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Abstract. The time-stepping DRBEM modeling was proposed to study the 2D dynamic 17 

response of functionally graded anisotropic plate (FGAP) subjected to a moving heat 18 

source. The FGAP is assumed to be graded through the thickness. A Gaussian 19 

distribution of heat flux using a moving heat source with a conical shape is used for 20 

analyzing the temperature profiles. The main aim of this paper is to evaluate the 21 

difference between Green and Lindsay (G-L) and Lord and Shulman (L-S) theories of 22 

coupled thermo-elasticity in rotating FGAP subjected to a moving heat source. The 23 

accuracy of the proposed method was examined and confirmed by comparing the 24 

obtained results with those known previously.  25 

 26 
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1.   Introduction 28 

Biot [1] proposed the classical coupled thermo-elasticity (CCTE) theory to overcome the 29 

paradox inherent in the classical uncoupled thermo-elasticity (CUTE) theory that elastic 30 

changes have no effect on temperature. The heat equations for both theories are a 31 

diffusion type predicting infinite speeds of propagation for heat waves contrary to 32 

physical observations. A flux rate term into Fourier law of heat conduction is 33 

incorporated by Lord and Shulman (L-S) [2], who proposed an extended thermo-34 

elasticity theory (ETE) which is also called as the generalized thermo-elasticity theory 35 

with one relaxation time. Another thermo-elasticity theory that admits the second sound 36 

effect is reported by Green and Lindsay (G-L) [3], who developed a temperature-rate-37 

dependent thermo-elasticity theory (TRDTE) which is also called the generalized thermo-38 

elasticity theory with two relaxation times by introducing two relaxation times that relate 39 

the stress and entropy to the temperature.   40 

Functionally graded Plates (FGPs) are a type of non-homogeneous composites and the 41 

transient thermo-elastic problems for these non-homogeneous composites become 42 

important, and there are several studies concerned with these problems, such as Skouras 43 

et al. [4], Mojdehi et al. [5], Zhou et al. [6], Loghman et al. [7], Sun and Luo [8] and 44 

Mirzaei and Dehghan [9] which are papers involving functionally graded materials. 45 

In recent years, the dynamical problem of thermo-elasticity for functionally graded 46 

anisotropic plates (FGAPs) becomes more important due to its many applications in 47 



modern aeronautics, astronautics, earthquake engineering, soil dynamics, mining 48 

engineering, plasma physics, nuclear reactors and high-energy particle accelerators, for 49 

instance. Abd-Alla [10] obtained the relaxation effects on reflection of generalized 50 

magneto-thermo-elastic waves. Abd-Alla and Al-Dawy [11] obtained the relaxation 51 

effects on Rayleigh waves in generalized thermoelastic media. Abbas and Abd-Alla [12, 52 

13] studied generalized thermoelastic problems for an infinite fibre-reinforced anisotropic 53 

plate. Xia, et al. [14] used a time domain finite element method to solve dynamic 54 

response of two-dimensional generalized thermoelastic coupling problem subjected to a 55 

moving heat source based on Lord and Shulman theory with one thermal relaxation time 56 

It is hard to find the analytical solution of a problem in a general case, therefore, an 57 

important number of engineering and mathematical papers devoted to the numerical 58 

solution have studied the overall behavior of such materials (see, e.g., El-Naggar et al. 59 

[15, 16], Abd-Alla et al. [17-19], Qin [20], Sladek et al. [21], Tian et al. [22],  Fahmy 60 

[23-28], Fahmy and El-Shahat [29], Othman and Song, [30], Davi and Milazzo [31], Hou 61 

et al. [32], [Abreu et al. [33], Espinosa and Mediavilla, [34]. 62 

The advantages in the boundary element method (BEM) arises from the fact that the 63 

BEM can be regarded as boundary–based method that uses the boundary integral 64 

equation formulations where only the boundary of the domain of the partial differential 65 

equation (PDE) is required to be meshed. But in the domain-based methods such the 66 

finite element method (FEM), finite difference method (FDM) and element free method 67 

