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Abstract. The time-stepping DRBEM modeling was proposed to study the 2D dynamic 16 

response of functionally graded anisotropic plate (FGAP) subjected to a moving heat 17 

source. The FGAP is assumed to be graded through the thickness. A Gaussian 18 

distribution of heat flux using a moving heat source with a conical shape is used for 19 

analyzing the temperature profiles. The main aim of this paper is to evaluate the 20 

difference between Green and Lindsay (G-L) and Lord and Shulman (L-S) theories of 21 

coupled thermo-elasticity in rotating FGAP subjected to a moving heat source. The 22 

accuracy of the proposed method was examined and confirmed by comparing the 23 

obtained results with those known previously.  24 

 25 
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1.   Introduction 27 

Biot [1] proposed the classical coupled thermo-elasticity (CCTE) theory to overcome the 28 

paradox inherent in the classical uncoupled thermo-elasticity (CUTE) theory that elastic 29 

changes have no effect on temperature. The heat equations for both theories are a 30 

diffusion type predicting infinite speeds of propagation for heat waves contrary to 31 

physical observations. A flux rate term into Fourier law of heat conduction is 32 

incorporated by Lord and Shulman (L-S) [2], who proposed an extended thermo-33 

elasticity theory (ETE) which is also called as the generalized thermo-elasticity theory 34 

with one relaxation time. Another thermo-elasticity theory that admits the second sound 35 

effect is reported by Green and Lindsay (G-L) [3], who developed a temperature-rate-36 

dependent thermo-elasticity theory (TRDTE) which is also called the generalized thermo-37 

elasticity theory with two relaxation times by introducing two relaxation times that relate 38 

the stress and entropy to the temperature.   39 

Functionally graded Plates (FGPs) are a type of non-homogeneous composites and the 40 

transient thermo-elastic problems for these non-homogeneous composites become 41 

important, and there are several studies concerned with these problems, such as Skouras 42 

et al. [4], Mojdehi et al. [5], Zhou et al. [6], Loghman et al. [7], Sun and Luo [8] and 43 

Mirzaei and Dehghan [9] which are papers involving functionally graded materials. 44 

In recent years, the dynamical problem of thermo-elasticity for functionally graded 45 

anisotropic plates (FGAPs) becomes more important due to its many applications in 46 

modern aeronautics, astronautics, earthquake engineering, soil dynamics, mining 47 



engineering, plasma physics, nuclear reactors and high-energy particle accelerators, for 48 

instance. Abd-Alla [10] obtained the relaxation effects on reflection of generalized 49 

magneto-thermo-elastic waves. Abd-Alla and Al-Dawy [11] obtained the relaxation 50 

effects on Rayleigh waves in generalized thermo-elastic media. Abbas and Abd-Alla [12, 51 

13] studied generalized thermo-elastic problems for an infinite fibre-reinforced 52 

anisotropic plate. Xia, et al. [14] used a time domain finite element method to solve 53 

dynamic response of two-dimensional generalized thermo-elastic coupling problem 54 

subjected to a moving heat source based on Lord and Shulman theory with one thermal 55 

relaxation time 56 

It is hard to find the analytical solution of a problem in a general case, therefore, an 57 

important number of engineering and mathematical papers devoted to the numerical 58 

solution have studied the overall behavior of such materials (see, e.g., El-Naggar et al. 59 

[15, 16], Abd-Alla et al. [17-19], Qin [20], Sladek et al. [21], Tian et al. [22],  Fahmy 60 

[23-28], Fahmy and El-Shahat [29], Othman and Song, [30], Davi and Milazzo [31], Hou 61 

et al. [32], [Abreu et al. [33], Espinosa and Mediavilla, [34]. 62 

The advantages in the boundary element method (BEM) arises from the fact that the 63 

BEM can be regarded as boundary–based method that uses the boundary integral 64 

equation formulations where only the boundary of the domain of the partial differential 65 

equation (PDE) is required to be meshed. But in the domain-based methods such the 66 

finite element method (FEM), finite difference method (FDM) and element free method 67 

