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     ABSTRACT 
 
The one-dimensional superlattice (SL) based on a monolayer graphene modulated by the Fermi velocity 
barriers is considered.  We assume that the rectangular barriers are arranged periodically along the SL 
chain.  The energy spectra of the Weyl-Dirac quasi-electrons for this SL are calculated with the help of 
the transfer matrix method in the continuum model. The Fibonacci quasi-periodic modulation in graphene 
superlattices with the velocity barriers can be effectively realized by virtue of a difference in the velocity 
barrier values (no additional factor is needed).  And this fact is true for a case of normal incidence of 
quasi-electrons on a lattice. In contrast to the case of other types of the graphene SL spectra studied 
reveal the periodic character over all the energy scale and the transmission coefficient doesn’t tend 
asymptotically to unity at rather large energies. The dependence of spectra on the Fermi velocity 
magnitude and on the external electrostatic potential as well as on the SL geometrical parameters (width 
of barriers and quantum wells) is analyzed. The obtained results can be used for applications in the 
graphene-based electronics. 
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1. INTRODUCTION 
 
Graphene and the graphene-based structures draw the great attention of researchers in recent years. It is 
explained by the unique physical properties of graphene, and also by good prospects of its use in the 
nanoelectronics (see e.g. [1-4]). It is convenient to control the behaviour of the Weyl-Dirac fermions in 
graphene by means of the external electric and magnetic fields, and a lot of publications are devoted to 
the corresponding problem for this reason. Recently one more way of controlling the electronic properties 
of the graphene structures, namely by means of the spatial change of the Fermi velocity was offered [5-
10]. Some ways of fabrication of structures in which the Fermi velocity of quasi-particles is spatially 
dependent value were approved [5, 6]. This achievement in the technology opens new opportunities for 
receiving the nanoelectronic devices with the desirable transport properties. 
It is known that the solution of this problem can be promoted to the great extent by use of the 
superlattices. This explains the emergence of a number of publications in which the charge carriers 
behaviour in graphene superlattices of various types is investigated; these SL include the strictly periodic, 
the disordered ones, SL with barriers of various nature - electrostatic, magnetic, barriers of Fermi velocity 
(under which we understand the areas of graphene where quasi-particles have different Fermi velocity, 
smaller or bigger than in the pristine graphene). Among the specified works, there are some devoted to 
the quasi-periodic graphene SL [11-15]. The quasi-periodic structures, as known, possess the unusual 
electronic properties of special interest (see e.g. [16]). 
Motivated by the circumstances stated above we formulate the purpose of this work as follows: to study 
the main features of the energy spectra of the quasi-periodical graphene-based Fibonacci superlattices 
with the velocity barriers. We choose the Fibonacci SL because they are considered as the classical 
quasi-periodic objects, and the majority of the works associated with research of the quasi-periodic 
systems deal merely with them.       

2. MODEL AND FORMULAE 



Consider the one-dimensional graphene superlattice in which regions with various values of the Fermi 
velocity are located along the 0x axis: elements a and b refer to �a and �b velocities respectively. 
Elements a and b are arranged along SL according to the Fibonacci rule so that, for example, we have for 
the fourth Fibonacci generation (sequence): s4=abaab. Generally, between the barriers corresponding to 
elements a and b, there is a quantum well for which the Fermi velocity is equal to unity as in a pristine 
graphene: �w=�0. 
As we consider graphene in which the Fermi velocity is dependent on the spatial coordinate �� i.e. �� = ������ the quasi-particles submit to the massless Weyl-Dirac type equation: 
 

−	ℏ�� ∙  �������������� ������� = ������,         (1) 

 
where �� = ��� , ��� the Pauli two-dimensional matrix, ����� = �������, �������� two-component spinor, T 

transposing symbol. Introducing an auxiliary spinor Ф���� = ������������ one can rewrite equation (1) as 
follows: 
 

                                 −	ℏ�������� ∙ Ф���� = �Ф����.       (2) 
 