(EFM) that use ordinary differential equation (ODE) or PDE formulations, where the 68 

whole domain of the PDE requires discretisation. Thus the dimension of the problem is 69 

effectively reduced by one, that is, surfaces for three–dimensional (3D) problems or 70 

curves for two-dimensional (2D) problems. And the equation governing the infinite 71 

domain is reduced to an equation over the finite boundary. Also, the BEM can be applied 72 

along with the other domain-based methods to verify the solutions to the problems that do 73 

not have available analytical solutions. Presence of domain integrals in the formulation of 74 

the BEM dramatically decreases the efficiency of this technique.  One of the most widely 75 

used methods for converting the domain integral into a boundary one is the so-called dual 76 

reciprocity boundary element method (DRBEM) which was initially developed by 77 

Nardini and Brebbia [35] in the context of two-dimensional (2D) elastodynamics and has 78 

been extended to deal with a variety of problems wherein the domain integral may 79 

account for linear-nonlinear static-dynamic effects. A more extensive historical review 80 

and applications of dual reciprocity boundary element method may be found in [Brebbia 81 

et al. [36], Wrobel and Brebbia [37], Partridge and Brebbia [38], Partridge and Wrobel 82 

[39] and Fahmy [40-47]]. 83 

The main objective of this paper is to study the model of two-dimensional equations of 84 

coupled thermo-elasticity with one and two relaxation times in rotating FGAPs subjected 85 

to a moving heat source. A predictor-corrector time integration algorithm was 86 

implemented for use with the DRBEM to obtain the solution for the temperature and 87 

displacement components. The accuracy of the proposed method was examined and 88 

confirmed by comparing the obtained results with the finite element method (FEM) 89 

results known before.  90 

2.   Governing equations of the FGAP 91 



 
Consider a Cartesian coordinate system ���� as shown in Fig. 1. We shall consider a 92 

rotating functionally graded anisotropic plate occupies the region � = ���, �, �
: 0 < � <93 �, 0<�<�, 0<�<� with the boundary C and the material is functionally graded along the 94 

thickness direction ��. Thus, the governing equations of Coupled Thermo-elasticity with 95 

Relaxation Times can be written in the following form: 96 ���,� − ��� + 1
����� = ��� + 1
��� �,                                                                                �1
 ��� = �� + 1
����� !� ,! − ���"# − #$ + %&#' (),                                                                �2
 +��#,�� = ���#$�' �,�  + �,�� + 1
��#' + %�#� ) − -.                                                              �3
 
where ��� is the mechanical stress tensor, �0 is the displacement, # is the temperature, 97 ��� ! and ��� are respectively, the constant elastic moduli and stress-temperature 98 

coefficients of the anisotropic medium, � is the uniform angular velocity, +�� are the 99 

thermal conductivity coefficients satisfying the symmetry relation +�� = +�� and the 100 

strict inequality �+&�
� − +&&+�� < 0 holds at all points in the medium, ρ is the density, c 101 

is the specific heat capacity, % is the time, %& and %� are mechanical relaxation times, - is 102 

the moving heat source. 103 

3.   3. Numerical implementation 104 

Making use of (2), we can write (1) as follows 105 3!�� = ��� � − "4�# + 54�& � − �����( = 6!� ,                                                              �4
 
The field equations can now be written in operator form as follows 106 3!�� = 6!� ,                                                                                                                                     �5
 3��# = 6��,                                                                                                                                       �6
 
where the operators 3!�, 6!�, 3�� and 6�� are defined as follows 107 3!� = 4�� ::�� , 6!� = ��� � − "4�# + 54�& � − �����(                                        �7
 

4�� = ��� !<, < = ::�! , 5 = =� + 1 , 4� = −��� > ::�� + ?�&5 + %& > ::�� + 5@ ::%@ 

3�� = +�� ::��
::�� , 6�� = �,�� + 1
��#' + %�#� ) + ���#$�' �,� − -.                         �8
 

Using the weighted residual method (WRM), the differential equation (5) is transformed 108 

into an integral equation 109 

B"3!�� − 6!�(�C�∗
E F� = 0.                                                                                                       �9
 

Now, by choosing the fundamental solution uIJ∗  as the weighting function as follows 110 3!��C ∗ = −?�C?��, K
.                                                                                                               �10
 
The corresponding traction field can be written as 111 LC�∗ = ��� !�C ,!∗ M�.                                                                                                                    �11
 
where K is the load point and M� is the unit normal vector to the surface. 112 

The thermo-elastic traction vector can be written as follows 113 L� = L�̅�� + 1
� = O��� !� ,! − ���"# − #$ + %&#' (P M� .                                                   �12
 

Applying integration by parts to (9) using the sifting property of the Dirac distribution, 114 

and using equations (10) and (12), we can write the following elastic integral 115 

representation formula 116 



�C�K
 = B��C�∗ L� − LC�∗ �� + �C�∗ ���#M�
Q F� − B 6!��C�∗ F�.E                                        �13
 

The fundamental solution T∗ of the thermal operator LTU, defined by 117 LTUT∗ = −δ�x, ξ
.                                                                                                                         �14
 