(EFM) that use ordinary differential equation (ODE) or PDE formulations, where the 68 

whole domain of the PDE requires discretization. Thus the dimension of the problem is 69 

effectively reduced by one, that is, surfaces for three–dimensional (3D) problems or 70 

curves for two-dimensional (2D) problems. And the equation governing the infinite 71 

domain is reduced to an equation over the finite boundary. Also, the BEM can be applied 72 

along with the other domain-based methods to verify the solutions to the problems that do 73 

not have available analytical solutions. Presence of domain integrals in the formulation of 74 

the BEM dramatically decreases the efficiency of this technique.  Many different 75 

approaches have been developed to overcome these problems. It is our opinion that the 76 

most successful so far is the dual reciprocity boundary element method (DRBEM), which 77 

is the subject matter of this paper. The basic idea behind this approach is to employ a 78 

fundamental solution corresponding to a simpler equation and to treat the remaining 79 

terms, as well as other non-homogeneous terms in the original equation, through a 80 

procedure which involves a series expansion using global approximating functions and 81 

the application of reciprocity principles. However, there are some difficulties of 82 

extending the technique to several applications such as non-homogeneous, non-linear and 83 

time-dependent problems for examples. The main drawback in this case is the need to 84 

discretize the domain into a series of internal cells to deal with the terms not taken to the 85 

boundary by application of the fundamental solution. This additional dicretization 86 

destroys some of the attraction of the method in terms of the data required to run the 87 

program and the complexity of the extra operations involved. The DRBEM is essentially 88 

a generalised way of constructing particular solutions that can be used to solve non-linear 89 

and time-dependent problems as well as to represent any internal source distribution. The 90 

DRBEM was initially developed by Nardini and Brebbia [35] in the context of two-91 

dimensional dynamic elasticity and has been extended to deal with a variety of problems 92 

wherein the domain integral may account for linear-nonlinear static-dynamic effects. A 93 

more extensive historical review and applications of dual reciprocity boundary element 94 

method may be found in [Brebbia et al. [36], Wrobel and Brebbia [37], Partridge and 95 

Brebbia [38], Partridge and Wrobel [39] and Fahmy [40-47]]. 96 



 
The main objective of this paper is to study the model of two-dimensional equations of 97 

coupled thermo-elasticity with one and two relaxation times in rotating FGAPs subjected 98 

to a moving heat source. A predictor-corrector time integration algorithm was 99 

implemented for use with the DRBEM to obtain the solution for the temperature and 100 

displacement components. The accuracy of the proposed method was examined and 101 

confirmed by comparing the obtained results with the finite element method (FEM) 102 

results known before. 103 

2.   Governing equations of the FGAP 104 

Consider a Cartesian coordinate system ���� as shown in Fig. 1. We shall consider a 105 

rotating functionally graded anisotropic plate occupies the region � = ���, �, �
: 0 < � <106 �, 0<�<�, 0<�<� with the boundary C and the material is functionally graded along the 107 

thickness direction. Thus, the governing equations of Coupled Thermo-elasticity with 108 

Relaxation Times can be written in the following form: 109 ���,� − ��� + 1
����� = ��� + 1
��� �,                                                                                �1
 ��� = �� + 1
����� !� ,! − ���"# − #$ + %&#' (),                                                                �2
 +��#,�� = ���#$�' �,�  + �,�� + 1
��#' + %�#� ) − -.                                                              �3
 
where ��� is the mechanical stress tensor, �0 is the displacement, # is the temperature, 110 ��� ! and ��� are respectively, the constant elastic modulus and stress-temperature 111 

coefficients of the anisotropic medium, � is the uniform angular velocity, +�� are the 112 

thermal conductivity coefficients satisfying the symmetry relation +�� = +�� and the 113 

strict inequality �+&�
� − +&&+�� < 0 holds at all points in the medium, ρ is the density, c 114 

is the specific heat capacity, % is the time, %& and %� are mechanical relaxation times, - is 115 

the moving heat source. 116 

3.   3. Numerical implementation 117 

Making use of (2), we can write (1) as follows 118 3!�� = ��� � − "4�# + 54�& � − �����( = 6!� ,                                                              �4
 
