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ABSTRACT 
In this paper we investigate the effects of electron inertia on the gravitational instability of gaseous plasma 
under the influence of FLR corrections and suspended particles. A general dispersion relation has been 
derived through relevant linearized perturbation equations. The general dispersion relation is reduced for 
both longitudinal and transverse mode of propagation. Numerical calculations have been performed to 
show the effect of various parameters on the growth rate of the gravitational instability. It is found that the 
simultaneous effect of viscosity, finite conductivity and permeability of the medium does not essentially 
change the Jeans criterion of instability. From the curves we find that relaxation time, Stoke drag, 
viscosity and FLR parameter have a stabilizing effect on the growth rate of instability but the thermal 
conductivity and finite electron inertia parameter have a destabilizing effect on the growth rate of 
instability. 
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1. INTRODUCTION  
Now a days, there has been a great deal of interest in understanding the formation of planetesimals and 
stars in interstellar media. The gravitational instability of an infinite homogeneous self-gravitating gaseous 
plasma was first discussed by Jeans [1] and he pointed out that an infinitely extending homogeneous 
static medium is unstable with respect to the gravitational sound wave with wave number k less than the 

critical Jeans wave-number  �� = �����
	
 �

�

  where the symbols have their usual meaning. Chandrasekhar 

[2] has discussed in detail the effect of the magnetic field and rotations on Jeans criterion of gravitational 
instability. He inferred that Jeans criterion determines the condition of instability even in presence of 
magnetic field and rotation. A number of researchers [3] – [12] have extended the problem of the 
gravitational instability of the self gravitating system under different conditions. Recently, Prajapati et al. 
[13] have investigated the problem of self gravitational instability of rotating viscous Hall plasma with 
arbitrary radiative heat loss functions and electron inertia and have obtained modified Jeans criterion of 
instability. Ren et al. [14] have studied the electrostatic drift modes in quantum dusty plasma with Jeans 
terms. Bashir et al. [15] have discussed the problem of self gravitational electrostatic drift waves for a 
streaming non-uniform quantum dusty magneto plasma. Prajapati and Chhajlani [16] have discussed the 
self gravitational instability in magnetized finitely conducting viscoelastic fluid. Sharma and Chhajlani [17] 

have pointed out the modified Jeans instability of magnetized spin 
�
� quantum plasma with resistive effects 

and Hall current. Joshi and Pensia [18] have discussed the effect of radiation on Jeans instability of 
quantum plasma under the influence of rotation. 
In addition to this the finite Larmor radius (FLR) effect plays an important role in interstellar gas dynamics, 
which exhibits itself in the form of a magnetic viscosity in the fluid equations Roberts and Taylor [19], 
Recently Kaothekar and Chhajlani [20] have discussed the problem of Jeans instability for a self 



gravitating, rotating, radiative plasma with finite Larmor radius corrections and point out the stabilizing 
influence of the finite Larmor radius (FLR) effect.  
In all these studies of gravitational instability of a self gravitating medium under the combined effects of 
FLR corrections, finite electron inertia, viscosity, electrical conductivity, magnetic field, permeability and 
presence of suspended particles has not been investigated. It would, there for, be of interest to examine 
the gravitational instability of a self gravitating gaseous plasma under influence of finite electron inertia, 
FLR correction, viscosity, thermal conductivity, permeability, magnetic field, electrical conductivity and 
presence of suspended particles. In the present work we have discussed the problem of gravitational 
instability of a self gravitating gaseous plasma in the presence of suspended particles and transverse 
magnetic field including the simultaneous effects of finite electron inertia, FLR correction, viscosity, 
thermal conductivity and electrical resistivity. The present study can serve as a theoretical support to 
understand the astrophysical problems. This problem to the best of our knowledge has not been 
investigated yet.  
 
2.  LINEARIZED PERTURBATION EQUATIONS 
 
 We consider an infinite homogeneous, viscous, self-gravitating gaseous plasma composed of gas and 
the suspended particles mixture with a uniform vertical magnetic field, finite electron inertia and the FLR. 
In the unperturbed state the fluid is assumed to be at rest. Pressure � and the density are constant is 
space and time. Due to the action of perturbing field, a small amplitude perturbation induces an oscillatory 
motion. If the amplitude of these perturbations grow in time then system is said to be unstable. The 
unstable mode well grow when energy transferred to the system exceeds the dissipation. The 
perturbations in density, velocity, pressure, magnetic field, temperature and the gravitational potential are 

given as �� , �� , �P , ��������, �� ��� ��  respectively.  
The perturbation state is given by 

� = �� + �� , � = �� + �� , ��� = ������� + �������� , � = �� + ��, � = �� + �� , !�� = ��, "�� = "�� 
Suffix ‘0’ is dropped from the equilibrium quantities.  
Thus the linearized perturbation equations with finite Larmor radius and finite electron inertia governing 
the motion of hydro-magnetic electrically conducting fluid plasma having suspended particles are given 
by. 
 