By implementing the WRM and integration by parts, the differential equation (6) is 118 

transformed into the thermal reciprocity equation 119 

B�3��##∗ − 3��#∗#
F� = B �Y∗# − Y#∗
F�,QE                                                                   �15
 

Where the heat fluxes are as follows: 120 Y = −+��#,�M� ,                                                                                                                             �16
 Y∗ = −+��#,�∗ M� .                                                                                                                           �17
 
The thermal integral representation formula from (16) may be written as  121 

#�K
 = B�Y∗# − Y#∗
F�Q − B 6��#∗F�.E                                                                               �18
 

The integral representation formulae of elastic and thermal fields (13) and (18) can be 122 

combined to form a single equation as follows 123 

Z�C�K
#�K
 [ = B \− ZLC�∗ −�C�∗ ���M�0 −Y∗ [ ]��# ^ + ]�C�∗ 00 −#∗^ ]L�Y ^_ F�Q  

                   − B ]�C�∗ 00 −#∗^ Z 6!�−6��[ F�.E                                                                                   �19
 

It is convenient to use the contracted notation to introduce generalized thermo elastic 124 

vectors and tensors, which contain corresponding elastic and thermal variables as 125 

follows: 126 

à = \��        b = c = 1, 2, 3;#          c = 4,                  e                                                                                                   �20
 

fa = \ L�        b = c = 1, 2, 3;Y          c = 4,                  e                                                                                                   �21
 

`ga∗ = h�C�∗         F = 4 = 1, 2, 3; b = c = 1, 2, 3;0           F = 4 = 1, 2, 3; c = 4;               0           4 = 4; b = c = 1, 2, 3;               −#∗       4 = 4; c = 4,                                  e                                                               �22
 

#iga∗ = hLC�∗         F = 4 = 1, 2, 3; b = c = 1, 2, 3;−�jC∗       F = 4 = 1, 2, 3; c = 4;                 0          4 = 4; b = c = 1, 2, 3;               −Y∗      4 = 4; c = 4,                                  e                                                                �23
 

�jC∗ = �C�∗ �� M .                                                                                                                           �24
 
The thermo-elastic representation formula (19) can be written in contracted notation as: 127 

`g�K
 = B "`ga∗ fa − #iga à(F� − B `ga∗ kaF�,EQ                                                                 �25
 

The vector Sm can be written in the split form as follows 128 ka = ka$ + kan + kao + kan' + kan� + kao' + kao� ,                                                                            �26
 
where 129 



 ka$ = \�����         b = c = 1, 2, 3;-                   c = 4,                 e                                                                                           �27
 

kan = �ap`p          qrLℎ    �ap = \−4�                c = 1, 2, 3; t = 4;0                         otherwise,         e                                    �28
 kao = −"4� + 54�& (℧`p        130 

 With     ℧ = \1         b = c = 1, 2, 3; 6 = t = 1, 2, 3;0                        vLℎwxqryw,                        e                                                         �29
 131 

kan' = −�,�� + 1
�?ap '̀p   qrLℎ  ?ap = � 1              c = 4; t = 4;0              vLℎwxqryw,      e                                   �30
 kan� = −�,�� + 1
�%�?ap �̀p ,                                                                                                     �31
 kao' = −#$Å?&{� !< '̀p ,                                                                                                               �32
 kao� = e �̀p                qrLℎ    e= \�                                        c = 1, 2, 3;  t = 1, 2, 3;0                                                  c = 4; 6 = t = 4..e          �33
 

The thermo-elastic representation formula (19) can be rewritten in matrix form as 132 

follows: 133 |ka} = Z�����- [ + ]−4�#0 ^ + Z−"4� + 54�& (� 0 [ 

                               +��,�� + 1
�
 ]0#' ^ − �,�� + 1
�%� ]0#� ^ − #$ Z 0����' �,�[ + ]��� �0 ^.  �34
 

By implementing the DRBEM to transform the domain integral in (25) to the boundary 134 

integral, the source vector ka in the domain was approximated by the following series of 135 

given tensor functions 6a~�  and unknown coefficients �~�  136 

ka ≈ � 6a~� �~� .~
��&                                                                                                                             �35
 