The field equations can now be written in operator form as follows 119 3!�� = 6!� ,                                                                                                                                     �5
 3��# = 6��,                                                                                                                                       �6
 
Where the operators   3!� ,  6!�, 3�� and 6�� are defined as follows 120 3!� = 4�� ::�� , 6!� = ��� � − "4�# + 54�& � − �����(                                        �7
 

4�� = ��� !<, < = ::�! , 5 = =� + 1 , 4� = −��� > ::�� + ?�&5 + %& > ::�� + 5@ ::%@ 

3�� = +�� ::��
::�� , 6�� = �,�� + 1
��#' + %�#� ) + ���#$�' �,� − -.                         �8
 

Using the weighted residual method (WRM), the differential equation (5) is transformed 121 

into an integral equation 122 

B"3!�� − 6!�(�C�∗
E F� = 0.                                                                                                       �9
 

Now, by choosing the fundamental solution �C ∗  as the weighting function as follows 123 



3!��C ∗ = −?�C?��, H
.                                                                                                               �10
 
The corresponding traction field can be written as 124 IC�∗ = ��� !�C ,!∗ J�.                                                                                                                    �11
 
In which  J� is the unit normal vector to the surface. 125 

The thermo-elastic traction vector can be written as follows 126 I� = I�̅�� + 1
� = L��� !� ,! − ���"# − #$ + %&#' (M J� .                                                   �12
 

Applying integration by parts to (9) using the sifting property of the Dirac distribution, 127 

and using equations (10) and (12), we can write the following elastic integral 128 

representation formula 129 

�C�H
 = B��C�∗ I� − IC�∗ �� + �C�∗ ���#J�
N F� − B 6!��C�∗ F�.E                                        �13
 

The fundamental solution T∗ of the thermal operator LQR, defined by 130 LQRT∗ = −δ�x, ξ
.                                                                                                                         �14
 
By implementing the WRM and integration by parts, the differential equation (6) is 131 

transformed into the thermal reciprocity equation 132 

B�3��##∗ − 3��#∗#
F� = B �V∗# − V#∗
F�,NE                                                                   �15
 

Where the heat fluxes are as follows: 133 V = −+��#,�J� ,                                                                                                                             �16
 V∗ = −+��#,�∗ J� .                                                                                                                           �17
 
The thermal integral representation formula from (16) may be written as  134 

#�H
 = B�V∗# − V#∗
F�N − B 6��#∗F�.E                                                                               �18
 

The integral representation formulae of elastic and thermal fields (13) and (18) can be 135 

combined to form a single equation as follows 136 

W�C�H
#�H
 X = B Y− WIC�∗ −�C�∗ ���J�0 −V∗ X Z��# [ + Z�C�∗ 00 −#∗[ ZI�V [\ F�N  

                   − B Z�C�∗ 00 −#∗[ W 6!�−6��X F�.E                                                                                   �19
 

It is convenient to use the contracted notation to introduce generalized thermo elastic 137 

vectors and tensors, which contain corresponding elastic and thermal variables as 138 

follows: 139 ]̂ = Y��        _ = ` = 1, 2, 3;#          ` = 4,                  b                                                                                                   �20
 

ĉ = Y I�        _ = ` = 1, 2, 3;V          ` = 4,                  b                                                                                                   �21
 

]d^∗ = e�C�∗         F = 4 = 1, 2, 3; _ = ` = 1, 2, 3;0           F = 4 = 1, 2, 3; ` = 4;               0           4 = 4; _ = ` = 1, 2, 3;               −#∗       4 = 4; ` = 4,                                  b                                                               �22
 



 

#fd^∗ = eIC�∗         F = 4 = 1, 2, 3; _ = ` = 1, 2, 3;−�gC∗       F = 4 = 1, 2, 3; ` = 4;                 0          4 = 4; _ = ` = 1, 2, 3;               −V∗      4 = 4; ` = 4,                                  b                                                                �23
 

