1	Numerical Modeling of Coupled Thermo-elasticity with Relaxation Times in
2	Rotating FGAPs Subjected to a Moving Heat Source
3	
4	Mohamed Abdelsabour Fahmy*, †
5	* Jummum University College
6	Umm Al-Qura University
7	Alazizya, behind Alsalam Souq, 21955 Makkah, Saudi Arabia.
8	e-mail: <u>maselim@uqu.edu.sa</u>
9	
10 11	† Faculty of Computers and Informatics Suez Canal University
12	New Campus, 4.5 Km, Ring Road, El Salam District, 41522 Ismailia, Egypt.
13	e-mail: Mohamed_fahmy@ci.suez.edu.eg
14	
15	
16	
17	Abstract. The time-stepping DRBEM modeling was proposed to study the 2D dynamic
18	response of functionally graded anisotropic plate (FGAP) subjected to a moving heat
19	source. The FGAP is assumed to be graded through the thickness. A Gaussian
20	distribution of heat flux using a moving heat source with a conical shape is used for
21	analyzing the temperature profiles. The main aim of this paper is to evaluate the
22	difference between Green and Lindsay (G-L) and Lord and Shulman (L-S) theories of
23	coupled thermo-elasticity in rotating FGAP subjected to a moving heat source. The
24	accuracy of the proposed method was examined and confirmed by comparing the
25	obtained results with those known previously.
26	
27	Keywords: Thermo-elasticity; Functionally Graded Anisotropic Plates; Boundary Element Method.
28	1. Introduction
	Biot [1] proposed the classical coupled thermo-elasticity (CCTE) theory to overcome the
29	paradox inherent in the classical uncoupled thermo-elasticity (CUTE) theory that elastic
30	changes have no effect on temperature. The heat equations for both theories are a
31	diffusion type predicting infinite speeds of propagation for heat waves contrary to
32	physical observations. A flux rate term into Fourier law of heat conduction is
33	incorporated by Lord and Shulman (L-S) [2], who proposed an extended thermo-
34	elasticity theory (ETE) which is also called as the generalized thermo-elasticity theory
35 36	with one relaxation time. Another thermo-elasticity theory that admits the second sound
30 37	effect is reported by Green and Lindsay (G-L) [3], who developed a temperature-rate-
	dependent thermo-elasticity theory (TRDTE) which is also called the generalized thermo-
38 39	elasticity theory with two relaxation times by introducing two relaxation times that relate
39 40	the stress and entropy to the temperature.
40	Functionally graded Plates (FGPs) are a type of non-homogeneous composites and the
42	transient thermo-elastic problems for these non-homogeneous composites and the
42	important, and there are several studies concerned with these problems, such as Skouras
43 44	et al. [4], Mojdehi et al. [5], Zhou et al. [6], Loghman et al. [7], Sun and Luo [8] and
45	Mirzaei and Dehghan [9] which are papers involving functionally graded materials.

 Mirzaei and Dehghan [9] which are papers involving functionally graded materials.
 In recent years, the dynamical problem of thermo-elasticity for functionally graded anisotropic plates (FGAPs) becomes more important due to its many applications in

modern aeronautics, astronautics, earthquake engineering, soil dynamics, mining 48 49 engineering, plasma physics, nuclear reactors and high-energy particle accelerators, for 50 instance. Abd-Alla [10] obtained the relaxation effects on reflection of generalized magneto-thermo-elastic waves. Abd-Alla and Al-Dawy [11] obtained the relaxation 51 52 effects on Rayleigh waves in generalized thermoelastic media. Abbas and Abd-Alla [12, 13] studied generalized thermoelastic problems for an infinite fibre-reinforced anisotropic 53 plate. Xia, et al. [14] used a time domain finite element method to solve dynamic 54 response of two-dimensional generalized thermoelastic coupling problem subjected to a 55 moving heat source based on Lord and Shulman theory with one thermal relaxation time 56

It is hard to find the analytical solution of a problem in a general case, therefore, an important number of engineering and mathematical papers devoted to the numerical solution have studied the overall behavior of such materials (see, e.g., El-Naggar et al. [15, 16], Abd-Alla et al. [17-19], Qin [20], Sladek et al. [21], Tian et al. [22], Fahmy [23-28], Fahmy and El-Shahat [29], Othman and Song, [30], Davi and Milazzo [31], Hou et al. [32], [Abreu et al. [33], Espinosa and Mediavilla, [34].

63 The advantages in the boundary element method (BEM) arises from the fact that the BEM can be regarded as boundary-based method that uses the boundary integral 64 equation formulations where only the boundary of the domain of the partial differential 65 equation (PDE) is required to be meshed. But in the domain-based methods such the 66 finite element method (FEM), finite difference method (FDM) and element free method 67 (EFM) that use ordinary differential equation (ODE) or PDE formulations, where the 68 whole domain of the PDE requires discretisation. Thus the dimension of the problem is 69 effectively reduced by one, that is, surfaces for three-dimensional (3D) problems or 70 curves for two-dimensional (2D) problems. And the equation governing the infinite 71 domain is reduced to an equation over the finite boundary. Also, the BEM can be applied 72 along with the other domain-based methods to verify the solutions to the problems that do 73 not have available analytical solutions. Presence of domain integrals in the formulation of 74 the BEM dramatically decreases the efficiency of this technique. One of the most widely 75 used methods for converting the domain integral into a boundary one is the so-called dual 76 reciprocity boundary element method (DRBEM) which was initially developed by 77 Nardini and Brebbia [35] in the context of two-dimensional (2D) elastodynamics and has 78 been extended to deal with a variety of problems wherein the domain integral may 79 account for linear-nonlinear static-dynamic effects. A more extensive historical review 80 and applications of dual reciprocity boundary element method may be found in [Brebbia 81 et al. [36], Wrobel and Brebbia [37], Partridge and Brebbia [38], Partridge and Wrobel 82 [39] and Fahmy [40-47]]. 83

The main objective of this paper is to study the model of two-dimensional equations of coupled thermo-elasticity with one and two relaxation times in rotating FGAPs subjected to a moving heat source. A predictor-corrector time integration algorithm was implemented for use with the DRBEM to obtain the solution for the temperature and displacement components. The accuracy of the proposed method was examined and confirmed by comparing the obtained results with the finite element method (FEM) results known before.

91 2. Governing equations of the FGAP

92 Consider a Cartesian coordinate system Oxyz as shown in Fig. 1. We shall consider a

rotating functionally graded anisotropic plate occupies the region $R = \{(x, y, z): 0 < x < y, 0 < y < \beta, 0 < z < \alpha$ with the boundary C and the material is functionally graded along the thickness direction 0x. Thus, the governing equations of Coupled Thermo-elasticity with Relaxation Times can be written in the following form:

$$\sigma_{ab,b} - \rho(x+1)^m \omega^2 x_a = \rho(x+1)^m \ddot{u}_a,$$
(1)

$$\sigma_{ab} = (x+1)^m [C_{abfg} u_{f,g} - \beta_{ab} (T - T_0 + \tau_1 \dot{T})],$$
(2)

$$k_{ab}T_{ab} = \beta_{ab}T_{0}\dot{u}_{ab} + \rho c(x+1)^{m}[\dot{T} + \tau_{2}\dot{T}] - Q.$$
(3)

97 where σ_{ab} is the mechanical stress tensor, u_k is the displacement, T is the temperature, 98 C_{abfg} and β_{ab} are respectively, the constant elastic moduli and stress-temperature 99 coefficients of the anisotropic medium, ω is the uniform angular velocity, k_{ab} are the 100 thermal conductivity coefficients satisfying the symmetry relation $k_{ab} = k_{ba}$ and the 101 strict inequality $(k_{12})^2 - k_{11}k_{22} < 0$ holds at all points in the medium, ρ is the density, c 102 is the specific heat capacity, τ is the time, τ_1 and τ_2 are mechanical relaxation times, Q is 103 the moving heat source.

104 **3. 3. Numerical implementation**

105 Making use of (2), we can write (1) as follows

$$L_{gb}u_f = \rho\ddot{u}_a - (D_aT + \Lambda D_{a1f}u_f - \rho\omega^2 x_a) = f_{gb},$$
106 The field equations can now be written in operator form as follows

$$L_{ab}u_f = f_{ab}.$$
(5)

$$L_{ab}T = f_{ab},$$
(6)

where the operators L_{gb} , f_{gb} , L_{ab} and f_{ab} are defined as follows

$$L_{gb} = D_{abf} \frac{\partial}{\partial x_b}, \quad f_{gb} = \rho \ddot{u}_a - \left(D_a T + \Lambda D_{a1f} u_f - \rho \omega^2 x_a \right)$$
(7)
$$D_{abf} = C_{abfg} \varepsilon, \varepsilon = \frac{\partial}{\partial x_g}, \Lambda = \frac{m}{x+1}, D_a = -\beta_{ab} \left(\frac{\partial}{\partial x_b} + \delta_{b1} \Lambda + \tau_1 \left(\frac{\partial}{\partial x_b} + \Lambda \right) \frac{\partial}{\partial \tau} \right)$$
(7)
$$L_{ab} = k_{ab} \frac{\partial}{\partial x_a} \frac{\partial}{\partial x_b}, \quad f_{ab} = \rho c (x+1)^m [\dot{T} + \tau_2 \ddot{T}] + \beta_{ab} T_0 \dot{u}_{a,b} - Q.$$
(8)

Using the weighted residual method (WRM), the differential equation (5) is transformed into an integral equation

$$\int_{R} (L_{gb} u_f - f_{gb}) u_{da}^* dR = 0.$$
(9)