According to the implementation of the DRBEM, the surface of the plate has to be 137 

discretized into boundary elements, where the total number of interpolation points is  138 � = �� + �� in which �� are collocation points on the boundary � and ��  are the interior 139 

points of R 140 

Thus, the thermo-elastic representation formula (25) can be written in the following form 141 

`g�K
 = B "`ga∗ #a − #iga∗ à(F� − � B `ga∗ 6a~� F�E
~

��&Q �~� .                                                  �36
 

By applying the WRM to the following inhomogeneous elastic and thermal equations: 142 3!�� �� = 6��� ,                                                                                                                                �37
 3��#� = 6�{� ,                                                                                                                                  �38
 
Where the weighting functions were chosen to be the same as the elastic and thermal 143 

fundamental solutions �C�∗  and #∗. Then the elastic and thermal representation formulae 144 

are as follows (Fahmy [42]) 145 

�C�� �K
 = B"�C�∗ L��� − LC�∗ ���� (Q F� − B �C�∗ 6��� F�,E                                                             �39
 

#��K
 = B�Y∗#� − Y�#∗
Q F� − B 6�#∗F�.E                                                                        �40
 



The elastic and thermal fields can be combined to form the following dual representation 146 

formulae 147 

`g~� �K
 = B "`ga∗ #a~� − #ga∗ à~� (F�Q − B `ga∗ 6a~� F�,E                                                        �41
 

By substituting from (41) into (36), we can rewrite the dual reciprocity representation 148 

formula of coupled thermo elasticity as follows 149 

`g�K
 = B "`ga∗ #a − #�ga∗ à(F�Q + � �`g~� �K
 + B "#ga∗ à~� − `ga∗ #a~� (F�Q �~
��& �~� . �42
 

Using the thin plate splines �TPS
 of Fahmy |27}, we can write the particular 150 solution of the displacement as follows 151 

`�~� =
 ¡¢
¡£ − 4¤¥ ¦§$�¤x
 + ¨v©�x
 − x� ¨v© x¤� − 4¤¥ª , x > 0

   4¤¥ ZΥ + ¨v© >¤2@[ − 4¤¥  ,                                       x = 0 e                                         �43
 

where §$  is the Bessel function of the third kind of order zero, 152 Υ = 0.5772156649015328 is the Euler's constant and x = ‖� − K‖ is the Euclidean 153 distance between the field point � and the load point K. 154 

According to the steps described in Fahmy [43], the dual reciprocity boundary integral 155 

equation (42) can be written in the following system of equations 156 µ́�¶ − ·Ľ = "´ ¹̀ − ·℘»(�.                                                                                                             �44
 
Where the matrix ζ contains the fundamental solution T½∗  and the matrix ζ¾ contains the 157 

modified fundamental tensor T¹½∗  with the coupling term. 158 

Using the technique was proposed by Partridge et al. [48], then the generalized 159 

displacements ̀p and velocities ̀'p are approximated as follows 160 

`p ≈ � 6pg� ��
�g� ,~
��&                                                                                                                      �45
 

'̀p ≈ ∑ 6pg� ��
�jg� ,~��&                                                                                                                   �46
  161 

where 6pg�  are tensor functions and �g� and  �jg� are unknown coefficients. 162 

The gradients of displacement and velocity were approximated as follows 163 

`p,! ≈ � 6À,!� ��
�À�,~
��&                                                                                                                   �47
 

'̀p,! ≈ � 6pg,!� ��
�jg�.~
��&                                                                                                                 �48
 

If these approximations are substituted into equations (5.39) (28) and (32) we obtain the 164 

corresponding approximating source terms as follows 165 

kan = � kagn,Á~
��& �g� ,                                                                                                                           �49
 



 

kao' = −#$� !< � kago' ,Á~
��& �jg� ,                                                                                                         �50
 

where  166 kagn,Á = kap6pg,!� ,                                                                                                                             �51
 kago' ,Á = kpa6pg,!� .                                                                                                                             �52
 
Applying the point collocation procedure of Gaul, et al. [49] to equations (35), (45) and 167 

(46) we have the following system of equations 168 k¾ = Â�,          ` = ÂÃ�,           '̀ = ÂÃ�j.                                                                                        �53
 
Similarly, the application of the point collocation procedure to the source terms equations 169 