� ���
�#  =  −∇����� − ∇.���� � + �∇����� +  '()*"�� − ��+ + 1

4. /∇��� × ��������1 × ��� + �2∇��� − � 2
�� ��                                          *1+ 

3��
3# + �∇.���� � ����  = 0                                                                                                                                                                       *2+ 

 
�� =  6���                                                                                                                                                                                 *3+ 
 
∇��� + 4.8��   =   0                                                                                                                                                              *4+ 
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�  +  ��
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3��������
3#  = ∇��� × /�� × ���1 + χ∇���������  + 6�

4.�A>  3
3# ∇���������                                                                                                            *8+ 

 
Where,                             

��/�C , �D , �E1, "��/"C , "D , "E1, ), �, �, �, ���*0,0, �+, �, 8, 2, 6>, =, F, '�, G, �(, 4.�A>,
'(*6.�H+ ��� ��������/��C, ��D , ��E1, P, denote respectively, the gas velocity, the particle velocity, the number 

density of the particle, density of the gas, pressure of the gas, Gravitational potential, magnetic field, 
temperature, Gravitational constant, kinematic viscosity, specific heat at constant pressure, thermal 
conductivity, gas constant, permeability, mass per unit volume of the particles its density, plasma 
frequency of electron, the constant in the stokes drag formula, perturbation in magnetic field and stress 
tensor (Pressure Tensor). The component of pressure tensor P taking in to account of finite ion Larmor 
radius, for the magnetic field along Z axis (For the vertical magnetic field) according to Robert and Taylor 
(1962) are   
 

�CC  =  −�υ� �IJK
IC + IJL

ID � ,               �DD  =  �υ� �IJK
IC + IJL

ID �,           �EE  = 0,         �CD = �DC  =  �υ� �IJL
IC − IJK

ID �, 

�CE = �EC  =  −2�υ� �IJK
IE + IJM

ID �,                     �DE = �ED  =  2�υ� �IJM
IC + IJL

IE �, 
 

Where �υ� = N′OP′
�QR, and T being the density and temperature of ions and ST is ion-gyration frequency and 

K’ is Boltzmann’s constant.  
 
 3. DISPERSION RELATION      
 We assume that all the perturbed quantities vary as, 
UVWXY*�CV + �EZ + [#+\                                                                                                                                                   *9+ 
 
Where �C, �E are the wave numbers of perturbation along the x and z-axis so that �C�  +  �E�  =  �� and  [ 
the frequency of harmonic disturbances, Using (2)-(9) in (1), we obtain the following algebraic equations 
for the components. 
 

^��C  +  υ�*'C� + 2'E�+�D  +  Y�C�� ΩO� _ = 0                                                                                                                  *10+ 

 
/−υ�*'C� + 2'E�+1�C  + ^��D  − *2υ�'C'E+�E     = 0                                                                                                *11+  
 

*2υ�'C'E+�D  +  �̀�E  + Y�E�� ΩO� _ = 0                                                                                                                         *12+ 

 
The divergence of (1) with the aid of (2)-(9) gives 
 
Y�C��!����� �C + Y'Cυ�*'C� + 4'E�+�D − /a �̀ + ΩO� 1_ = 0                                                                                    *13+ 

    

Where,   _ = I�
�    is the condensation of the medium,  b =  	c

	d = 	

	 ′
  ratio of the specific heat, ! = e

f���  is 

the Alfven velocity, � =  P
N
�  has the dimension of frequency, : =  g

P
 is the relaxation time, τΩN  =  �

�   is 



the mass conservation, a = Y[ , is the growth rate of perturbation,  i = j
�	c is the thermometric 

conductivity, Ωg = χ'�  is electrical resistivity Ωk =  υ �'� − �
l��,    �� =  *aA + Ωg+ ,     A =  91 + 	
P


��
mc;,  C 

and C’ is the adiabatic and isothermal velocities of sound. 