110 Now, by choosing the fundamental solution u_{df}^* as the weighting function as follows $L_{gb}u_{df}^* = -\delta_{ad}\delta(x,\xi).$ (10)

111 The corresponding traction field can be written as $t_{da}^* = C_{abfg} u_{df,g}^* n_b.$ (11)

112 where ξ is the load point and n_b is the unit normal vector to the surface. 113 The thermo-elastic traction vector can be written as follows

$$t_{a} = \frac{\bar{t}_{a}}{(x+1)^{m}} = \left(C_{abfg}u_{f,g} - \beta_{ab}(T - T_{0} + \tau_{1}\dot{T})\right)n_{b}.$$
(12)

Applying integration by parts to (9) using the sifting property of the Dirac distribution,

and using equations (10) and (12), we can write the following elastic integral representation formula

$$u_{d}(\xi) = \int_{C} \left(u_{da}^{*} t_{a} - t_{da}^{*} u_{a} + u_{da}^{*} \beta_{ab} T n_{b} \right) dC - \int_{R} f_{gb} u_{da}^{*} dR.$$
(13)

117 The fundamental solution T^{*} of the thermal operator L_{ab} , defined by $L_{ab}T^* = -\delta(x, \xi).$ (14)

By implementing the WRM and integration by parts, the differential equation (6) is transformed into the thermal reciprocity equation

$$\int_{C} (L_{ab}TT^* - L_{ab}T^*T)dR = \int_{C} (q^*T - qT^*)dC,$$
(15)

120 Where the heat fluxes are as follows:

$$q = -k_{ab}T_{,b}n_{a},$$
(16)

$$q^{*} = -k_{ab}T_{,b}^{*}n_{a}.$$
(17)

121 The thermal integral representation formula from (16) may be written as

$$T(\xi) = \int_{C} (q^*T - qT^*) dC - \int_{R} f_{ab} T^* dR.$$
 (18)

The integral representation formulae of elastic and thermal fields (13) and (18) can be combined to form a single equation as follows

$$\begin{bmatrix} u_{a}(\xi) \\ T(\xi) \end{bmatrix} = \int_{C} \left\{ -\begin{bmatrix} t_{da}^{*} & -u_{da}^{*}\beta_{ab}n_{b} \\ 0 & -q^{*} \end{bmatrix} \begin{bmatrix} u_{a} \\ T \end{bmatrix} + \begin{bmatrix} u_{da}^{*} & 0 \\ 0 & -T^{*} \end{bmatrix} \begin{bmatrix} t_{a} \\ q \end{bmatrix} \right\} dC$$
$$- \int_{R} \begin{bmatrix} u_{da}^{*} & 0 \\ 0 & -T^{*} \end{bmatrix} \begin{bmatrix} f_{gb} \\ -f_{ab} \end{bmatrix} dR.$$
(19)

124 It is convenient to use the contracted notation to introduce generalized thermo elastic 125 vectors and tensors, which contain corresponding elastic and thermal variables as 126 follows:

$$U_A = \begin{cases} u_a & a = A = 1, 2, 3; \\ T & A = 4, \end{cases}$$
(20)

$$T_A = \begin{cases} t_a & a = A = 1, 2, 3; \\ q & A = 4, \\ c_a^{**} & d = D = 1, 2, 2; a = A = 1, 2, 2; \end{cases}$$
(21)

$$U_{DA}^{*} = \begin{cases} u_{da} & a = D = 1, 2, 3; a = A = 1, 2, 3; \\ 0 & d = D = 1, 2, 3; A = 4; \\ 0 & D = 4; a = A = 1, 2, 3; \end{cases}$$
(22)

$$\tilde{T}_{DA}^{*} = \begin{cases} -T^{*} & D = 4; A = 4, \\ t_{aa}^{*} & d = D = 1, 2, 3; a = A = 1, 2, 3; \\ -\tilde{u}_{a}^{*} & d = D = 1, 2, 3; A = 4; \\ 0 & D = 4; a = A = 1, 2, 3; \\ -q^{*} & D = 4; A = 4, \end{cases}$$
(23)

$$\tilde{u}_d^* = u_{da}^* \beta_{af} n_f. \tag{24}$$

127 The thermo-elastic representation formula (19) can be written in contracted notation as:

$$U_D(\xi) = \int_C \left(U_{DA}^* T_A - \tilde{T}_{DA} U_A \right) dC - \int_R U_{DA}^* S_A dR,$$
(25)

128 The vector S_A can be written in the split form as follows $S_A = S_A^0 + S_A^T + S_A^u + S_A^{T} + S_A^{u} + S_A^{u} + S_A^{u}$, (26) 129 where

$$S_A^0 = \begin{cases} \rho \omega^2 x_a & a = A = 1, 2, 3; \\ 0 & A = 4 \end{cases}$$
(27)

$$S_A^T = \omega_{AF} U_F \qquad \text{with} \quad \omega_{AF} = \begin{cases} -D_a & A = 1, 2, 3; F = 4; \\ 0 & \text{otherwise,} \end{cases}$$
(28)

130
$$S_A^u = -(D_{af} + A D_{a1f}) \mho U_F$$

131 With $\mho = \begin{cases} 1 & a = A = 1, 2, 3; f = F = 1, 2, 3; \\ 0 & a = A = 1, 2, 3; f = F = 1, 2, 3; \end{cases}$
(29)

$$S_A^{\dagger} = -\rho c (x+1)^m \delta_{AF} \dot{U}_F \text{ with } \delta_{AF} = \begin{cases} 1 & A = 4; F = 4; \\ 0 & otherwise. \end{cases}$$
(30)

$$S_A^{\ddot{T}} = -\rho c (x+1)^m \tau_2 \delta_{AF} \ddot{U}_F, \tag{31}$$

$$S_A^{\dot{u}} = -T_0 \mathring{A} \delta_{1j} \beta_{fg} \varepsilon \dot{U}_F,$$

$$S_A^{\ddot{u}} = \ddot{U}_F \qquad \text{with}$$
(32)

$$= \ddot{U}_{F} \qquad \text{with} \\ = \begin{cases} \rho \\ 0 \end{cases} \qquad A = 1, 2, 3; F = 1, 2, 3; \\ A = 4; f = F = 4. \end{cases}$$
(33)

132 The thermo-elastic representation formula (19) can be rewritten in matrix form as 133 follows:

$$\begin{split} [S_{A}] &= \begin{bmatrix} \rho \omega^{2} x_{a} \\ Q \end{bmatrix} + \begin{bmatrix} -D_{a}T \\ 0 \end{bmatrix} + \begin{bmatrix} -(D_{af} + \Lambda D_{a1f})u_{f} \\ 0 \end{bmatrix} \\ &+ (\rho c (x+1)^{m}) \begin{bmatrix} 0 \\ \dot{T} \end{bmatrix} - \rho c (x+1)^{m} \tau_{2} \begin{bmatrix} 0 \\ \ddot{T} \end{bmatrix} - T_{0} \begin{bmatrix} 0 \\ \beta_{ab} \dot{u}_{a,b} \end{bmatrix} + \begin{bmatrix} \rho \ddot{u}_{a} \\ 0 \end{bmatrix}. \tag{34} \end{split}$$

By implementing the DRBEM to transform the domain integral in (25) to the boundary integral, the source vector S_A in the domain was approximated by the following series of

136 given tensor functions f_{AN}^q and unknown coefficients α_N^q

$$S_A \approx \sum_{q=1}^{N} f_{AN}^q \alpha_N^q. \tag{35}$$

According to the implementation of the DRBEM, the surface of the plate has to be discretized into boundary elements, where the total number of interpolation points is $N = N_b + N_i$ in which N_b are collocation points on the boundary *C* and N_i are the interior points of *R*

141 Thus, the thermo-elastic representation formula (25) can be written in the following form

$$U_{D}(\xi) = \int_{C} \left(U_{DA}^{*} T_{A} - \tilde{T}_{DA}^{*} U_{A} \right) dC - \sum_{q=1}^{N} \int_{R} U_{DA}^{*} f_{AN}^{q} dR \, \alpha_{N}^{q}.$$
(36)

142 By applying the WRM to the following inhomogeneous elastic and thermal equations: $L_{gb}u_{fn}^q = f_{an}^q$, (37)

$$L_{ab}T^q = f^q_{pj},\tag{38}$$

143 Where the weighting functions were chosen to be the same as the elastic and thermal 144 fundamental solutions u_{da}^* and T^* . Then the elastic and thermal representation formulae 145 are as follows (Fahmy [42])

$$u_{de}^{q}(\xi) = \int_{C} \left(u_{da}^{*} t_{ae}^{q} - t_{da}^{*} u_{ae}^{q} \right) dC - \int_{R} u_{da}^{*} f_{ae}^{q} dR,$$
(39)

$$T^{q}(\xi) = \int_{C} (q^{*}T^{q} - q^{q}T^{*}) dC - \int_{R} f^{q}T^{*}dR.$$
(40)

The elastic and thermal fields can be combined to form the following dual representation 146 147 formulae

$$U_{DN}^{q}(\xi) = \int_{C} \left(U_{DA}^{*} T_{AN}^{q} - T_{DA}^{*} U_{AN}^{q} \right) dC - \int_{R} U_{DA}^{*} f_{AN}^{q} dR,$$
(41)