Assume that the external potential consists of the periodically repeating rectangular velocity barriers 
along the axis 0x and potential is constant in each j-th barrier. The external electrostatic potential U may 
also be present and inside each barrier Uj(x) = const (piece-wise constant potential). In this case using 
the translational invariance of the solution over the 0y axis it is possible to receive from the equation (2): 
 

��ФА,В
��� + �#$% − #�%�ФА,В = 0,                      (3) 

 

where indices A, B relate to the graphene sublattices A and B respectively,  #$ = '()*+���,
-+ , measurement 

units ℏ=�/=1 are accepted. If we represent the solution for eigenfunctions in the form of the plane waves 
moving in the direct and opposite direction along an axis Ox, we derive  

Ф�х� = 23$456+� 7 18$9: + ;$4)56+� 7 18$):<,     (4) 

 

where =$ = >#$% − #�%  for #$% > #�% and =$ = 	>#�% − #$% otherwise, 8$± = �±=$ + 	#� )vj/E, the top line in (4) 

pertains to the sublattice A, the lower one – to the sublattice B. 
The transfer matrix which associates wave functions in points x and x+∆x reads  
 

A$ = B
CDE F+ Gcos�=$∆L − M$� 	 sin�=$∆L�

	 sin�=$∆L� cos�=$∆L + M$�P,     (5) 

where M$ = arc sin 7ST
S+ :. 

Meaning that the Fermi velocity depends only on coordinate x, i.e. ����� = ��L�, it is possible to receive 
the boundary matching condition from the continuity equation for the current density as follows:  

��Uϕ�LUV) � = ��Vϕ�LUV9 �,      (6) 
where indexes b and w relate to a barrier and a quantum well respectively, xbw the coordinate of the 
barrier-well interface. The coefficient of transmission of quasi-electrons through the superlattice T(E) is 
evaluated by means of a transfer matrix method. Energy ranges for which the coefficient of electron 
transmission through  the lattice is close to unity form the allowed bands while the energy gaps 
correspond to values T<<1. Since the specified procedure of obtaining the value of T(E) was described in 
literature repeatedly (see e.g. [7-14] ) we have opportunity  to proceed with analyzing the obtained 
results. 
 
3. RESULTS AND DISCUSSION 
 
Unlike the energy spectra for the known quasi-periodic superlattices, including the graphene ones (see 
e.g. [7, 14, 15] ), the spectra of the graphene-based SL with the velocity barriers are periodic over all the 
energy scale, and the transmission rate T doesn’t tend asymptotically to unity at rather large energies. 
For comparison, dependences of log T(E) are given in Fig. 1(a) for the Fibonacci fourth generation for SL 
in which the quasi-periodic modulation is achieved due to different values of the Fermi velocity, and for SL 
on the basis of the gapped graphene in which the quasi-periodic modulation is due to different values of 
gaps (calculations are carried out on the basis of our previous work [14], (Fig. 1(b)). The values of the 



parameters are as follows: for the first case w=1, d=2, �a=1, �b=2, for the second case w=d=1, ∆a=1, ∆b=0, 
where ∆ denotes the gap’s width, d and w denotes the barrier and the quantum well width respectively. All 
calculations (for all figures of this paper) were carried out for the case of the normal incidence of electrons 
on the superlattice. (Note that in accordance with the known Landauer-Buttiker formula the electrons with 
ky = 0 make the main contribution to the conductance). 
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Fig. 1. Dependence of log(T) on energy E for the SL modulated by: (a) different values of the Fermi 
velocity and (b) different magnitudes of the energy gaps 
 