�̀ = �a + Ωk + �a:
a: + 1� ,  �̀ = /−υ�*'C� + 2'E�+1, ǹ = *−^n+,    �̀ = *2υ�'C'E+,   �� = ���,                    

Ω�′� = /6 ′�'� − 4.8�1,      Ω�� = *6�'� − 4.8�+,         ΩO� = opΩq
rstΩq′

prst u,     il = bi��, 

^� = o �̀ + !�'����� u ,                         ^� = o �̀ + ��!�'E��� u ,                        ^n = Y'Cυ�*'C� + 4'E�+                               
The nontrivial solution of the determinant of the matrix obtained from (10)-(13) with *�C ,  �D , �E,)   having 

various coefficients, that should vanish is to give the following dispersion relation. 

^� ^� �̀/a �̀ +  ΩO� 1 + �̀�^�/a �̀ +  ΩO� 1 − ^� ǹ �̀
Y'E'� ΩO� + �̀ �̀�/a �̀ +  ΩO� 1 + �̀ �̀ oY�'C'E!�����  ΩO� u

+ Y'C'� �̀ �̀ ǹ ΩO� + * �̀^� + �̀�+ oY�'C�!�����  ΩO� u  = 0                                                        *14+ 

Equation (14) represents the general dispersion relation of the considered problem and it shows the 
combined influence of finite electron inertia, suspended particles, electrical resistivity, thermal 
conductivity, viscosity, magnetic field and finite Larmor radius on the self-gravitational instability of a 
homogeneous gaseous plasma. If we ignore the effect of electron inertia then (equ.14 ) is similar to those 
of Vyas and Chhajlani [4] neglecting the contribution of rotation in that case. If we ignore the suspended 
particles, finite Larmor radius (equ.14) reduces to the one similar to obtained by prajapati et al [13] 
excluding the effect of Hall currents, rotation and heat-loss function.  

Thus with these corrections we find the dispersion relation is modified due to the combined influences of 
suspended particles, finite electron inertia, viscosity, finite Larmor radius, thermal conductivity and 
electrical resistivity. The above dispersion relation is very lengthy and to investigate the effects of each 
parameter we now reduce the dispersion relation (14) for two modes of propagation. 

4.  ANALYSIS OF THE DISPERSION RELATION                                                                                                                           
Now we shall discuss the dispersion relation given by equation (14) for the following modes. Longitudinal 
propagation i.e.   �C = 0 ,   �E = � and Transverse propagation i.e.  �C = �,    �E = 0 

 4.1 Longitudinal Mode of Propagation *v ∥ x+ 

 For this case we assume that all the perturbations are longitudinal to the direction of the magnetic field                       
i.e.*yz = { , y| = y+. 
  Thus the dispersion relation (14) reduces in the simple from to give  

�̀}^�� + *−2υ�'�+�~/a �̀ + ΩO� 1 = 0                                                                                                                      *15+    
This dispersion relation is the product of three independent factors. These factors show the mode of 
propagations incorporating different parameters as discussed below. First factor equated to zero gives, 



:a� + aX1 + :*� + Ωk+\ + Ωk = 0                                                                                                                            *16+ 

The dispersion relation (16) shows the combined influence of viscosity and suspended particles on the 
propagation of the disturbances. This mode is independent of finite electron inertia, finite Larmor radius, 
magnetic field and self-gravitation. From the root of dispersion relation (16) the stability of the system may 
be considered. In (16) there is no term of suspended particles and we get damped mode due to viscosity 
and it is stable mode. The second factor equated to zero and after simplification, we get 

a�:�A� + ��a� + ��a� + ��a� + ��a� + �nan + ��a� + ��a + �� = 0                                                      *17+ 

The dispersion relation (17) is a non-gravitating Alfven mode influenced by suspended particles, finite 
electron inertia, finite Larmor radius, viscosity, thermal conductivity and electrical resistivity. The 
dispersions relation (17) is eight degree polynomial equations and its coefficient are very lengthy and the 
constant terms are given as, 

�� =  Ωk�Ωg� + '�!�Ωg� + 2Ωk'�!�Ωgn + 4υ��'�Ωg�  

The third factor equated to zero and after simplification, gives 

a�: + anX1 + :*� + Ωk + il+\ + a��*Ωk + il+ + :�Ω�� + il*� + Ωk+�� + a/Ω�� + ilΩk + :ΩkΩ�′�1 + ΩkΩ�′�  
= 0                                                                                                                                                         *18+ 