By substituting from (41) into (36), we can rewrite the dual reciprocity representation 148 formula of coupled thermo elasticity as follows 149

$$U_{D}(\xi) = \int_{C} \left(U_{DA}^{*} T_{A} - \check{T}_{DA}^{*} U_{A} \right) dC + \sum_{q=1}^{N} \left(U_{DN}^{q}(\xi) + \int_{C} \left(T_{DA}^{*} U_{AN}^{q} - U_{DA}^{*} T_{AN}^{q} \right) dC \right) \alpha_{N}^{q}.$$
 (42)

Using the thin plate splines (TPS) of Fahmy [27], we can write the particular 150

solution of the displacement as follows 151

$$U_{GN}^{q} = \begin{cases} -\frac{4}{\lambda^{4}} \left[K_{0}(\lambda r) + \log(r) - \frac{r^{2} \log r}{\lambda^{2}} - \frac{4}{\lambda^{4}} \right], & r > 0 \\ \frac{4}{\lambda^{4}} \left[\Upsilon + \log\left(\frac{\lambda}{2}\right) \right] - \frac{4}{\lambda^{4}}, & r = 0 \end{cases}$$
(43)

where K_0 is the Bessel function of the third kind of order zero, 152 $\Upsilon = 0.5772156649015328$ is the Euler's constant and $r = ||x - \xi||$ is the Euclidean 153 distance between the field point *x* and the load point ξ . 154

According to the steps described in Fahmy [43], the dual reciprocity boundary integral 155 equation (42) can be written in the following system of equations 156 (44)

$$\tilde{\zeta} \check{u} - \eta \check{t} = (\zeta \check{U} - \eta \check{\wp}) \alpha.$$

Where the matrix ζ contains the fundamental solution T_M^* and the matrix ζ contains the 157 modified fundamental tensor \tilde{T}^*_M with the coupling term. 158

Using the technique was proposed by Partridge et al. [48], then the generalized 159 displacements U_F and velocities \dot{U}_F are approximated as follows 160

$$U_F \approx \sum_{q=1}^{N} f_{FD}^q(x) \gamma_D^q, \tag{45}$$

161
$$\dot{U}_{F} \approx \sum_{q=1}^{N} f_{F_{0}}^{q}(x) \tilde{\gamma}_{D}^{q},$$
 (46)

where f_{FD}^{q} are tensor functions and γ_{D}^{q} and $\tilde{\gamma}_{D}^{q}$ are unknown coefficients. 162 163

The gradients of displacement and velocity were approximated as follows Ν

$$U_{F,g} \approx \sum_{q=1}^{q} f_{K,g}^{q}(x) \gamma_{K}^{q}, \tag{47}$$

$$\dot{U}_{F,g} \approx \sum_{q=1}^{N} f_{FD,g}^{q}(x) \tilde{\gamma}_{D}^{q}.$$
(48)

$$S_{A}^{T} = \sum_{q=1}^{N} S_{AD}^{T,q} \gamma_{D}^{q},$$
(49)

$$S_A^{\dot{u}} = -T_0 \beta_{fg} \varepsilon \sum_{q=1}^N S_{AD}^{\dot{u},q} \, \tilde{\gamma}_D^q, \tag{50}$$

166 where

173

$$S_{AD}^{T,q} = S_{AF} f_{FD,g}^q, \tag{51}$$

$$S_{AD}^{u,q} = S_{FA} f_{FD,g}^{q}.$$
 (52)

Applying the point collocation procedure of Gaul, et al. [49] to equations (35), (45) and (46) we have the following system of equations

$$\check{S} = J\alpha, \qquad U = J'\gamma, \qquad \dot{U} = J'\tilde{\gamma}.$$
 (53)

Similarly, the application of the point collocation procedure to the source terms equations (29), (30), (31), (33), (49) and (50) leads to the following system of equations

171
$$\check{S}^{u} = -(D_{af} + AD_{a1f}) \mho U_{F}$$

172 $\mho = \begin{cases} 1 & a = A = 1, 2, 3; f = F = 1, 2, 3; \\ 0 & a = A = 1, 2, 3; f = F = 1, 2, 3; \end{cases}$
(54)

$$\dot{S}^{\dagger} = \rho c(x+1)^m \delta_{AF} \dot{U}, \tag{55}$$

$$\check{S}^{\ddot{T}} = -c\rho(x+1)^m \tau_2 \delta_{AF} \ddot{U}, \tag{56}$$

$$\check{S}^{\ddot{u}} = \tilde{A} \ddot{U}, \tag{57}$$

$$S^{i} = \mathcal{B}^{i} \gamma, \tag{58}$$
$$S^{i} = -T_{0} \beta_{fa} \varepsilon \mathcal{B}^{i} \tilde{\gamma}. \tag{59}$$

Solving the system (53) for
$$\alpha$$
, γ and $\tilde{\gamma}$ yields

$$\alpha = J^{-1}\check{S}, \quad \gamma = J'^{-1}U, \quad \tilde{\gamma} = J'^{-1}\dot{U}, \quad (60)$$

Now, the coefficients α can be expressed in terms of nodal values of the unknown displacements U, velocities \check{U} and accelerations \check{U} as follows:

$$\alpha = J^{-1} (\check{S}^{0} + [\mathcal{B}^{T} J'^{-1} - (D_{af} + \Lambda D_{a1f}) \mho] U + [\rho c (x+1)^{m} \delta_{AF} - T_{0} \beta_{fg} \varepsilon \mathcal{B}^{\dot{u}} J'^{-1}] \dot{U}$$

$$+ [\tilde{A} - \rho c (x+1)^{m} \tau_{2} \delta_{AF}] \ddot{U}),$$
(61)

176 Where \widetilde{A} and \mathcal{B}^{T} are assembled using the sub matrices [] and ω_{AF} respectively.

177 Substituting from Eq. (61) into Eq. (44), we obtain MÜ + ΓŪ + KU = Q, (62)
178 In which Ü, Ü, U and Q represent the acceleration, velocity, displacement and external

force vectors, respectively,
$$V, M, \Gamma$$
 and K represent the volume, mass, damping and

stiffness matrices, respectively, as follows:

$$V = (\eta \not{\wp} - \zeta \vec{U}) J^{-1}, \qquad M = V [\tilde{A} - c\rho(x+1)^m \tau_2 \delta_{AF}],$$

$$\Gamma = V [\rho c(x+1)^m \delta_{AF} - T_0 \beta_{fg} \varepsilon \mathcal{B}^{\dot{u}} J'^{-1}],$$

$$K = \tilde{\zeta} + V [\mathcal{B}^T J'^{-1} + (D_{af} + \Lambda D_{a1f}) \mathcal{V}], \qquad \mathbb{Q} = \eta T + V \check{S}^0,$$
(63)

Using the initial conditions $U(0) = U_0$, $\dot{U}(0) = V_0$. Then, from Eq. (62), we can calculate the initial acceleration vector W_0 as follows

 $MW_0 = \mathbb{Q}_0 - \Gamma V_0 - KU_0.$ (64) An implicit-explicit time integration algorithm of Hughes et al. [50, 51], was developed and implemented for use with the DRBEM. This algorithm consists in satisfying the

185 following equations

$$M\ddot{U}_{n+1} + \Gamma^{I}\dot{U}_{n+1} + \Gamma^{E}\ddot{U}_{n+1} + K^{I}U_{n+1} + K^{E}\widetilde{U}_{n+1} = \mathbb{Q}_{n+1},$$
(65)

$$U_{n+1} = \tilde{U}_{n+1} + \gamma \Delta \tau^2 \tilde{U}_{n+1}, \tag{66}$$

$$\dot{U}_{n+1} = \dot{U}_{n+1} + \alpha \Delta \tau \ddot{U}_{n+1}, \tag{67}$$

Where the superscripts I and E denote, respectively, to the implicit and explicit parts and 186

$$\tilde{U}_{n+1} = U_{n+1} + \Delta \tau \dot{U}_n + (1 - 2\gamma) \frac{\Delta \tau^2}{2} \ddot{U}_n,$$
(68)

$$\dot{U}_{n+1} = \dot{U}_n + (1 - \alpha)\Delta\tau \ddot{U}_n,\tag{69}$$

Where we used the quantities \tilde{U}_{n+1} and \dot{U}_{n+1} to denote the predictor values, and U_{n+1} 187 and \dot{U}_{n+1} to denote the corrector values. It is easy to recognize that the equations (66)-188 (69) correspond to the Newmark formulas [52]. 189

At each time-step, equations (65)-(69), constitute an algebraic problem in terms of the
unknown accelerations
$$\ddot{U}_{n+1}$$
. The first step in the code starts by forming and factoring

the effective mass 192

$$M^* = M + \gamma \Delta \tau C^i + \gamma \Delta \tau^2 K^i.$$
⁽⁷⁰⁾

The time step $\Delta \tau$ must be constant to run this step. As the time-step $\Delta \tau$ is changed, the 193 194 first step should be repeated at each new step. The second step is to form residual force

$$\mathbb{Q}_{n+1}^{*} = \mathbb{Q}_{n+1} - C^{I} \widetilde{U}_{n+1} - C^{E} \widetilde{U}_{n+1} - K^{I} \widetilde{U}_{n+1} - K^{E} \widetilde{U}_{n+1}.$$
(71)

195 The third step is to solve $M^*U_{n+1} = \mathbb{Q}_{n+1}^*$ using a Crout elimination algorithm [53] 196 which fully exploits that structure in that zeroes outside the profile are neither stored nor operated upon. The fourth step is to use predictor-corrector equations (66) and (67) to 197 obtain the corrector displacement and velocity vectors, respectively. 198

199 4. Numerical results and discussion

The Gaussian heat flux distribution Q(x, y) can be expressed as 200

$$Q(x,y) = \frac{3Q_0}{\pi r^2} e^{\left(-\frac{3(x^2+y^2)}{r^2}\right)}$$
(72)

201 where Q_0 is heat power of the plane heat source, r is the heat source radius.