�gC∗ = �C�∗ �� J .                                                                                                                           �24
 
The thermo-elastic representation formula (19) can be written in contracted notation as: 140 

]d�H
 = B "]d^∗ ĉ − #fd^]̂ (F� − B ]d^∗ ĥ F�,EN                                                                 �25
 

The vector Sj can be written in the split form as follows 141 ĥ = ĥ$ + ĥk + ĥl + ĥk' + ĥk� + ĥl' + ĥl� ,                                                                            �26
 
Where 142 ĥ$ = Y�����         _ = ` = 1, 2, 3;-                   ` = 4,                 b                                                                                           �27
 

ĥk = �^m]m          noIℎ    �^m = Y−4�                ` = 1, 2, 3; q = 4;0                         otherwise,         b                                    �28
 ĥl = −"4� + 54�& (℧]m        143 

 With     ℧ = Y1         _ = ` = 1, 2, 3; 6 = q = 1, 2, 3;0                        sIℎtunovt,                        b                                                         �29
 144 

ĥk' = −�,�� + 1
�?^m]'m   noIℎ  ?^m = � 1              ` = 4; q = 4;0              sIℎtunovt,      b                                   �30
 ĥk� = −�,�� + 1
�%�?^m]�m ,                                                                                                     �31
 ĥl' = −#$Å?&x� !<]'m ,                                                                                                               �32
 ĥl� = b ]�m                noIℎ    b= Y�                                        ` = 1, 2, 3;  q = 1, 2, 3;0                                                  ` = 4; 6 = q = 4..b          �33
 

The thermo-elastic representation formula (19) can be rewritten in matrix form as 145 

follows: 146 yĥ z = W�����- X + Z−4�#0 [ + W−"4� + 54�& (� 0 X 

                               +��,�� + 1
�
 Z0#' [ − �,�� + 1
�%� Z0#� [ − #$ W 0����' �,�X + Z��� �0 [.  �34
 

By implementing the DRBEM to transform the domain integral in (25) to the boundary 147 

integral, the source vector ĥ  in the domain was approximated by the following series of 148 

given tensor functions 6̂ {|  and unknown coefficients �{|  149 

ĥ ≈ ~ 6̂ {| �{| .{
|�&                                                                                                                             �35
 

According to the implementation of the DRBEM, the surface of the plate has to be 150 

discretized into boundary elements, where the total number of interpolation points is  151 � = �� + �� in which �� are collocation points on the boundary � and ��  are the interior 152 

points of R 153 

Thus, the thermo-elastic representation formula (25) can be written in the following form 154 

]d�H
 = B "]d^∗ #̂ − #fd^∗ ]̂ (F� − ~ B ]d^∗ 6̂ {| F�E
{

|�&N �{| .                                                  �36
 

By applying the WRM to the following inhomogeneous elastic and thermal equations: 155 



3!�� �| = 6��| ,                                                                                                                                �37
 3��#| = 6�x| ,                                                                                                                                  �38
 
Where the weighting functions were chosen to be the same as the elastic and thermal 156 

fundamental solutions �C�∗  and   #∗. Then the elastic and thermal representation formulae 157 

are as follows (Fahmy [42]) 158 

�C�| �H
 = B"�C�∗ I��| − IC�∗ ���| (N F� − B �C�∗ 6��| F�,E                                                             �39
 

#|�H
 = B�V∗#| − V|#∗
N F� − B 6|#∗F�.E                                                                        �40
 

The elastic and thermal representation formulae can be combined to form the following 159 

dual representation formulae 160 

]d{| �H
 = B "]d^∗ #̂ {| − #d^∗ ]̂ {| (F�N − B ]d^∗ 6̂ {| F�,E                                                        �41
 

By substituting from (41) into (36), we can rewrite the dual reciprocity representation 161 

formula of coupled thermo elasticity as follows 162 

]d�H
 = B "]d^∗ #̂ − #�d^∗ ]̂ (F�N + ~ �]d{| �H
 + B "#d^∗ ]^{| − ]d^∗ #̂ {| (F�N �{
|�& �{| . �42
 