The dispersion relation (18) is a gravitating mode and shows the combined effect of suspended particles, 
viscosity and  thermal conductivity on the self-gravitational instability of the system for longitudinal 
propagation. This gravitating mode of propagation is independent of finite electron inertia, magnetic field, 
finite Larmor radius and electrical resistivity. The dispersion relations (18) is four degree polynomial 
equations. If a�, a�, an ��� a� are the root of the equations, then we have  

a�+ a�+an  + a� = − ��
� + � + Ωk + il�  and  a�. a�. an . a� = st

�  Ω�′�         

From the dispersion relation (18) we get the condition of instability for all Jeans length λ > λ�′ � � �
���

�

 � ′� or 

wave number  � < ��′. In the absence of thermal conductivity  il = 0 , the system change from isothermal 

to behavior to adiabatic behavior. 

 Now we analyze the dynamical stability of the system represented by (18) by applying the Routh-Hurwitz 
criterion. If  Ω��  > 0  and  Ω�′�  > 0, then all the coefficients of (18) positive and the necessary condition for 

stability satisfied. To obtained the sufficient condition, the principal diagonal minors of the Hurwitz matrix 
must be positive and we get 

 ∆�= X1 + :*� + Ωk + il+\ > 0 , 
∆�= �*Ωk + il+ + :X�il + *Ωk + il+*� + Ωk + il+\ + :�il �Ω�� − Ω� ′��

+ :�*Ωk + �+�Ω�� + il*� + Ωk + il+�� > 0 , 
∆n= �Ωk�Ω�� + il*Ωk + il+� + il �Ω�� − Ω� ′�� + : �ΩkilX�il + *Ωk + il+*� + Ωk + il+\ + il� �Ω�� − Ω� ′��� +
:� �il �Ω�� − Ω� ′�� + /Ω�� + :ilΩ�′�1 �*� + Ωk+Ω�� + il �Ω�� − Ω� ′��� + *� + Ωk+*� + Ωk + il + Ωkil+Ω�� +
ilX�il + *� + Ωk+*� + Ωk + il+\Ω�′� + Ωkil*Ωk + il+*� + Ωk + il+�� > 0, 



∆�= ilΩ�′� ∆n > 0 ,  
All the ∆′_ positive, thereby, satisfying the Hurwitz criterion, according to which equation (18) will not admit 
any positive real root of a*= Y[+ or a complex root whose real part is positive, hence, it gives a stable 
mode independent of the finite electron inertia, finite Larmor radius and the magnetic field. To analyze the 
role of viscosity, suspended particles and thermal conductivity on the growth rate of an unstable mode we 
choose the arbitrary values of these parameters in the present problem. We write the dispersion relation 
(18) is non-dimensional from in term of self-gravitation as,  

a∗�:∗ + a∗n �1 + :∗ �'(∗ + υ∗ �'∗� − �
P�∗� + =∗�� + a∗� �υ∗ �'∗� − �

P�∗� + =∗ + :∗ �*'∗� − 1+ + =∗ o'(∗ +
υ∗ �'∗� − �

P�∗�u�� + a∗ �*'∗� − 1+ + =∗υ∗ �'∗� − �
P�∗� + :∗υ∗ �'∗� − �

P�∗� *'∗� − 1+� + υ∗ �'∗� − �
P�∗� *'∗� − 1+ =

0                                                                                                                                                                                                  *19+   

Where the various non dimensional parameters are defined as, 

a∗ = p
f����  ,         '(∗ = P
N

�f����  ,           =∗ = j
�	cf����   ,        '∗ = P	

f����   ,        υ∗ = υf����
	
  ,        '�∗ = P�f����

	
  ,
                     :∗ = :f4.8�                                                                                                                                                    *20+    
In the present analysis, the expression for dispersion relation, and growth rate of instability are evaluated 
for the infinitely conducting medium. We have examined the effect of thermal conductivity, relaxation time 
and Stokes drag parameters on the growth rate of self gravitational instability. The results are shown in 
Fig. 1-4 which have depicted the non-dimensional growth rate versus non-dimensional wave number for 
various arbitrary values of the thermal conductivity *=∗+, relaxation time  * :∗+, viscosity (υ*) and Stokes 
drag parameters *'(∗+. 

 

Fig. 1. The growth rate of instability is plotted 
against the dimensionless wave number  y∗ 
with variation in the thermal-conductivity �∗= 
0, 2, 4, with taking the values of  v�∗,  υυυυ∗, v�∗  
and  �∗ as unity. 