Following Rasolofosaon and Zinszner [54] monoclinic North Sea sandstone reservoir 202 rock was chosen as an anisotropic material and physical data are as follows: 203

204

207

Elasticity tensor 205

$$C_{abfg} = \begin{bmatrix} 17.77 & 3.78 & 3.76 & 0.24 & -0.28 & 0.03 \\ 3.78 & 19.45 & 4.13 & 0 & 0 & 1.13 \\ 3.76 & 4.13 & 21.79 & 0 & 0 & 0.38 \\ 0 & 0 & 0 & 8.30 & 0.66 & 0 \\ 0 & 0 & 0 & 0.66 & 7.62 & 0 \\ 0.03 & 1.13 & 0.38 & 0 & 0 & 7.77 \end{bmatrix} GPa$$
(73)
Mechanical temperature coefficient

206

$$\beta_{ab} = \begin{bmatrix} 0.001 & 0.02 & 0\\ 0.02 & 0.006 & 0\\ 0 & 0 & 0.05 \end{bmatrix} \cdot 10^6 N / Km^2$$
Tansor of thermal conductivity is
$$(74)$$

Tensor of thermal conductivity is

$$k_{ab} = \begin{bmatrix} 1 & 0.1 & 0.2\\ 0.1 & 1.1 & 0.15\\ 0.2 & 0.15 & 0.9 \end{bmatrix} W/Km$$
(75)

Mass density $\rho = 2216 \text{ kg/m}^3$ and heat capacity c = 0.1 J/(kg K). The numerical values 208 of the temperature and displacement are obtained by discretizing the boundary into 120 209 elements ($N_b = 120$) and choosing 60 well-spaced out collocation points ($N_i = 60$) in 210 the interior of the solution domain, referring to the recent work of Fahmy [55, 56]. 211

212 The initial and boundary conditions considered in the calculations are

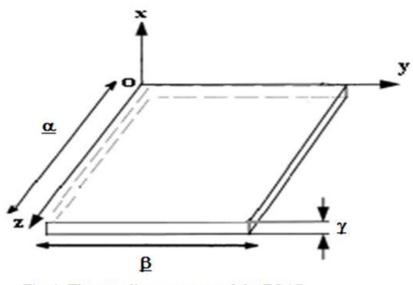
(76)213

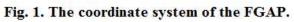
- at = 0, $u_1 = u_2 = \dot{u}_1 = \dot{u}_2 = 0, T = 0$ at x = 0 $\frac{\partial u_1}{\partial x} = \frac{\partial u_1}{\partial x} = 0, \frac{\partial T}{\partial x} = 0$ at $x = \underline{\gamma}$ $\frac{\partial u_1}{\partial x} = \frac{\partial u_1}{\partial x} = 0, \frac{\partial T}{\partial x} = 0$ (77)214
- (78)215

216 at
$$y = 0$$
 $\frac{\partial u_1}{\partial y} = \frac{\partial u_1}{\partial y} = 0, \frac{\partial T}{\partial y} = 0$ (79)

217 at
$$y = \underline{\beta}$$
 $\frac{\partial u_1}{\partial y} = \frac{\partial u_1}{\partial y} = 0, \frac{\partial T}{\partial y} = 0$ (80)

The present work should be applicable to any problems for coupled theory of thermo-218 elasticity in rotating FGAP. Such a technique was discussed in Fahmy et al. [57-60] who 219 solved the special case from this study in the absence of a moving heat source. To 220 achieve better efficiency than the technique described in Fahmy et al. [57-60], we use 221 thin plate splines into a code, which is proposed in the current study. We extend the 222 study of Fahmy et al. [57-60], to solve 2D in the presence of a moving heat source. Thus, 223 it is perhaps not surprising that the numerical values obtained here are in excellent 224 agreement with those obtained by Fahmy et al. [57-60]. The results are plotted in figures 225 2-4 for the Green and Lindsay (G-L) theory and plotted in figures 5-7 for the Lord and 226 Shulman (L-S) theory to show the variation of the temperature T and the displacement 227 components u_1 and u_2 with x coordinate. We can conclude from these figures that the 228 temperature T and the displacement u_1 decrease with increasing x and the displacement 229 230 u_2 increases with increasing x for the two theories. It has been found that the comparison between these theories evaluates the effect of second thermal relaxation time taken by 231 Green and Lindsay. These results obtained with the DRBEM have been compared 232 graphically with those obtained using the finite element method (FEM) method of Xia et 233 al. [14]. It can be seen from these figures that the DRBEM results are in excellent 234 agreement with the results obtained by FEM, thus confirming the accuracy of the 235 DRBEM. 236


237 238


5. Conclusion 239

240

A predictor-corrector implicit-explicit time integration algorithm was developed and 241 implemented for use with the DRBEM to obtain the solution for the temperature and 242 displacement fields of the two-dimensional problem of coupled thermo-elasticity with 243 one and two relaxation times in rotating FGAP subjected to a moving heat source with a 244 conical shape. The results had been shown the difference between Green and Lindsay (G-245 L) and Lord and Shulman (L-S) theories of coupled thermo-elasticity in rotating FGAP 246 subjected to a moving heat source. The accuracy of the proposed method was examined 247 and confirmed by comparing the obtained results with the FEM obtained results. It can 248 be seen from these figures that the DRBEM results are in excellent agreement with the 249 results obtained by FEM 250

- 251
- 252
- 253
- 254 255

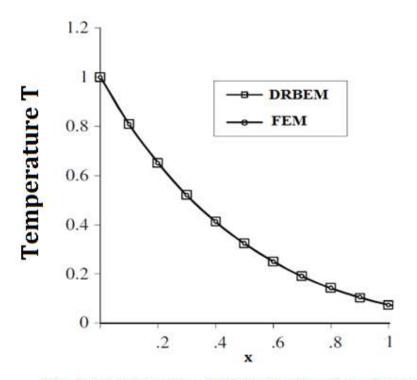


Fig. 2. Temperature distribution for G-L theory.

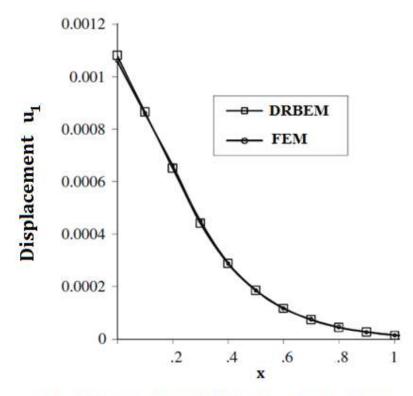


Fig. 3. Displacement distribution for G-L theory.

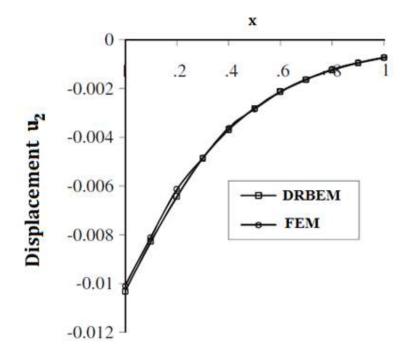


Fig. 4. Displacement distribution for G-L theory.

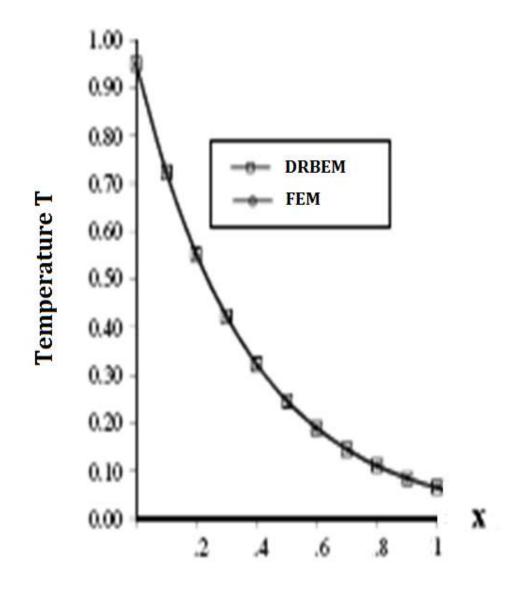


Fig. 5. Temperature distribution for L-S theory.

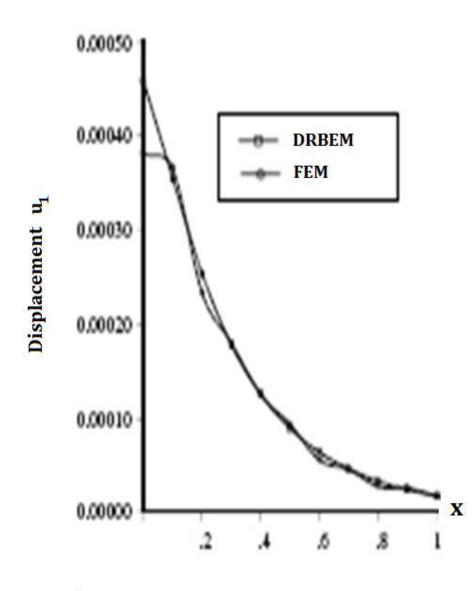


Fig. 6. Displacement distribution for L-S theory.