It is seen that a certain periodicity of spectra takes place in the second case (this fact hasn’t been noted 
in the literature as yet) but the amplitude of peaks (and the corresponding gap’s width) decreases with 
increasing in E, on average. The allowed band width increases on average with E increasing and the 
coefficient of transmission T eventually approaches to unity. This "wavy damped oscillation" in Fig. 1(b) is 
associated with such property of the spectra as their self-similarity (e.g. [14]).  Note that the narrowing of 
gaps occurs very rapidly. Parameters for the spectra in Fig. 1 are chosen so as to show that their 
structure for the graphene SL of different nature may be similar. The difference of two spectra is 
explained by that the velocity barriers are dependent on energy [9]. If we make an analogy between 
tunneling of quasi-particles in graphene through a rectangular electrostatic barrier and tunneling through 
a velocity barrier, for the potential of the last it is necessary to write down  
 W��� = � − �/�Y,                 (7) 

 
in other words expressions for the transmission coefficient T in the specified cases coincide if the 
condition (7)  is satisfied. This formula explains the fact that spectra of T(E) for SL with the velocity 
barriers are periodic over all the energy scale. It is quite naturally that the expression for the transmission 
rates comprises the term that directly determines the spectra periodicity (see e.g. the recent papers 
[7,18,19]).   
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Fig. 2. Trace map for the initial Fibonacci generations, values of the parameters are as follows: 
d=1, w=0.5, �a=1, �b=2 
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barriers in different elements of the array while maintaining the velocity the same along the lattice chain. 
The external electrostatic potential U has a significant impact on the electron transmission and it is 
convenient to tune the transmission spectra with the help of this potential. Let us first consider briefly the 
effect of the external potential U on the strictly periodic SL with the velocity barriers. Denote the potential 
in elements a and b as Ua and Ub respectively; Ua=Ub for the strictly periodic SL. The potential barriers are 
considered to be the piece wise constant, they are located along the SL chain (0x axis). The changes in 
the transmission spectra caused by the electrostatic potential are illustrated in Fig. 3 and are as follows: 
1) a new (additional) gap appears between the two adjacent gaps which exist in the case of U=0; 2) a 
shift of all gaps is observed and it depends on the value of U; 3) the gap width depends on U also. 
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Fig. 3. Transmission spectra for the various values of the electrostatic potential U: U=0, U=2, 
U=4.5 for Fig. 3, a,b,c respectively, the other parameters: �a=�b=2, d=1, w=0.5 
 
These changes are governed by the important property of the spectra – they are periodic with the 
potential U. For example, for the parameters of Fig. 3, spectra return to their initial state at intervals ZW=2πn, n – integer, i.e. the additional gap due to the external potential U doesn’t appear. This means 
that for certain values of U the electrostatic barriers are perfectly transparent for the Dirac-Weyl quasi-
electrons and thus there is a kind of the Klein paradox manifestation in the SL under consideration. (If �a= �b=1 we have T(E)=1 for all energies and values of U due to the Klein tunneling).The widening of 
gaps is accompanied by the narrowing of those gaps which relate to the SL with the velocity barriers for 
U=0.  
The magnitude of the period oscillations ZW can be found from the following considerations. According to 
the Bloch theorem we can write   
 cos�[�\ + ]�� = 1 2⁄ Tr�AVAa�,     (8) 

 
d+w is the lattice period. Calculation of the right side of this equation for the case of normal incidence of 
electrons yields the expression 
 cos�[�\ + ]�� = cos��� − W�\/� ± �]�,    (9) 
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 �=�a=�b. 
 
The last formula yields a value for the period of oscillations in the transmission spectra  
 ZW = bc�/\.     (10) 

 
This expression determines the dependence of the period ZW on the SL geometric parameters (it is 
inversely proportional to the barrier width and holds for each value of the quantum well width) and on the 
Fermi velocity. Note that formula (10) holds well even for a small number of the SL periods. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Fig. 4. Trace map for the initial Fibonacci generations of the SL with the parameters: Ua=0, Ub=ππππ, �a= �b=2, d=1, w=0.5 
 
