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Abstract. The time-stepping DRBEM modeling was proposeduidysthe 2D dynamic

response of functionally graded anisotropic plate (FGAP)estdy] to a moving heat
source. The FGAP is assumed to be graded through thendébkk A Gaussian
distribution of heat flux using a moving heat source with acadréhape is used for
analyzing the temperature profiles. The main aim of thaper is to evaluate the
difference between Green and Lindsay (G-L) and Lord and Shu(ln&) theories of

coupled thermo-elasticity in rotating FGAP subjectedatanoving heat source. The
accuracy of the proposed method was examined and confirmecbroparing the

obtained results with those known previously.

Keywords: Thermo-elasticity; Functionally Graded Anisotropilates; Boundary Element Method.

1. Introduction

Biot [1] proposed the classical coupled thermo-elasti@@TE) theory to overcome the
paradox inherent in the classical uncoupled thermo-elastictyf B} theory that elastic
changes have no effect on temperature. The heat equétiorixoth theories are a
diffusion type predicting infinite speeds of propagation figat waves contrary to
physical observations. A flux rate term into Fourier laf heat conduction is
incorporated by Lord and Shulman (L-S) [2], who praubsan extended thermo-
elasticity theory (ETE) which is also called as the galimed thermo-elasticity theory
with one relaxation time. Another thermo-elasticity thethat admits the second sound
effect is reported by Green and Lindsay (G-L) [3], whoealeped a temperature-rate-
dependent thermo-elasticity theory (TRDTE) which is akdted the generalized thermo-
elasticity theory with two relaxation times by introdwugitwo relaxation times that relate
the stress and entropy to the temperature.

Functionally graded Plates (FGPs) are a type of nonsgemeous composites and the
transient thermo-elastic problems for these non-homogsnemmposites become
important, and there are several studies concerned lv@tie tproblems, such as Skouras
et al. [4], Mojdehi et al. [5], Zhou et al. [6], Loghmanha. [7], Sun and Luo [8] and
Mirzaei and Dehghan [9] which are papers involving functiorgidded materials.

In recent years, the dynamical problem of thermo-eifstfor functionally graded
anisotropic plates (FGAPs) becomes more important duiés tmany applications in
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modern aeronautics, astronautics, earthquake engineering, swmitg, mining
engineering, plasma physics, nuclear reactors and higlgg particle accelerators, for
instance. Abd-Alla [10] obtained the relaxation effeots reflection of generalized
magneto-thermo-elastic waves. Abd-Alla and Al-Dawy [11}taoted the relaxation
effects on Rayleigh waves in generalized thermoelasticanédlibas and Abd-Alla [12,
13] studied generalized thermoelastic problems for anitaffibre-reinforced anisotropic
plate. Xia, et al. [14] used a time domain finite elemerthod to solve dynamic
response of two-dimensional generalized thermoelastiplmg problem subjected to a
moving heat source based on Lord and Shulman theory with emeahrelaxation time

It is hard to find the analytical solution of a probléma general case, therefore, an
important number of engineering and mathematical paperstetbvo the numerical
solution have studied the overall behavior of such mase(&de, e.g., EI-Naggar et al.
[15, 16], Abd-Alla et al. [17-19], Qin [20], Sladek et 1], Tian et al. [22], Fahmy
[23-28], Fahmy and El-Shahat [29], Othman and Song, [38¥j and Milazzo [31], Hou
et al. [32], [Abreu et al. [33], Espinosa and Mediavil&4][

The advantages in the boundary element method (BEM) arisestfre fact that the
BEM can be regarded as boundary—based method that usdsodhéary integral
equation formulations where only the boundary of the domatheopartial differential
equation (PDE) is required to be meshed. But in the dobasad methods such the
finite element method (FEM), finite difference method (FDMyl &lement free method
(EFM) that use ordinary differential equation (ODE) orBPB®rmulations, where the
whole domain of the PDE requires discretisation. Thus therdiime of the problem is
effectively reduced by one, that is, surfaces for thd@aensional (3D) problems or
curves for two-dimensional (2D) problems. And the equationegong the infinite
domain is reduced to an equation over the finite bounddsy, the BEM can be applied
along with the other domain-based methods to verify theigohito the problems that do
not have available analytical solutiofresence of domain integrals in the formulation of
the BEM dramatically decreases the efficiency of thchnique. One of the most widely
used methods for converting the domain integral into a boumerys the so-called dual
reciprocity boundary element method (DRBEM) which wadidlly developed by
Nardini and Brebbia [35] in the context of two-dimension&)(2lastodynamics and has
been extended to deal with a variety of problems wherein dneaith integral may
account for linear-nonlinear static-dynamic effectsmAre extensive historical review
and applications of dual reciprocity boundary element metheglbre found in [Brebbia
et al. [36], Wrobel and Brebbia [37], Partridge anetbia [38], Partridge and Wrobel