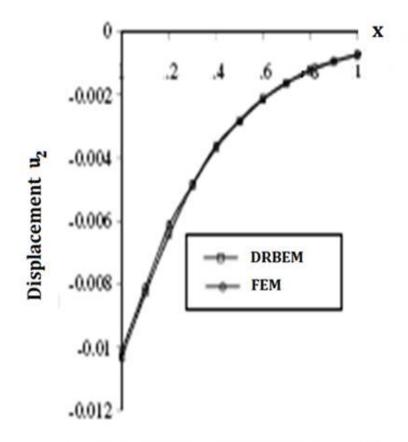


Fig. 7. Displacement distribution for L-S theory.

272

273 **References**

275	[1] Biot MA.	Thermo-elasticity	and irreversible	thermodynamics,	J. Appl.	Phys.	1956;27:2	240-253
-----	--------------	-------------------	------------------	-----------------	----------	-------	-----------	---------

- 276 [2] Lord HW, Shulman YA. Generalized dynamical theory of thermo-elasticity, J. Mech. Phys.
- 277 Solids. 1967;15:299-309.
- [3] Green AE, Lindsay KA. Thermo-elasticity J. Elast. 1972;2:1-7.
- [4] Skouras ED, Bourantas GC, Loukopoulos VC, Nikiforidis GC. Truly meshless localized type
- techniques for the steady-state heat conduction problems for isotropic and functionally graded
- 281 materials, Eng. Anal. Boundary Elem. 2011;35:452-464.