Using the thin plate splines �TPS
 of Fahmy y27z, we can write the particular 163 solution of the displacement as follows 164 

]�{| =
�� 
�¡ − 4¢£ ¤¥$�¢u
 + ¦s§�u
 − u� ¦s§ u¢� − 4¢£¨ , u > 0

   4¢£ WΥ + ¦s§ >¢2@X − 4¢£  ,                                       u = 0 b                                         �43
 

where ¥$  is the Bessel function of the third kind of order zero, 165 Υ = 0.5772156649015328 is the Euler's constant and u = ‖� − H‖ is the Euclidean 166 distance between the field point � and the load point H. 167 

According to the steps described in Fahmy [43], the dual reciprocity boundary integral 168 

equation (42) can be written in the following system of equations 169 ²³�́ − µǏ = "²]· − µ℘¹(�.                                                                                                             �44
 
Where the matrix ζ contains the fundamental solution T»∗  and the matrix ζ¼ contains the 170 

modified fundamental tensor T·»∗  with the coupling term. 171 

The generalized displacements ]m and velocities ]'m are approximated as follows [48] 172 

]m ≈ ~ 6md| ��
�d| ,{
|�&                                                                                                                      �45
 

]'m ≈ ∑ 6md| ��
�gd| ,{|�&                                                                                                                   �46
  173 

Where 6md|  are tensor functions and �d| and  �gd| are unknown coefficients. 174 

The gradients of displacement and velocity were approximated as follows 175 



 

]m,! ≈ ~ 6¾,!| ��
�¾|,{
|�&                                                                                                                   �47
 

]'m,! ≈ ~ 6md,!| ��
�gd|.{
|�&                                                                                                                 �48
 

If these approximations are substituted into equations (28) and (32) we obtain the 176 

corresponding approximating source terms as follows 177 

ĥk = ~ ĥ dk,¿{
|�& �d| ,                                                                                                                           �49
 

ĥl' = −#$� !< ~ ĥ dl' ,¿{
|�& �gd| ,                                                                                                         �50
 

Where  178 ĥ dk,¿ = ĥ m6md,!| ,                                                                                                                             �51
 ĥ dl' ,¿ = hm^6md,!| .                                                                                                                             �52
 
Applying the point collocation procedure of Gaul, et al. [49] to equations (35), (45) and 179 

(46) we have the following system of equations 180 h¼ = À�,          ] = ÀÁ�,           ]' = ÀÁ�g.                                                                                        �53
 
Similarly, the application of the point collocation procedure to the source terms equations 181 

(29), (30), (31), (33), (49) and (50) leads to the following system of equations 182 h¼l = −"4� + 54�& (℧]m        With    183 ℧ = Y1         _ = ` = 1, 2, 3; 6 = q = 1, 2, 3;0                        sIℎtunovt,                        b                                                                        �54
 184 h¼k' = �,�� + 1
�?^m],'                                                                                                               �55
 h¼k� = −,��� + 1
�%�?^m],�                                                                                                       �56
 h¼l� = ³̀],�                                                                                                                                        �57
 h¼k = ℬk�,                                                                                                                                      �58
 h¼l' = −#$� !<ℬl' �g.                                                                                                                      �59
 
Solving the system (53) for α, γ and γg yields 185 � = ÀÅ&h¼,           � = ÀÁÅ&],            �g = ÀÁÅ&],'                                                                         �60
 
Now, the coefficients α can be expressed in terms of nodal values of the unknown 186 

displacements, velocities and accelerations as follows: 187 � = ÀÅ&�h¼$ + �ℬkÀÁÅ& − "4� + 54�& (℧)] + ��,�� + 1
�?^m − #$� !<ℬl' ÀÁÅ&)]'                          +� ³̀ − �,�� + 1
�%�?^m)]� 
,                                                                            �61
 