[39] and Fahmy [40-47]].

The main objective of this paper is to study the model ofdimeensional equations of
coupled thermo-elasticity with one and two relaxatioresnn rotating FGAPs subjected
to a moving heat source. A predictor-corrector time intémgraalgorithm was
implemented for use with the DRBEM to obtain the solutiontfe temperature and
displacement components. The accuracy of the proposed methoéxamined and
confirmed by comparing the obtained results with the finleanent method (FEM)

results known before

2. Governing equations of the FGAP
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Consider a Cartesian coordinate syst@myz as shown in Fig. 1. We shall consider a
rotating functionally graded anisotropic plate occupies themeg) = {(x,y, z):0<x <

7, 0<y<f, 0<z<a with the boundary C and the material is functionally graaledg the
thickness directiox. Thus, the governing equations of Coupled Thermo-elastigity
Relaxation Times can be written in the following form:

Oapp — P(X + D™w?x, = plx + )™y, D
Oap = (X + D™[Caprgtis g — Ban(T — To + 14 T)], (2)
kabT,ab = ﬁabTOua,b + PC(x + 1)m[T + TZT] -Q. 3)

wheready,,, is the mechanical stress tenswy, is the displacement, is the temperature,
Carrg and Bq, are respectively, the constant elastic moduli and steesgerature
coefficients of the anisotropic medium, is the uniform angular velocitys,;, are the
thermal conductivity coefficients satisfying the synmmjerelation k,;, = k;,, and the
strict inequality(k,,)? — ky,k,, < 0 holds at all points in the mediumjs the density¢
is the specific heat capacity,s the time;r; andr, are mechanical relaxation timeg s
the moving heat source.

3. 3. Numerical implementation

Making use of (2), we can write (1) as follows

Lgpus = pilg — (DT + ADgypur — pw?x,) = fyp, 4)
The field equations can now be written in operator fosrfolows
Lgbuf = fgbr 5)
LapT = fap, (6)
where the operatots,,, fg,, Loy andf,, are defined as follows
Lo = Davy = fop = pila = (DaT + ADusyity = peo’xy) ™
Dans = C 0 4= p, - (a+5/1+ (6+A)a)
abf — abfgg'e_axg' Tx+107% Bav ax, Ot i dxp, ot
0 0 . .. .
Lab = kab Y- Y fab = PC(x + 1)m[T + TZT] + .BabTOua,b - Q (8)
dx, 0xy

Using the weighted residual method (WRM), the difféedrequation (5) is transformed
into an integral equation

juww-@g%“m=o. ©
R

Now, by choosing the fundamental solutigp as the weighting function as follows
Lgbuz*if = —0gq0(x,8). (10)
The corresponding traction field can be written as

t;a = Cabfguz*if,gnb- (11)

whereé is the load poinandn,, is the unit normal vector to the surface.
The thermo-elastic traction vector can be written dsvis

t .
t, = W = (Cavrottr.g = Ban(T = To + 1,7) ) 1. (12)
Applying integration by parts to (9) using the siftingperty of the Dirac distribution,
and using equations (10) and (12), we can write the followirasgtiel integral
representation formula
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U ®) = [ iata = Ciatta + WiaPaoTny) dC = [ fptiadR (13)

C R
The fundamental solutiofi* of the thermal operatdr,,, defined by
LapT* = —8(x, §). (14)
By implementing the WRM and integration by parts, the difféa equation (6) is
transformed into the thermal reciprocity equation

f(LabTT* Loy T*T)dR = f(q T —qT*)dC, (15)
Where the heat fluxes are as follows:

q= _kabT,bna! (16)
CI* = _kabrzna- (17)