282	[5] Mojdehi AR, Darvizeh A, Basti A, Rajabi H. Three dimensional static and dynamic analysis of
283	thick functionally graded plates by the meshless local Petrov-Galerkin (MLPG) method, Eng.
284	Anal. Boundary Elem. 2011;35:1168-1180.
285	[6] Zhou FX, Li SR, Lai YM. Three-Dimensional Analysis for Transient Coupled Thermoelastic
286	Response of a Functionally Graded Rectangular Plate, J. of Sound and Vibration
287	2011:330:3990-4001.
288	[7] Loghman A, Aleayoub SMA, Sadi MH. Time-dependent magnetothermoelastic creep modeling
289	of FGM spheres using method of successive elastic solution, Appl. Math. Modell,
290	2012;36:836-845.
291	[8] Sun D, Luo SN. Wave Propagation and Transient Response of a Functionally Graded Material
292	Plate under a Point Impact Load in Thermal Environments, Appl. Mathematical Modelling.
293	2012;36:444-462.
294	[9] Mirzaei D, Dehghan M. New implementation of MLBIE method for heat conduction analysis in
295	functionally graded materials, Eng. Anal. Boundary Elem. 2012;36:511-519.
296	[10] Abd-Alla AN. Relaxation effects on reflection of generalized magneto-thermo-elastic waves,
297	Mechanics Research Communications 2000;27:591–600.
	[11] Abd-Alla AN, Al-Dawy AAS. Thermal relaxation times effect on Rayleigh waves in
298	generalized thermoelastic media, Journal of Thermal Stresses 2001;24:367-382.
299	-
300	[12] Abbas IA, Abd-Alla, AN. A study of generalized thermoelastic interaction in an infinite fibre-
301	reinforced anisotropic plate containing a circular hole, Acta Physica Polonica A 2011;119:814-818.
302	,
303	[13] Abbas IA., Abd-Alla AN. Effect of initial stress on a fiber-reinforced anisotropic thermoelastic
304	thick plate, International Journal of Thermophysics 2011;32:1098-1110.
305	[14] Xia R, Tian X, Shen Y. Dynamic response of two-dimensional generalized thermoelastic
306	coupling problem subjected to a moving heat source, Acta Mechanica Solida Sinica
307	2014;27:300-305.
308	
	[15] El-Naggar AM, Abd-Alla AM, Fahmy MA, Ahmed SM. Thermal stresses in a rotating non-
309	homogeneous orthotropic hollow cylinder, Heat Mass Transfer. 2002;39:41-46.
309 310	homogeneous orthotropic hollow cylinder, Heat Mass Transfer. 2002;39:41-46. [16] El-Naggar AM, Abd-Alla AM, Fahmy MA. The propagation of thermal stresses in an infinite
309 310 311	homogeneous orthotropic hollow cylinder, Heat Mass Transfer. 2002;39:41-46.[16] El-Naggar AM, Abd-Alla AM, Fahmy MA. The propagation of thermal stresses in an infinite elastic slab, Appl. Math. Comput, 2004;157:307-312.
309 310 311 312	 homogeneous orthotropic hollow cylinder, Heat Mass Transfer. 2002;39:41-46. [16] El-Naggar AM, Abd-Alla AM, Fahmy MA. The propagation of thermal stresses in an infinite elastic slab, Appl. Math. Comput, 2004;157:307-312. [17] Abd-Alla AM, El-Naggar AM, Fahmy MA. Magneto-thermoelastic problem in non-
309 310 311 312 313	 homogeneous orthotropic hollow cylinder, Heat Mass Transfer. 2002;39:41-46. [16] El-Naggar AM, Abd-Alla AM, Fahmy MA. The propagation of thermal stresses in an infinite elastic slab, Appl. Math. Comput, 2004;157:307-312. [17] Abd-Alla AM, El-Naggar AM, Fahmy MA. Magneto-thermoelastic problem in non-homogeneous isotropic cylinder, Heat Mass Transfer 2003;39:625-629.
309 310 311 312 313 314	 homogeneous orthotropic hollow cylinder, Heat Mass Transfer. 2002;39:41-46. [16] El-Naggar AM, Abd-Alla AM, Fahmy MA. The propagation of thermal stresses in an infinite elastic slab, Appl. Math. Comput, 2004;157:307-312. [17] Abd-Alla AM, El-Naggar AM, Fahmy MA. Magneto-thermoelastic problem in non-homogeneous isotropic cylinder, Heat Mass Transfer 2003;39:625-629. [18] Abd-Alla AM, Fahmy MA, El-Shahat TM. Magneto-thermo-elastic stresses in inhomogeneous
309 310 311 312 313 314 315	 homogeneous orthotropic hollow cylinder, Heat Mass Transfer. 2002;39:41-46. [16] El-Naggar AM, Abd-Alla AM, Fahmy MA. The propagation of thermal stresses in an infinite elastic slab, Appl. Math. Comput, 2004;157:307-312. [17] Abd-Alla AM, El-Naggar AM, Fahmy MA. Magneto-thermoelastic problem in non-homogeneous isotropic cylinder, Heat Mass Transfer 2003;39:625-629. [18] Abd-Alla AM, Fahmy MA, El-Shahat TM. Magneto-thermo-elastic stresses in inhomogeneous anisotropic solid in the presence of body force, Far East J. Appl. Math., 2007;27:499-516.
309 310 311 312 313 314 315 316	 homogeneous orthotropic hollow cylinder, Heat Mass Transfer. 2002;39:41-46. [16] El-Naggar AM, Abd-Alla AM, Fahmy MA. The propagation of thermal stresses in an infinite elastic slab, Appl. Math. Comput, 2004;157:307-312. [17] Abd-Alla AM, El-Naggar AM, Fahmy MA. Magneto-thermoelastic problem in non-homogeneous isotropic cylinder, Heat Mass Transfer 2003;39:625-629. [18] Abd-Alla AM, Fahmy MA, El-Shahat TM. Magneto-thermo-elastic stresses in inhomogeneous anisotropic solid in the presence of body force, Far East J. Appl. Math., 2007;27:499-516. [19] Abd-Alla AM, Fahmy MA, El-Shahat TM. Magneto-thermo-elastic problem of a rotating non-
309 310 311 312 313 314 315 316 317	 homogeneous orthotropic hollow cylinder, Heat Mass Transfer. 2002;39:41-46. [16] El-Naggar AM, Abd-Alla AM, Fahmy MA. The propagation of thermal stresses in an infinite elastic slab, Appl. Math. Comput, 2004;157:307-312. [17] Abd-Alla AM, El-Naggar AM, Fahmy MA. Magneto-thermoelastic problem in non-homogeneous isotropic cylinder, Heat Mass Transfer 2003;39:625-629. [18] Abd-Alla AM, Fahmy MA, El-Shahat TM. Magneto-thermo-elastic stresses in inhomogeneous anisotropic solid in the presence of body force, Far East J. Appl. Math., 2007;27:499-516. [19] Abd-Alla AM, Fahmy MA, El-Shahat TM. Magneto-thermo-elastic problem of a rotating non-homogeneous anisotropic solid cylinder, Arch. Appl. Mech. 2008;78:135-148.
309 310 311 312 313 314 315 316 317 318	 homogeneous orthotropic hollow cylinder, Heat Mass Transfer. 2002;39:41-46. [16] El-Naggar AM, Abd-Alla AM, Fahmy MA. The propagation of thermal stresses in an infinite elastic slab, Appl. Math. Comput, 2004;157:307-312. [17] Abd-Alla AM, El-Naggar AM, Fahmy MA. Magneto-thermoelastic problem in non-homogeneous isotropic cylinder, Heat Mass Transfer 2003;39:625-629. [18] Abd-Alla AM, Fahmy MA, El-Shahat TM. Magneto-thermo-elastic stresses in inhomogeneous anisotropic solid in the presence of body force, Far East J. Appl. Math., 2007;27:499-516. [19] Abd-Alla AM, Fahmy MA, El-Shahat TM. Magneto-thermo-elastic problem of a rotating non-homogeneous anisotropic solid cylinder, Arch. Appl. Mech. 2008;78:135-148. [20] Qin QH. 2D Green's functions of defective magnetoelectroelastic solids under thermal loading,
309 310 311 312 313 314 315 316 317 318 319	 homogeneous orthotropic hollow cylinder, Heat Mass Transfer. 2002;39:41-46. [16] El-Naggar AM, Abd-Alla AM, Fahmy MA. The propagation of thermal stresses in an infinite elastic slab, Appl. Math. Comput, 2004;157:307-312. [17] Abd-Alla AM, El-Naggar AM, Fahmy MA. Magneto-thermoelastic problem in non-homogeneous isotropic cylinder, Heat Mass Transfer 2003;39:625-629. [18] Abd-Alla AM, Fahmy MA, El-Shahat TM. Magneto-thermo-elastic stresses in inhomogeneous anisotropic solid in the presence of body force, Far East J. Appl. Math., 2007;27:499-516. [19] Abd-Alla AM, Fahmy MA, El-Shahat TM. Magneto-thermo-elastic problem of a rotating non-homogeneous anisotropic solid cylinder, Arch. Appl. Mech. 2008;78:135-148. [20] Qin QH. 2D Green's functions of defective magnetoelectroelastic solids under thermal loading, Eng. Anal. Boundary Elem. 2005;29:577-585.
309 310 311 312 313 314 315 316 317 318 319 320	 homogeneous orthotropic hollow cylinder, Heat Mass Transfer. 2002;39:41-46. [16] El-Naggar AM, Abd-Alla AM, Fahmy MA. The propagation of thermal stresses in an infinite elastic slab, Appl. Math. Comput, 2004;157:307-312. [17] Abd-Alla AM, El-Naggar AM, Fahmy MA. Magneto-thermoelastic problem in non-homogeneous isotropic cylinder, Heat Mass Transfer 2003;39:625-629. [18] Abd-Alla AM, Fahmy MA, El-Shahat TM. Magneto-thermo-elastic stresses in inhomogeneous anisotropic solid in the presence of body force, Far East J. Appl. Math., 2007;27:499-516. [19] Abd-Alla AM, Fahmy MA, El-Shahat TM. Magneto-thermo-elastic problem of a rotating non-homogeneous anisotropic solid cylinder, Arch. Appl. Mech. 2008;78:135-148. [20] Qin QH. 2D Green's functions of defective magnetoelectroelastic solids under thermal loading, Eng. Anal. Boundary Elem. 2005;29:577-585. [21] Sladek V, Sladek J, Tanaka M, Zhang Ch. Local integral equation method for potential
309 310 311 312 313 314 315 316 317 318 319 320 321	 homogeneous orthotropic hollow cylinder, Heat Mass Transfer. 2002;39:41-46. [16] El-Naggar AM, Abd-Alla AM, Fahmy MA. The propagation of thermal stresses in an infinite elastic slab, Appl. Math. Comput, 2004;157:307-312. [17] Abd-Alla AM, El-Naggar AM, Fahmy MA. Magneto-thermoelastic problem in non-homogeneous isotropic cylinder, Heat Mass Transfer 2003;39:625-629. [18] Abd-Alla AM, Fahmy MA, El-Shahat TM. Magneto-thermo-elastic stresses in inhomogeneous anisotropic solid in the presence of body force, Far East J. Appl. Math., 2007;27:499-516. [19] Abd-Alla AM, Fahmy MA, El-Shahat TM. Magneto-thermo-elastic problem of a rotating non-homogeneous anisotropic solid cylinder, Arch. Appl. Mech. 2008;78:135-148. [20] Qin QH. 2D Green's functions of defective magnetoelectroelastic solids under thermal loading, Eng. Anal. Boundary Elem. 2005;29:577-585. [21] Sladek V, Sladek J, Tanaka M, Zhang Ch. Local integral equation method for potential problems in functionally graded anisotropic materials, Eng. Anal. Boundary Elem.
309 310 311 312 313 314 315 316 317 318 319 320 321 322	 homogeneous orthotropic hollow cylinder, Heat Mass Transfer. 2002;39:41-46. [16] El-Naggar AM, Abd-Alla AM, Fahmy MA. The propagation of thermal stresses in an infinite elastic slab, Appl. Math. Comput, 2004;157:307-312. [17] Abd-Alla AM, El-Naggar AM, Fahmy MA. Magneto-thermoelastic problem in non-homogeneous isotropic cylinder, Heat Mass Transfer 2003;39:625-629. [18] Abd-Alla AM, Fahmy MA, El-Shahat TM. Magneto-thermo-elastic stresses in inhomogeneous anisotropic solid in the presence of body force, Far East J. Appl. Math., 2007;27:499-516. [19] Abd-Alla AM, Fahmy MA, El-Shahat TM. Magneto-thermo-elastic problem of a rotating non-homogeneous anisotropic solid cylinder, Arch. Appl. Mech. 2008;78:135-148. [20] Qin QH. 2D Green's functions of defective magnetoelectroelastic solids under thermal loading, Eng. Anal. Boundary Elem. 2005;29:577-585. [21] Sladek V, Sladek J, Tanaka M, Zhang Ch. Local integral equation method for potential problems in functionally graded anisotropic materials, Eng. Anal. Boundary Elem. 2005;29:829-843.
309 310 311 312 313 314 315 316 317 318 319 320 321 322 323	 homogeneous orthotropic hollow cylinder, Heat Mass Transfer. 2002;39:41-46. [16] El-Naggar AM, Abd-Alla AM, Fahmy MA. The propagation of thermal stresses in an infinite elastic slab, Appl. Math. Comput, 2004;157:307-312. [17] Abd-Alla AM, El-Naggar AM, Fahmy MA. Magneto-thermoelastic problem in non-homogeneous isotropic cylinder, Heat Mass Transfer 2003;39:625-629. [18] Abd-Alla AM, Fahmy MA, El-Shahat TM. Magneto-thermo-elastic stresses in inhomogeneous anisotropic solid in the presence of body force, Far East J. Appl. Math., 2007;27:499-516. [19] Abd-Alla AM, Fahmy MA, El-Shahat TM. Magneto-thermo-elastic problem of a rotating non-homogeneous anisotropic solid cylinder, Arch. Appl. Mech. 2008;78:135-148. [20] Qin QH. 2D Green's functions of defective magnetoelectroelastic solids under thermal loading, Eng. Anal. Boundary Elem. 2005;29:577-585. [21] Sladek V, Sladek J, Tanaka M, Zhang Ch. Local integral equation method for potential problems in functionally graded anisotropic materials, Eng. Anal. Boundary Elem. 2005;29:829-843. [22] Tian X, Shen Y, Chen C, He T. A direct finite element method study of generalized
309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324	 homogeneous orthotropic hollow cylinder, Heat Mass Transfer. 2002;39:41-46. [16] El-Naggar AM, Abd-Alla AM, Fahmy MA. The propagation of thermal stresses in an infinite elastic slab, Appl. Math. Comput, 2004;157:307-312. [17] Abd-Alla AM, El-Naggar AM, Fahmy MA. Magneto-thermoelastic problem in non-homogeneous isotropic cylinder, Heat Mass Transfer 2003;39:625-629. [18] Abd-Alla AM, Fahmy MA, El-Shahat TM. Magneto-thermo-elastic stresses in inhomogeneous anisotropic solid in the presence of body force, Far East J. Appl. Math., 2007;27:499-516. [19] Abd-Alla AM, Fahmy MA, El-Shahat TM. Magneto-thermo-elastic problem of a rotating non-homogeneous anisotropic solid cylinder, Arch. Appl. Mech. 2008;78:135-148. [20] Qin QH. 2D Green's functions of defective magnetoelectroelastic solids under thermal loading, Eng. Anal. Boundary Elem. 2005;29:577-585. [21] Sladek V, Sladek J, Tanaka M, Zhang Ch. Local integral equation method for potential problems in functionally graded anisotropic materials, Eng. Anal. Boundary Elem. 2005;29:829-843. [22] Tian X, Shen Y, Chen C, He T. A direct finite element method study of generalized thermoelastic problems, International Journal of Solids and Structures. 2006;43:2050-2063.
309 310 311 312 313 314 315 316 317 318 319 320 321 322 323	 homogeneous orthotropic hollow cylinder, Heat Mass Transfer. 2002;39:41-46. [16] El-Naggar AM, Abd-Alla AM, Fahmy MA. The propagation of thermal stresses in an infinite elastic slab, Appl. Math. Comput, 2004;157:307-312. [17] Abd-Alla AM, El-Naggar AM, Fahmy MA. Magneto-thermoelastic problem in non-homogeneous isotropic cylinder, Heat Mass Transfer 2003;39:625-629. [18] Abd-Alla AM, Fahmy MA, El-Shahat TM. Magneto-thermo-elastic stresses in inhomogeneous anisotropic solid in the presence of body force, Far East J. Appl. Math., 2007;27:499-516. [19] Abd-Alla AM, Fahmy MA, El-Shahat TM. Magneto-thermo-elastic problem of a rotating non-homogeneous anisotropic solid cylinder, Arch. Appl. Mech. 2008;78:135-148. [20] Qin QH. 2D Green's functions of defective magnetoelectroelastic solids under thermal loading, Eng. Anal. Boundary Elem. 2005;29:577-585. [21] Sladek V, Sladek J, Tanaka M, Zhang Ch. Local integral equation method for potential problems in functionally graded anisotropic materials, Eng. Anal. Boundary Elem. 2005;29:829-843. [22] Tian X, Shen Y, Chen C, He T. A direct finite element method study of generalized thermoelastic problems, International Journal of Solids and Structures. 2006;43:2050-2063. [23] Fahmy MA. Effect of initial stress and inhomogeneity on magneto-thermo-elastic stresses in a
309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326	 homogeneous orthotropic hollow cylinder, Heat Mass Transfer. 2002;39:41-46. [16] El-Naggar AM, Abd-Alla AM, Fahmy MA. The propagation of thermal stresses in an infinite elastic slab, Appl. Math. Comput, 2004;157:307-312. [17] Abd-Alla AM, El-Naggar AM, Fahmy MA. Magneto-thermoelastic problem in non-homogeneous isotropic cylinder, Heat Mass Transfer 2003;39:625-629. [18] Abd-Alla AM, Fahmy MA, El-Shahat TM. Magneto-thermo-elastic stresses in inhomogeneous anisotropic solid in the presence of body force, Far East J. Appl. Math., 2007;27:499-516. [19] Abd-Alla AM, Fahmy MA, El-Shahat TM. Magneto-thermo-elastic problem of a rotating non-homogeneous anisotropic solid cylinder, Arch. Appl. Mech. 2008;78:135-148. [20] Qin QH. 2D Green's functions of defective magnetoelectroelastic solids under thermal loading, Eng. Anal. Boundary Elem. 2005;29:577-585. [21] Sladek V, Sladek J, Tanaka M, Zhang Ch. Local integral equation method for potential problems in functionally graded anisotropic materials, Eng. Anal. Boundary Elem. 2005;29:829-843. [22] Tian X, Shen Y, Chen C, He T. A direct finite element method study of generalized thermoelastic problems, International Journal of Solids and Structures. 2006;43:2050-2063. [23] Fahmy MA. Effect of initial stress and inhomogeneity on magneto-thermo-elastic stresses in a rotating anisotropic solid, JP J. Heat Mass Transfer 2007;1:93-112.
309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327	 homogeneous orthotropic hollow cylinder, Heat Mass Transfer. 2002;39:41-46. [16] El-Naggar AM, Abd-Alla AM, Fahmy MA. The propagation of thermal stresses in an infinite elastic slab, Appl. Math. Comput, 2004;157:307-312. [17] Abd-Alla AM, El-Naggar AM, Fahmy MA. Magneto-thermoelastic problem in non-homogeneous isotropic cylinder, Heat Mass Transfer 2003;39:625-629. [18] Abd-Alla AM, Fahmy MA, El-Shahat TM. Magneto-thermo-elastic stresses in inhomogeneous anisotropic solid in the presence of body force, Far East J. Appl. Math., 2007;27:499-516. [19] Abd-Alla AM, Fahmy MA, El-Shahat TM. Magneto-thermo-elastic problem of a rotating non-homogeneous anisotropic solid cylinder, Arch. Appl. Mech. 2008;78:135-148. [20] Qin QH. 2D Green's functions of defective magnetoelectroelastic solids under thermal loading, Eng. Anal. Boundary Elem. 2005;29:577-585. [21] Sladek V, Sladek J, Tanaka M, Zhang Ch. Local integral equation method for potential problems in functionally graded anisotropic materials, Eng. Anal. Boundary Elem. 2005;29:829-843. [22] Tian X, Shen Y, Chen C, He T. A direct finite element method study of generalized thermoelastic problems, International Journal of Solids and Structures. 2006;43:2050-2063. [23] Fahmy MA. Effect of initial stress and inhomogeneity on magneto-thermo-elastic stresses in a rotating anisotropic solid, JP J. Heat Mass Transfer 2007;1:93-112. [24] Fahmy MA. Thermoelastic stresses in a rotating non-homogeneous anisotropic body," Numer.
309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328	 homogeneous orthotropic hollow cylinder, Heat Mass Transfer. 2002;39:41-46. [16] El-Naggar AM, Abd-Alla AM, Fahmy MA. The propagation of thermal stresses in an infinite elastic slab, Appl. Math. Comput, 2004;157:307-312. [17] Abd-Alla AM, El-Naggar AM, Fahmy MA. Magneto-thermoelastic problem in non-homogeneous isotropic cylinder, Heat Mass Transfer 2003;39:625-629. [18] Abd-Alla AM, Fahmy MA, El-Shahat TM. Magneto-thermo-elastic stresses in inhomogeneous anisotropic solid in the presence of body force, Far East J. Appl. Math., 2007;27:499-516. [19] Abd-Alla AM, Fahmy MA, El-Shahat TM. Magneto-thermo-elastic problem of a rotating non-homogeneous anisotropic solid cylinder, Arch. Appl. Mech. 2008;78:135-148. [20] Qin QH. 2D Green's functions of defective magnetoelectroelastic solids under thermal loading, Eng. Anal. Boundary Elem. 2005;29:577-585. [21] Sladek V, Sladek J, Tanaka M, Zhang Ch. Local integral equation method for potential problems in functionally graded anisotropic materials, Eng. Anal. Boundary Elem. 2005;29:829-843. [22] Tian X, Shen Y, Chen C, He T. A direct finite element method study of generalized thermoelastic problems, International Journal of Solids and Structures. 2006;43:2050-2063. [23] Fahmy MA. Effect of initial stress and inhomogeneity on magneto-thermo-elastic stresses in a rotating anisotropic solid, JP J. Heat Mass Transfer 2007;1:93-112. [24] Fahmy MA. Thermoelastic stresses in a rotating non-homogeneous anisotropic body," Numer. Heat Transfer, Part A 2008;53:1001-1011.
309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327	 homogeneous orthotropic hollow cylinder, Heat Mass Transfer. 2002;39:41-46. [16] El-Naggar AM, Abd-Alla AM, Fahmy MA. The propagation of thermal stresses in an infinite elastic slab, Appl. Math. Comput, 2004;157:307-312. [17] Abd-Alla AM, El-Naggar AM, Fahmy MA. Magneto-thermoelastic problem in non-homogeneous isotropic cylinder, Heat Mass Transfer 2003;39:625-629. [18] Abd-Alla AM, Fahmy MA, El-Shahat TM. Magneto-thermo-elastic stresses in inhomogeneous anisotropic solid in the presence of body force, Far East J. Appl. Math., 2007;27:499-516. [19] Abd-Alla AM, Fahmy MA, El-Shahat TM. Magneto-thermo-elastic problem of a rotating non-homogeneous anisotropic solid cylinder, Arch. Appl. Mech. 2008;78:135-148. [20] Qin QH. 2D Green's functions of defective magnetoelectroelastic solids under thermal loading, Eng. Anal. Boundary Elem. 2005;29:577-585. [21] Sladek V, Sladek J, Tanaka M, Zhang Ch. Local integral equation method for potential problems in functionally graded anisotropic materials, Eng. Anal. Boundary Elem. 2005;29:829-843. [22] Tian X, Shen Y, Chen C, He T. A direct finite element method study of generalized thermoelastic problems, International Journal of Solids and Structures. 2006;43:2050-2063. [23] Fahmy MA. Effect of initial stress and inhomogeneity on magneto-thermo-elastic stresses in a rotating anisotropic solid, JP J. Heat Mass Transfer 2007;1:93-112. [24] Fahmy MA. Thermoelastic stresses in a rotating non-homogeneous anisotropic body," Numer. Heat Transfer, Part A 2008;53:1001-1011. [25] Fahmy MA. Thermal stresses in a spherical shell under three thermoelastic models using
309 310 311 312 313 314 315 316 317 318 317 320 321 322 323 324 325 326 327 328 329 330	 homogeneous orthotropic hollow cylinder, Heat Mass Transfer. 2002;39:41-46. [16] El-Naggar AM, Abd-Alla AM, Fahmy MA. The propagation of thermal stresses in an infinite elastic slab, Appl. Math. Comput, 2004;157:307-312. [17] Abd-Alla AM, El-Naggar AM, Fahmy MA. Magneto-thermoelastic problem in non-homogeneous isotropic cylinder, Heat Mass Transfer 2003;39:625-629. [18] Abd-Alla AM, Fahmy MA, El-Shahat TM. Magneto-thermo-elastic stresses in inhomogeneous anisotropic solid in the presence of body force, Far East J. Appl. Math., 2007;27:499-516. [19] Abd-Alla AM, Fahmy MA, El-Shahat TM. Magneto-thermo-elastic problem of a rotating non-homogeneous anisotropic solid cylinder, Arch. Appl. Mech. 2008;78:135-148. [20] Qin QH. 2D Green's functions of defective magnetoelectroelastic solids under thermal loading, Eng. Anal. Boundary Elem. 2005;29:577-585. [21] Sladek V, Sladek J, Tanaka M, Zhang Ch. Local integral equation method for potential problems in functionally graded anisotropic materials, Eng. Anal. Boundary Elem. 2005;29:829-843. [22] Tian X, Shen Y, Chen C, He T. A direct finite element method study of generalized thermoelastic problems, International Journal of Solids and Structures. 2006;43:2050-2063. [23] Fahmy MA. Effect of initial stress and inhomogeneity on magneto-thermo-elastic stresses in a rotating anisotropic solid, JP J. Heat Mass Transfer 2007;1:93-112. [24] Fahmy MA. Thermoelastic stresses in a rotating non-homogeneous anisotropic body," Numer. Heat Transfer, Part A 2008;53:1001-1011. [25] Fahmy MA. Thermal stresses in a spherical shell under three thermoelastic models using FDM, Int. J. Numer. Methods Appl., 2009;2:123-128.
309 310 311 312 313 314 315 316 317 318 317 320 321 322 323 324 325 326 327 328 329	 homogeneous orthotropic hollow cylinder, Heat Mass Transfer. 2002;39:41-46. [16] El-Naggar AM, Abd-Alla AM, Fahmy MA. The propagation of thermal stresses in an infinite elastic slab, Appl. Math. Comput, 2004;157:307-312. [17] Abd-Alla AM, El-Naggar AM, Fahmy MA. Magneto-thermoelastic problem in non-homogeneous isotropic cylinder, Heat Mass Transfer 2003;39:625-629. [18] Abd-Alla AM, Fahmy MA, El-Shahat TM. Magneto-thermo-elastic stresses in inhomogeneous anisotropic solid in the presence of body force, Far East J. Appl. Math., 2007;27:499-516. [19] Abd-Alla AM, Fahmy MA, El-Shahat TM. Magneto-thermo-elastic problem of a rotating non-homogeneous anisotropic solid cylinder, Arch. Appl. Mech. 2008;78:135-148. [20] Qin QH. 2D Green's functions of defective magnetoelectroelastic solids under thermal loading, Eng. Anal. Boundary Elem. 2005;29:577-585. [21] Sladek V, Sladek J, Tanaka M, Zhang Ch. Local integral equation method for potential problems in functionally graded anisotropic materials, Eng. Anal. Boundary Elem. 2005;29:829-843. [22] Tian X, Shen Y, Chen C, He T. A direct finite element method study of generalized thermoelastic problems, International Journal of Solids and Structures. 2006;43:2050-2063. [23] Fahmy MA. Effect of initial stress and inhomogeneity on magneto-thermo-elastic stresses in a rotating anisotropic solid, JP J. Heat Mass Transfer 2007;1:93-112. [24] Fahmy MA. Thermoelastic stresses in a rotating non-homogeneous anisotropic body," Numer. Heat Transfer, Part A 2008;53:1001-1011. [25] Fahmy MA. Thermal stresses in a spherical shell under three thermoelastic models using