(29), (30), (31), (33), (49) and (50) leads to the following system of equations 170 k¾o = −"4� + 54�& (℧`p        With    171 ℧ = \1         b = c = 1, 2, 3; 6 = t = 1, 2, 3;0                        vLℎwxqryw,                        e                                                                        �54
 172 k¾n' = �,�� + 1
�?ap`,'                                                                                                               �55
 k¾n� = −,��� + 1
�%�?ap`,�                                                                                                       �56
 k¾o� = cµ`,�                                                                                                                                        �57
 k¾n = ℬn�,                                                                                                                                      �58
 k¾o' = −#$� !<ℬo' �j.                                                                                                                      �59
 
Solving the system (53) for α, γ and γj yields 173 � = ÂÇ&k¾,           � = ÂÃÇ&`,            �j = ÂÃÇ&`,'                                                                         �60
 
Now, the coefficients α can be expressed in terms of nodal values of the unknown 174 

displacements U, velocities U'¹ and accelerations U�¹ as follows: 175 � = ÂÇ&�k¾$ + �ℬnÂÃÇ& − "4� + 54�& (℧)` + ��,�� + 1
�?ap − #$� !<ℬo' ÂÃÇ&) '̀                          +�cµ − �,�� + 1
�%�?ap) �̀ 
,                                                                            �61
 
Where AÉ and ℬÊ are assembled using the sub matrices |e } and ωmÌ respectively. 176 

Substituting from Eq. (61) into Eq. (44), we obtain 177 Í �̀ + Î '̀ + §` = ℚ,                                                                                                                 �62
 
In which �̀ , `,' ` and ℚ represent the acceleration, velocity, displacement and external 178 

force vectors, respectively, Ð, Í, Î and § represent the volume, mass, damping and 179 

stiffness matrices, respectively, as follows: 180 Ð = "·℘» − ´ ¹̀(ÂÇ&, Í = Ð�cµ  − ,��� + 1
�%�?ap),          Î = Ð��,�� + 1
�?ap − #$� !<ℬo' ÂÃÇ&), § = µ́ + Ð�ℬnÂÃÇ& + "4� + 54�& (℧),   ℚ = ·# + Ðk¾$,                                                 �63
 
Using the initial conditions ̀ �0
 = $̀, '̀ �0
 = Ð$. Then, from Eq. (62), we can 181 

calculate the initial acceleration vector W$ as follows  182 ÍÒ$ = ℚ$ − ÎÐ$ − §`$.                                                                                                          �64
 
An implicit-explicit time integration algorithm of Hughes et al. [50, 51], was developed 183 

and implemented for use with the DRBEM. This algorithm consists in satisfying the 184 

following equations 185 Í �̀�Ó& + ÎÔ '̀�Ó& + ÎÕ '̀É�Ó& + §Ô`�Ó& + §Õ É̀�Ó& = ℚ�Ó&,                                             �65
 `�Ó& = É̀�Ó& + �∆%� �̀�Ó&,                                                                                                        �66
 '̀�Ó& = '̀É�Ó& + �∆% �̀�Ó&,                                                                                                          �67
   



Where the superscripts × and Ø denote, respectively, to the implicit and explicit parts and 186 É̀�Ó& = `�Ó& + ∆% '̀� + �1 − 2�
 ∆%�2 �̀� ,                                                                             �68
 '̀É�Ó& = '̀� + �1 − �
∆% �̀� ,                                                                                                       �69
 

Where we used the quantities É̀�Ó& and ̀ 'É�Ó& to denote the predictor values, and `�Ó& 187 

and ̀ '�Ó& to denote the corrector values. It is easy to recognize that the equations (66)-188 

(69) correspond to the Newmark formulas [52]. 189 

At each time-step, equations (65)-(69), constitute an algebraic problem in terms of the 190 

unknown accelerations ̀��Ó& . The first step in the code starts by forming and factoring 191 

the effective mass 192 Í∗ = Í + �∆%�Ô + �∆%�§Ô.                                                                                                    �70
 
The time step ∆τ must be constant to run this step. As the time-step ∆τ is changed, the 193 

first step should be repeated at each new step. The second step is to form residual force 194 ℚ�Ó&∗ = ℚ�Ó& − �Ô '̀É�Ó& − �Õ '̀É�Ó& − §Ô É̀�Ó& − §Õ É̀�Ó&.                                                �71
 
The third step is to solve  Í∗ �̀�Ó& = ℚ�Ó&∗  using a Crout elimination algorithm [53] 195 

which fully exploits that structure in that zeroes outside the profile are neither stored nor 196 

operated upon. The fourth step is to use predictor-corrector equations (66) and (67) to 197 

obtain the corrector displacement and velocity vectors, respectively. 198 

4.  Numerical results and discussion 199 

The Gaussian heat flux distribution -��, �
 can be expressed as 200 

-��, �
 = 3-$Úx� wÛÇÜ"ÝÞÓßÞ(àÞ á                                                                                                      �72
 

where Q$ is heat power of the plane heat source, x is the heat source radius.  201 