The thermal integral representation formula from (16) nawbtten as

TE) = f (@'T — qT")dC — f fusT*dR. (18)

[ R
The integral representation formulae of elastic and thefields (13) and (18) can be
combined to form a single equation as follows

(A1 [ et e

_f [u;a X fgb ]dR (19)
R 0 _T fab

It is convenient to use the contracted notation to intedgeneralized thermo elastic
vectors and tensors, which contain corresponding elasiic thermal variables as
follows:

U, A=1,23;

a =
w=lrt aZa (20)
(te a=A=1,23;

TA_{q A= : (21)
We d=D=123a=4=123;

. 0 d=D=1,23;A=4

Ua=Y0 D=4a=A=123 @2
T* D=4A=4,
t:, d=D=123a=4=123;

.. )y d=D=1,234=4

Toa=Y 0" p=sta=4=123 (23)
—q* D=4A=4,

ﬁz*i = u:iaﬁafnf- (24)

The thermo-elastic representation formula (19) can bgewrin contracted notation as:

Up(§) = f (UpaTy — TpaU,)dC — f Uj4SadR, (25)

c R
The vectorS, can be written in the split form as follows
Sy =S)+SI+S¢+SE+SI+Sk+SE (26)
where
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2 _
o _ (pwx, a=A4=1,23;
st={g A=4 @n
-D A=1,2,3;F =4
T _ . — a )y &y 9, )
Si = wupUp With wyp = {0 otherwise, (28)
S¥ = —(Daf + ADyy15)VUg
. (1 a=A=123f=F=1,23;
With U= {O otherwise, (29)
i . , 1 A=4;F =4
SX = —pC(x + 1)m6AFUF with 6AF = {O otherwise (30)
S‘;‘r = —pC(x + 1)mT26AFUF, (31)
SX = _T0A61j/))fg5UF, (32)
(P A=1,2,3,F=1,2,3;
_{O A=4;f=F =4 (33)

The thermo-elastic representation formula (19) can be ttewrin matrix form as
follows:

R R I R et

e+ DM [2] - pete + Dz, ] - 7, [ ﬁab?'ta,b] + [pga]. (34

By implementing the DRBEM to transform the domain inte@grg25) to the boundary
integral, the source vect6y in the domain was approximated by the following series of
given tensor functiong,l, and unknown coefficients;

N
Sy~ ZquNaﬁ,. (35)
q=1

According to the implementation of the DRBEM, the scefeof the plate has to be
discretized into boundary elements, where the total nurobénterpolation points is
N = N, + N; in which N, are collocation points on the bound@&hnandN; are the interior
points ofR

Thus, the thermo-elastic representation formula (25) carritten in the following form

N
Up(©) = [ WsaTa = TsaUa)dC = )" | UsafiydR a 36)
c q=1R
By applying the WRM to the following inhomogeneous elaatid thermal equations:
Loyt = fons (37)
LapT? = f} (38)

Where the weighting functions were chosen to be the santigeaslastic and thermal
fundamental solutiong}, andT*. Then the elastic and thermal representation formulae
are as follows (Fahmy [42])

ugg(f) = f(uz*iatge - t;auge) ac - f uz*iafaqedRr (39)
c R

TI(E) = j (@"T9 = °T*) dC — j 9T dR. 40)
C

R
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The elastic and thermal fields can be combined to foefdlowing dual representation
formulae

U = [ UpaTHy ~ T3a0%)dC = [ Upaffyar (41)

[ R
By substituting from (41) into (36), we can rewrite the dwgiprocity representation
formula of coupled thermo elasticity as follows
N

Up(§) = f (UpaTy — TpaU,)dC + Z Ugn(@) + f (TpaUdy — UpaTA)dC | afl. (42)
c q=1 c
Using the thin plate splines (TPS) of Fahmy [27], we can write the particular

solution of the displacement as follows

I( 4 r?logr 4
. _4 % Ky(Ar) + log(r) — 2 | r>0 i3
on =) 4[y+l (/1)] 4 L (43)
W RRECAVY) IO T

where K, is the Bessel function of the third kind of order zero,
Y = 0.5772156649015328 is the Euler's constant and r = ||x — &|| is the Euclidean
distance between the field point x and the load point ¢.