333	[27]	Fahmy MA. Influence of inhomogeneity and initial stress on the transient magneto-thermo-
334		visco-elastic stress waves in an anisotropic solid, World J. Mech., 2011;1:256-265.
335	[28]	Fahmy MA. Numerical modeling of transient magneto-thermo-viscoelastic waves in a rotating
336		nonhomogeneous anisotropic solid under initial stress, Int. J. Model. Simul. Sci. Comput.,
337		2012;3:125002.
338	[29]	Fahmy MA, El-Shahat TM, The effect of initial stress and inhomogeneity on the thermoelastic
339		stresses in a rotating anisotropic solid," Arch. Appl. Mech., 2008;78:431-442.
340	[30]	Othman MIA, Song Y. Effect of rotation on plane waves of generalized electro-magneto-
341		thermoviscoelasticity with two relaxation times, Appl. Math. Modell., 2008;32:811-825.
342	[31]	Davì G, Milazzo A. A regular variational boundary model for free vibrations of magneto-
343		electro-elastic structures, Eng. Anal. Boundary Elem. 2011;35:303-312.
344	[32]	Hou PF, He S, Chen CP. 2D general solution and fundamental solution for orthotropic
345		thermoelastic materials, Eng. Anal. Boundary Elem. 2011;35:56-60.
346	[33]	Abreu AI, Canelas A, Sensale B, Mansur WJ. CQM-based BEM formulation for uncoupled
347		transient quasistatic thermo-elasticity analysis," Eng. Anal. Boundary Elem. 2012;36:568-578.
348	[34]	Espinosa JV, Mediavilla AF. Boundary element method applied to three dimensional
349		thermoelastic contact, Eng. Anal. Boundary Elem. 2012;36:928-933.
350	[35]	Nardini D, Brebbia CA. A new approach to free vibration analysis using boundary elements,
351		in: C. A. Brebbia (Eds.), Boundary elements in engineering, Springer, Berlin, 312-326; 1982.
352	[36]	Brebbia CA, Telles JCF, Wrobel L. Boundary element techniques in Engineering, (Springer-
353		Verlag, New York); 1984.
354	[37]	Wrobel LC, Brebbia CA. The dual reciprocity boundary element formulation for nonlinear
355	r 1	diffusion problems, Comput. Methods Appl. Mech. Eng. 1987;65:147-164.
356	[38]	Partridge PW, Brebbia CA. Computer implementation of the BEM dual reciprocity method for
357	[= -]	the solution of general field equations, Commun. Appl. Numer. Methods, 6:83-92, 1990.
358	[39]	Partridge PW, Wrobel LC. The dual reciprocity boundary element method for spontaneous
359	[]	ignition. Int. J. Numer. Methods Eng. 1990;30:953–963.
360	[40]	Fahmy MA. Application of DRBEM to non-steady state heat conduction in non-homogeneous
361	[.0]	anisotropic media under various boundary elements, Far East J. Math. Sci., 2010;43:83-93.
362	[41]	Fahmy MA. A time-stepping DRBEM for magneto-thermo-viscoelastic interactions in a
363	[]	rotating nonhomogeneous anisotropic solid," Int. J. Appl. Mech 2011;3:1-24.
364	[42]	Fahmy MA. A time-stepping DRBEM for the transient magneto-thermo-visco-elastic stresses
365	[.=]	in a rotating non-homogeneous anisotropic solid, Eng. Anal. Boundary Elem. 2012;36:335-
366		345.
367	[43]	Fahmy MA. Transient magneto-thermo-elastic stresses in an anisotropic viscoelastic solid with
368	[10]	and without moving heat source, Numer. Heat Transfer, Part A. 2012;61:547-564.
369	[44]	Fahmy MA. Transient magneto-thermoviscoelastic plane waves in a non-homogeneous
370	[]	anisotropic thick strip subjected to a moving heat source, Appl. Math. Modell, 2012;36:4565-
371		4578.
372	[45]	Fahmy MA. Transient magneto-thermo-viscoelastic stresses in a rotating nonhomogeneous
373	[]	anisotropic solid with and without a moving heat source, J. Eng. Phys. Thermophys,
374		2012;85:874-880.
375	[46]	Fahmy MA. The DRBEM solution of the generalized magneto-thermo-viscoelastic problems
376	[]	in 3D anisotropic functionally graded solids, Proceeding of V International conference on
377		coupled problems in science and engineering, Ibiza, Spain, pp. 862-872; 2013.
378	[47]	Fahmy MA. Boundary Element Solution of 2D Coupled Problem in Anisotropic Piezoelectric
379	[.,]	FGM Plates, Proceedings of the VI International Conference on Computational Methods for
380		Coupled Problems in Science and Engineering, Venice. Italy. pp. 382-391; 2015.
381	[48]	Partridge PW, Brebbia CA, Wrobel LC. The dual reciprocity boundary element method,
382	[10]	(Computational Mechanics Publications, Boston, Southampton); 1992.
383	[49]	Gaul L, Kögl M, Wagner M. Boundary element methods for engineers and scientists,
384	[12]	(Springer-Verlag, Berlin); 2003.