Where AÇ and ℬÈ are assembled using the sub matrices yb z and ωjÊ respectively. 188 

Substituting from Eq. (61) into Eq. (44), we obtain 189 Ë]� + Ì]' + ¥] = ℚ,                                                                                                                 �62
 
In which ]� , ],' ] and ℚ represent the acceleration, velocity, displacement and external 190 

force vectors, respectively, Î, Ë, Ì and ¥ represent the volume, mass, damping and 191 

stiffness matrices, respectively, as follows: 192 Î = "µ℘¹ − ²]·(ÀÅ&, Ë = Î� ³̀  − ,��� + 1
�%�?^m),          Ì = Î��,�� + 1
�?^m − #$� !<ℬl' ÀÁÅ&), ¥ = ²³ + Î�ℬkÀÁÅ& + "4� + 54�& (℧),   ℚ = µ# + Îh¼$,                                                 �63
 



Using the following initial conditions 193 

 ]�0
 = ]$, ]' �0
 = Î$.  194 

Then, from Eq. (62), we can calculate the initial acceleration vector W$ as follows  195 ËÐ$ = ℚ$ − ÌÎ$ − ¥]$.                                                                                                          �64
 
An implicit-explicit time integration algorithm of Hughes et al. [50, 51], was developed 196 

and implemented for use with the DRBEM. This algorithm consists in satisfying the 197 

following equations 198 Ë]��Ñ& + ÌÒ]'�Ñ& + ÌÓ]'Ç�Ñ& + ¥Ò]�Ñ& + ¥Ó]Ç�Ñ& = ℚ�Ñ&,                                             �65
 ]�Ñ& = ]Ç�Ñ& + �∆%�]��Ñ&,                                                                                                        �66
 ]'�Ñ& = ]'Ç�Ñ& + �∆%]��Ñ&,                                                                                                          �67
 
Where the superscripts Õ and Ö denote, respectively, to the implicit and explicit parts and 199 ]Ç�Ñ& = ]�Ñ& + ∆%]'� + �1 − 2�
 ∆%�2 ]�� ,                                                                             �68
 ]'Ç�Ñ& = ]'� + �1 − �
∆%]�� ,                                                                                                       �69
 

Where we used the quantities ]Ç�Ñ& and ]'Ç�Ñ& to denote the predictor values, and ]�Ñ& 200 

and ]'�Ñ& to denote the corrector values. It is easy to recognize that the equations (66)-201 

(69) correspond to the Newmark formulas [52]. 202 

At each time-step, equations (65)-(69), constitute an algebraic problem in terms of the 203 

unknown accelerations ]��Ñ&  204 

The first step in the code starts by forming and factoring the effective mass 205 Ë∗ = Ë + �∆%�Ò + �∆%�¥Ò.                                                                                                    �70
 
The time step ∆τ must be constant to run this step. As the time-step ∆τ is changed, the 206 

first step should be repeated at each new step. The second step is to form residual force 207 ℚ�Ñ&∗ = ℚ�Ñ& − �Ò]'Ç�Ñ& − �Ó]'Ç�Ñ& − ¥Ò]Ç�Ñ& − ¥Ó]Ç�Ñ&.                                                �71
 
The third step is to solve  Ë∗]��Ñ& = ℚ�Ñ&∗  using a Crout elimination algorithm [53] 208 

which fully exploits that structure in that zeroes outside the profile are neither stored nor 209 

operated upon. The fourth step is to use predictor-corrector equations (66) and (67) to 210 

obtain the corrector displacement and velocity vectors, respectively. 211 

4.  Numerical results and discussion 212 

The Gaussian heat flux distribution -��, �
 can be expressed as 213 

-��, �
 = 3-$Øu� tÙÅÚ"ÛÜÑÝÜ(ÞÜ ß                                                                                                      �72
 

In which Q$ is heat power of the plane heat source, u is the heat source radius.  214 