Fig. 4 shows a trace map for the SL under consideration for the difference ∆U=Ua-Ub=π, other parameters 
as in Fig. 3, the energy interval is chosen to be equal to the minimal period in Fig. 3.1. In general, its 
character is similar to that plotted in Fig. 2 but some of its features must be noted here. This trace map is 
regular and gaps are wider than for other values of ∆U even if they are larger than π that is if the quasi-
periodic factor is stronger. This is due to the fact that the spectra for the Fibonacci SL considered 
preserve the property of the periodicity in the case of Ua≠Ub and the factor of the quasi-periodicity is the 
secondary to the main property of periodicity.  For values of ∆U=2πn the quasi-periodicity doesn’t 
manifest itself at all and spectra repeat the initial state i.e. the one for U=0. The greatest splitting of the 
allowed bands is observed for values of ∆U slightly higher than πn. The trace map is not regular and 
symmetric for the arbitrary parameter values (for the general case when U≠πn).  
We see that the trace map in Fig. 4 is divided into two parts by the gap for energy equal to a little more 
than 8 (for ∆U chosen). The number of bands is subjected to the Fibonacci inflation rule in every part: for 
the initial Fibonacci generations we have the sequence of numbers 3, 4, 7, 11… and 1, 2, 3, 5… in the left 
and right parts respectively, and totally 4, 6, 10, 16… which differs from the case of Fig. 2. 
Pay particular attention to the broad (lower energy) bands in each Fibonacci generation in Fig. 4. They 
correspond to the so called additional or superlattice Dirac bands in a periodic lattice [21]. It plays an 
important role in the controlling of the SL energy spectra since it is robust against the structural disorder. 
The location of the middle of such a band (mid-gap) ED is determined by the condition [21] =�\ + =V] = 0      (11) 

      
which yields  

ED=Ud/(d + υ w).     (12) 
 

This equation for the position of the Dirac superlattice gap is well satisfied for a wide range of the  
parameters involved even for a small number of the SL periods. The Dirac band width depends on the 
problem parameters and may be less than the width of the other (Bragg) bands (see e.g. [14, 15,17]).  
Similar Dirac superlattice gaps exist also in the case of the quasi-periodic Fibonacci SL investigated. The 
mid-gap position of such a gap may be approximately found by the equation (13) (for not a large 
difference between Ua and Ub). Note further that a characteristic feature of the SL Dirac band is that it 
doesn’t depend on the lattice period d+w, but it is sensitive to the ratio w/d. This is illustrated in Fig. 5 
where log T(E) is plotted for the fourth Fibonacci generation with the parameters: �=2, Ua=4, Ub=3.5, the 
dashed line in Fig. 5a corresponds to values d=0.8, w=0.6, for the solid line d=0.96, w=0.72; for the solid 
line in Fig. 5b  d=0.6, w=0.8, for the dashed line d=0.8, w=0.6. 
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Fig. 5. Dependence of log (T) on energy E for the fourth Fibonacci generation, values of the 
parameters: �=2, Ua=4, Ub=3.5, the solid line in Fig. 5a corresponds to values d=0.96, w=0.72, for 
the dashed line d=0.8, w=0.6, for the solid line in Fig. 5b d=0.6, w=0.8, for the dashed line d=0.8, 
w=0.6 
 
4. CONCLUSION 
 
We analyze the energy spectra of the Fibonacci superlattice based on graphene modulated by the Fermi 
velocity barriers. The quasi-periodic modulation can be realized due to different values of the velocity 
barriers or due to different values of the external potential in the SL elements a and b. Contrary to the 
case of other types of the graphene SL spectra studied reveal the periodic character over all the energy 
scale and the transmission coefficient doesn’t tend asymptotically to unity at rather large energies. The 
periodic dependence of the considered spectra on the magnitude of the external electrostatic potential is 
observed. Spectra demonstrate the rich variety of configurations (patterns) of the allowed and forbidden 
bands location dependent on one hand on the Fermi velocity magnitude and on the other hand  on the SL 
geometry; for some special parameter values, they expose the regular character, symmetrical with 
respect to a certain point. The SL Dirac gaps are present in the spectra and their location depends on the 
velocity barriers value, on the value of the external potential as well as on the SL geometrical parameters. 
The results of our work can be applied for controlling the energy spectra of the graphene-based devices. 
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