- 385 [50] Hughes TJR, Liu WK. Implicit-Explicit finite element in Transient analysis: Stability theory. 386 ASME J. Appl. Mech. 1978;45:371-374. 387 [51] Hughes TJR, Liu WK. Implicit-Explicit finite element in Transient analysis: Implementation 388 and numerical examples. ASME J. Appl. Mech. 1978;45:375-378. [52] Newmark NM. A method of computation for structural dynamics, J. Eng. Mech. Div. 389 1959;85:67-94. 390 [53] Taylor RL. Computer procedures for finite element analysis," in: O.C. Zienckiewicz (Third 391 392 Edition), The finite element method, (McGraw Hill, London); 1977. 393 [54] Rasolofosaon PNJ, Zinszner BE. Comparison between permeability anisotropy and elasticity anisotropy of reservoir rocks, Geophys. 2002;67:230-240,. 394 [55] Fahmy MA. Implicit-Explicit Time Integration DRBEM for Generalized Magneto-Thermo-395 elasticity Problems of Rotating Anisotropic Viscoelastic Functionally Graded Solids., 396 Engineering Analysis with Boundary Elements 2013;37:107-115. 397 Fahmy MA. A Computerized DRBEM model for generalized magneto-thermo-visco-elastic 398 [56] 399 stress waves in functionally graded anisotropic thin film/substrate structures, Latin American 400 Journal of Solids and Structures 2014;11:386-409. 401 [57] Fahmy MA, Salem AM, Metwally MS, Rashid MM. Computer Implementation of the DRBEM for Studying the Generalized Thermoelastic Responses of Functionally Graded 402 Anisotropic Rotating Plates with One Relaxation Time, International Journal of Applied 403 Science and Technology 2013;3:130-140. 404 [58] Fahmy MA, Salem AM, Metwally MS, Rashid MM. Computer Implementation of the 405 DRBEM for Studying the Classical Uncoupled Theory of Thermo-elasticity of Functionally 406 Graded Anisotropic Rotating Plates, International Journal of Engineering Research and 407 Applications 2013;3:1146-1154. 408 409 [59] Fahmy MA, Salem AM, Metwally MS, Rashid MM. Computer Implementation of the Drbem for Studying the Classical Coupled Thermoelastic Responses of Functionally Graded 410 Anisotropic Plates, Physical Science International Journal 2014;4:674-685. 411 412 [60] Fahmy MA, Salem AM, Metwally MS, Rashid MM. Computer Implementation of the 413 DRBEM for Studying the Generalized Thermo Elastic Responses of Functionally Graded Anisotropic Rotating Plates with Two Relaxation Times, British Journal of Mathematics & 414 Computer Science 2014;4:1010-1026. 415 416 417
- 418