Following Rasolofosaon and Zinszner [54] monoclinic North Sea sandstone reservoir 215 

rock was chosen as an anisotropic material and physical data are as follows: 216 

 217 

Elasticity tensor 218 

��� ! =
áââ
ââã
17.77 3.78 3.763.78 19.45 4.133.76 4.13 21.79

0.24      −0.28   0.030     0   1.130     0  0.380     0       00     0       00.03  1.13 0.38
8.30      0.66     0   0.66    7.62   0   0        0    7.77äåå

ååæ  çè_                                �73
 

Mechanical temperature coefficient 219 



 ��� = é0.001 0.02 00.02 0.006 00 0 0.05ê ∙ 10ì � /¥=�                                                                        �74
 

Tensor of thermal conductivity is 220 

+�� = é 1 0.1 0.20.1 1.1 0.150.2 0.15 0.9 ê Ð/¥=                                                                                           �75
 

Mass density � = 2216 kg/mÚ and heat capacity , = 0.1 J/(kg K).  The numerical values 221 

of the temperature and displacement are obtained by discretizing the boundary into 120 222 

elements ��� = 120
 and choosing 60 well-spaced out collocation points ��� = 60
 in 223 

the interior of the solution domain, referring to the recent work of Fahmy [55, 56]. 224 

The initial and boundary conditions considered in the calculations are 225 _I % = 0, �& = �� = �'& = �' � = 0,  # = 0                                                                             �76
 226 _I � = 0             
îlïîÛ = îlïîÛ = 0, îkîÛ = 0                                                                                  �77
 227 _I � = �             
îlïîÛ = îlïîÛ = 0, îkîÛ = 0                                                                                  �78
 228 _I � = 0             
îlïîÝ = îlïîÝ = 0, îkîÝ = 0                                                                                  �79
 229 _I � = �            

îlïîÝ = îlïîÝ = 0, îkîÝ = 0                                                                                   �80
 230 

The present work should be applicable to any problems for coupled theory of thermo-231 

elasticity in rotating FGAP. Such a technique was discussed in Fahmy et al. [57-60] who 232 

solved the special case from this study in the absence of a moving heat source. To 233 

achieve better efficiency than the technique described in Fahmy et al. [57-60], we use 234 

thin plate splines into a code, which is proposed in the current study.  We extend the 235 

study of Fahmy et al. [57-60], to solve 2D in the presence of a moving heat source. Thus, 236 

it is perhaps not surprising that the numerical values obtained here are in excellent 237 

agreement with those obtained by Fahmy et al. [57-60]. The results are plotted in figures 238 

2-4 for the Green and Lindsay (G-L) theory and plotted in figures 5–7 for the Lord and 239 

Shulman (L-S) theory to show the variation of the temperature T and the displacement 240 

components �& and ��  with � coordinate. We can conclude from these figures that the 241 

temperature T and the displacements �& decrease with increasing � but the displacements 242 �� increase with increasing � for the two theories. It has been found that the comparison 243 

between these theories evaluates the effect of second thermal relaxation time taken by 244 

Green and Lindsay. These results obtained with the DRBEM have been compared 245 

graphically with those obtained using the finite element method (FEM) method of Xia et 246 

al. [14]. It can be seen from these figures that the DRBEM results are in excellent 247 

agreement with the results obtained by FEM, thus confirming the accuracy of the 248 

DRBEM. 249 

 250 

 251 

5.  Conclusion 252 

 253 

A predictor-corrector implicit-explicit time integration algorithm was implemented for 254 

use with the DRBEM to obtain the solution for the temperature and displacement 255 

components of the two-dimensional problem of coupled thermo-elasticity theories with 256 

one and two relaxation times in rotating FGAP subjected to a moving heat source with a 257 

conical shape. The results obtained are presented graphically to show the difference 258 



between Green and Lindsay (G-L) and Lord and Shulman (L-S) theories of coupled 259 

thermo-elasticity with relaxation times in rotating FGAP. The accuracy of the DRBEM 260 

results was examined and confirmed by comparing the obtained results with the FEM 261 

obtained results. It can be seen from these figures that the DRBEM results are in 262 

excellent agreement with the results obtained by FEM.  263 
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