According to the steps described in Fahmy [43], the duapnaaity boundary integral
equation (42) can be written in the following system ofatigns

Jii—nt = (ST —nP)a. (44)
Where the matrix contains the fundamental solutid}} and the matrix contains the
modified fundamental tens@; with the coupling term.

Using the technique was proposed by Partridge et al. [4@] the generalized
displacement®, and velocitied/ are approximated as follows

N
Up = D oGV (45)
q=1
U ~ Xq=1 frp (75, (46)

wheref,!) are tensor functions ary§ and 7 are unknown coefficients.
The gradients of displacement and velocity were approriinas follows

N
Urg = D fey GO, (47)
q;l
Ung = Y fi g COTE. (48)

g=1
If these approximations are substituted into equations (5.39r(2B(32) we obtain the
corresponding approximating source terms as follows

N

T
ST= s, (49)
q=1
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SE=~Tobrge ) S 73, (50)
q=1

where

T
54'; = SAFquD,g! (51)
5:[';1 = SFAfF%,g' (52)

Applying the point collocation procedure of Gaul, et[48] to equations (35), (45) and
(46) we have the following system of equations

S=]a, u=]'y, u=J7. (53)
Similarly, the application of the point collocation progesito the source terms equations
(29), (30), (31), (33), (49) and (50) leads to the followingesysdf equations

S% = —(Dgas + ADyy15)VUg With
(1 a=A4=1,23;f=F=123;

U= {O otherwise, (4)

ST = pe(x + 1)™8,:U, (55)

ST = —cp(x + 1)™ 1,840, (56)

St = AU, (57)

ST =BTy, (58)

St = —TyBrgeB Y. (59)

Solving the system (53) far, y andy yields

a=J7S,  y=J7v,  §=J7'0 (60)

Now, the coefficientsa can be expressed in terms of nodal values of the unknown
displacementd, velocitiesU and accelerations as follows:
a=J"1S+[BT)' " = (Das + ADa1)U)U + [pc(x + D™ 8pr — ToBrgeBY ™ H|U

+[A = pe(x + 1)™1,8,5]0), (61)
WhereA andBT are assembled using the sub matricdsandw,r respectively.
Substituting from Eq. (61) into Eq. (44), we obtain
MU +TU+ KU = Q, (62)
In which U, U, U andQ represent the acceleration, velocity, displacement arefratt
force vectors, respectively/, M,I" and K represent the volume, mass, damping and
stiffness matrices, respectively, as follows:
V=mp-U0)", M=V[A—-cplx+1Dm1,64¢)
I'=V[pclx + )84 — TofrgeBY' ',
K=0+V[BT) ™"+ (Dss + ADa15)U], Q =nT + vso, (63)
Using the initial conditionsU(0) = U,, U(0) =V,. Then, from Eq. (62), we can
calculate the initial acceleration vecté as follows
MW, = Q, — I'Vy — KU,. (64)
An implicit-explicit time integration algorithm of Hughes al. [50, 51], was developed
and implemented for use with the DRBEM. This algorithamsists in satisfying the
following equations
Mﬁn+1 trlUn+1 + F.).EUn+1 + KIUn+1 + KEiin+1 = Qunt1s (65)
Unir = gn+1 + )/A‘EZUn+1, (66)
Un+1 = Un+1 + aATUn+1: (67)
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Where the superscripisandE denote, respectively, to the implicit and explicit panhd
2

— . At~ .

Unt1 = Unyr + 870, + (1 - ZV)TUn: (68)
Ups1 = Uy + (1 — )ATU,, (69)
Where we used the quantiti®s.,, andU,.,, to denote the predictor values, aligl,,
andU,,, to denote the corrector values. It is easy to recoghiethe equations (66)-
(69) correspond to the Newmark formulas [52].

At each time-step, equations (65)-(69), constitute an algeprablem in terms of the
unknown accelerationd,,., . The first step in the code starts by forming andofig
the effective mass

M* =M + yAtC' + yAr2K'. (70)
The time stepAt must be constant to run this step. As the time-Atefs changed, the
first step should be repeated at each new step. Thadstep is to form residual force
Qn+1 = Quis — CIUn+1 - CEUr'z'+1 - Kliin+1 - KEfjn+1- (71)
The third step is to solveM*U, ., = Q;,; using a Crout elimination algorithm [53]
which fully exploits that structure in that zeroes mgshe profile are neither stored nor
operated upon. The fourth step is to use predictor-correcfoations (66) and (67) to
obtain the corrector displacement and velocity vectospeively.

