693 
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 697 
Moreover, since we are searching for the state with maximum mass concentration and hence with maximum 698 

quantum potential) from (D.7.b) it follows that this condition is achieved for [ ] 0=nCexp  and, hence, for 699 
−∞=nC , that leads to 700 

 701 
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Moreover, for ε+= gRr  with gR<<ε  it follows that 704 
 705 

2

1
21

22
1

1







≅












∂








−∂=

hh

mc
||

r

R
r

r||

mV gqu ψ
ψ

     (D.9) 706 

 707 
 708 