Following Rasolofosaon and Zinszner [54] monoclinic North Sea sandstone reservoir 202 

rock was chosen as an anisotropic material and physical data are as follows: 203 

 204 

Elasticity tensor 205 

��� ! =
ãää
ääå
17.77 3.78 3.763.78 19.45 4.133.76 4.13 21.79

0.24      −0.28   0.030     0   1.130     0  0.380     0       00     0       00.03  1.13 0.38
8.30      0.66     0   0.66    7.62   0   0        0    7.77æçç

ççè  éêb                                �73
 

Mechanical temperature coefficient 206 

��� = ë0.001 0.02 00.02 0.006 00 0 0.05ì ∙ 10î � /§=�                                                                        �74
 

Tensor of thermal conductivity is 207 

+�� = ë 1 0.1 0.20.1 1.1 0.150.2 0.15 0.9 ì Ò/§=                                                                                           �75
 

Mass density � = 2216 kg/mÜ and heat capacity , = 0.1 J/(kg K).  The numerical values 208 

of the temperature and displacement are obtained by discretizing the boundary into 120 209 

elements ��� = 120
 and choosing 60 well-spaced out collocation points ��� = 60
 in 210 

the interior of the solution domain, referring to the recent work of Fahmy [55, 56]. 211 

The initial and boundary conditions considered in the calculations are 212 



 
at = 0 ,  �& = �� = �' & = �' � = 0,  # = 0                                                                               �76
 213 

at � = 0             
ðoñðÝ = ðoñðÝ = 0, ðnðÝ = 0                                                                                   �77
 214 

at � = �             
ðoñðÝ = ðoñðÝ = 0, ðnðÝ = 0                                                                                   �78
 215 

at � = 0             
ðoñðß = ðoñðß = 0, ðnðß = 0                                                                                   �79
 216 

at � = �            
ðoñðß = ðoñðß = 0, ðnðß = 0                                                                                    �80
 217 

The present work should be applicable to any problems for coupled theory of thermo-218 

elasticity in rotating FGAP. Such a technique was discussed in Fahmy et al. [57-60] who 219 

solved the special case from this study in the absence of a moving heat source. To 220 

achieve better efficiency than the technique described in Fahmy et al. [57-60], we use 221 

thin plate splines into a code, which is proposed in the current study.  We extend the 222 

study of Fahmy et al. [57-60], to solve 2D in the presence of a moving heat source. Thus, 223 

it is perhaps not surprising that the numerical values obtained here are in excellent 224 

agreement with those obtained by Fahmy et al. [57-60]. The results are plotted in figures 225 

2-4 for the Green and Lindsay (G-L) theory and plotted in figures 5–7 for the Lord and 226 

Shulman (L-S) theory to show the variation of the temperature T and the displacement 227 

components �& and ��  with � coordinate. We can conclude from these figures that the 228 

temperature T and the displacement �& decrease with increasing � and the displacement 229 �� increases with increasing � for the two theories. It has been found that the comparison 230 

between these theories evaluates the effect of second thermal relaxation time taken by 231 

Green and Lindsay. These results obtained with the DRBEM have been compared 232 

graphically with those obtained using the finite element method (FEM) method of Xia et 233 

al. [14]. It can be seen from these figures that the DRBEM results are in excellent 234 

agreement with the results obtained by FEM, thus confirming the accuracy of the 235 

DRBEM. 236 

 237 

 238 

5.  Conclusion 239 

 240 

A predictor-corrector implicit-explicit time integration algorithm was developed and 241 

implemented for use with the DRBEM to obtain the solution for the temperature and 242 

displacement fields of the two-dimensional problem of coupled thermo-elasticity with 243 

one and two relaxation times in rotating FGAP subjected to a moving heat source with a 244 

conical shape. The results had been shown the difference between Green and Lindsay (G-245 

L) and Lord and Shulman (L-S) theories of coupled thermo-elasticity in rotating FGAP 246 

subjected to a moving heat source. The accuracy of the proposed method was examined 247 

and confirmed by comparing the obtained results with the FEM obtained results. It can 248 

be seen from these figures that the DRBEM results are in excellent agreement with the 249 

results obtained by FEM 250 

 251 
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