4, Numerical results and discussion

The Gaussian heat flux distributi@{x, y) can be expressed as

Qx,y) = &e<_3(xi;y2)>

r?
whereQ, is heat power of the plane heat sourcis,the heat source radius.
Following Rasolofosaon and Zinszner [54] monoclinic Nortla Sandstone reservoir
rock was chosen as an anisotropic material and physieahdais follows:

(72)

Elasticity tensor

17.77 3.78 3.76 0.24 —-0.28 0.03
I[ 3.78 1945 4.13 0 0 1.13]I
3.76 413 21.79 0 0 0.38
Canrg =| ™0 0 0 830 066 0 |GPe (73)
0 0 0 0.66 7.62 0 J
0.03 1.13 0.38 0 0 7.77
Mechanical temperature coefficient
0.001 0.02 0
Bap = [0.02 0.006 0 ] 108 N /Km? (74)
0 0 0.05
Tensor of thermal conductivity is
1 01 02
ko = [0.1 1.1 0.15|W/Km (75)
0.2 015 09

Mass density = 2216 kg/m?® and heat capacity= 0.1 J/(kg K). The numerical values
of the temperature and displacement are obtained by tiltsegethe boundary into 120
elements(N, = 120) and choosing 60 well-spaced out collocation pofis= 60) in
the interior of the solution domain, referring to theergovork of Fahmy [55, 56].

The initial and boundary conditions considered in the calculatioss



213 at=0,u1=u2=111=112=0,T=0 (76)

24 atx =0 %:%:o,j—i:o (77)
215 atx =y %=%=O,Z—Z=O (78)
216 aty =0 2—1;1=(2—1;1= O,Z—;= (79)
a7 aty=p %:‘;—”ylz ,Z—;= (80)

218 The present work should be applicable to any problems for abuipéory of thermo-

219 elasticity in rotating FGAP. Such a technique was discussedhmy et al. [57-60] who

220 solved the special case from this study in the absence mabving heat source. To
221 achieve better efficiency than the technique describeBahmy et al. [57-60], we use
222 thin plate splines into a code, which is proposed in the mustedy. We extend the
223 study of Fahmy et al. [57-60], to solve 2D in the pneseof a moving heat source. Thus,
224 it is perhaps not surprising that the numerical values olutaimze are in excellent
225 agreement with those obtained by Fahmy et al. [5778%. results are plotted in figures
226  2-4 for the Green and Lindsay (G-L) theory and plotted in figurésfér the Lord and

227 Shulman (L-S) theory to show the variation of the tempegdfuand the displacement
228 componentsy; andu, with x coordinate. We can conclude from these figures that the
229 temperaturel and the displacement; decrease with increasingand the displacement
230  u, increases with increasingfor the two theories. It has been found that the comparison
231 between these theories evaluates the effect of secondathesieaxation time taken by
232 Green and Lindsay. These results obtained with the DRBEW& Heeen compared
233 graphically with those obtained using the finite elementhod (FEM) method of Xia et

234 al. [14]. It can be seen from these figures that the DRBEsults are in excellent
235 agreement with the results obtained by FEM, thus coifgnhe accuracy of the
236 DRBEM.

237
238

239 5. Conclusion

240

241 A predictor-corrector implicit-explicit time integratioalgorithm was developed and
242 implemented for use with the DRBEM to obtain the solutiontfe temperature and
243 displacement fields of the two-dimensional problem of coupledritrelasticity with
244 one and two relaxation times in rotating FGAP subjectedrtméng heat source with a
245 conical shape. The results had been shown the differencedme®veen and Lindsay (G-
246 L) and Lord and Shulman (L-S) theories of coupled thermo-eigstn rotating FGAP
247 subjected to a moving heat source. The accuracy gbirhgosed method was examined

248 and confirmed by comparing the obtained results with the BBMined resultslt can
249 be seen from these figures that the DRBEM results aexdellent agreement with the
250 results obtained by FEM

251

252

253

254

255
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Fig. 1. The coordinate system of the FGAP.
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