 

Fig. 2. The growth rate of instability is plotted 
against the dimensionless wave number  y∗ 
with variation in the relaxation time  �∗= 0, 2, 
4, with taking the values of  v�∗,   υυυυ∗, v�∗  and  

�∗ as unity. 



 

Fig. 3. The growth rate of instability is plotted 
against the dimensionless wave number  y∗ 
with variation in the Stokes’ drag constant  ��∗ 
= 0, 2, 4, with taking the values of   �∗,  υυυυ∗, v�∗  
and  �∗ as unity.  

 

Fig. 4. The growth rate of instability is plotted 
against the dimensionless wave number  y∗ 
with variation in the viscosity υυυυ∗ = 0, 2, 4, 
with taking the values of   �∗,  v�∗ ,  ��∗ and  �∗ 
as unity.   

Fig. 1.  shows the growth rate of an unstable mode *W _Y#Y�U HU�¡ H  #  A a∗+  against the wave number 
*�∗+ with variation in the thermal conductivity *=∗+ parameter. We see that the growth rate of the instability 
increases with increases is *=∗+. The peak value of the growth rate is increased with increasing the 
thermal conductivity parameters. The present results are different to those of prajapati et al [13]. where 
the growth rate is unaffected by the presence of the thermal conductivity. 

Fig. 2.  shows the variation of growth rate  *a∗+ of instability against wave number *�∗+ for different value 
of relaxation time  * :∗+ parameter. It is observed that the relaxation time parameter has a reverse effect 
on the growth compared to that of the thermal conductivity parameters. In other words, due to an increase 
in the relaxation time parameter, the growth rate of the instability decreases. Thus the relaxation time 
parameter has a damping effect on the growth rate of the system. Also the peak value of the growth rate 
decreases by increasing * :∗+. 

Fig. 3. shows the growth rate of instability against wave number for different values of the Stokes drag 
*'(∗+ parameter. From the curved we see that Stokes drag parameter shows the similar effect as shown 
by relaxation time parameter * :∗+. Thus Stokes drag force has stable influence on the self gravitational 
instability of the system.  

Fig. 4. shows the growth rate of instability against wave number for different values of the viscosity *υ∗+ 
parameter. From the curved we find that viscosity parameter shows the similar effect as shown by 
relaxation time * :∗+ Stoke drag *'(∗+  parameter. Thus viscosity has stable influence on the self 
gravitational instability of the system.  

4.2 Transverse Mode of Propagation *v⊥ x+ 

 For this case we assume all the perturbations transverse to the direction of the magnetic field i.e. 
*vz = v,    v| = {+.  Thus the dispersion relation (14) reduces in the simple from to gives, 

�̀� �a �̀� + �̀ �ΩO� + pP
¢

£� � + *υ�'�+�a� = 0                                                                                                         *21+               



This dispersion relation is the product of two independent factors. These factors show the mode of 
propagations incorporating different parameters as discussed below. The first factor of this dispersion 
relation is stable mode as discussed in the previous case. The second factor of the dispersion relations 
(21) simplification written as  

a�:�A + a�:}:XΩg + A*2� + 2Ωk + il+\ + 2A~
+ a��:��A/Ω��  + Ωk� + ��1 + Ωg*2� + 2Ωk + il+ + 2�A*Ωk + il+ + AΩk*Ωg + il+�
+ 2:XΩg + A*� + 2Ωk + il+\ + A�
+ a��:��*� + Ωk+/2Ωgil + AΩkΩg + �Ωg + Ωgil + AΩ��1 + AΩk*Ωk + �Ωg+
+ Ail/Ω�′� + ��1 + ΩgΩ���
+ :�*� + Ωk+*2Ωg + 2AΩk + 2Ail+ + /2AΩ�� + '�!� + υ��'�A1 + 2Ωk*Ωg + Ail+
+ 2Ωgil� + Ωg + A*2il + 2Ωk+�
+ an�:�*� + Ωk+�AilΩ�′� + ΩgΩ�� + Ωgil*� + Ωk+ + ΩgilΩ�′��
+ :�il/2AΩ�′� + '�!� + υ��'�A1 + Ωg/2Ω�� + υ��'�1
+ *� + 2l+/AΩ�� + '�!� + 2ΩkΩg + AΩkil1 + ilA/Ω�� + �Ωg + ilΩk1 + �Ωgil�  + AΩ��
+ '�!� + '�υ�� + AΩk*Ωk + 2il+�
+ a��:��ΩgilΩ�′�*� + Ωk+�   
+ :�*� + Ωk+il/AΩ�′� + '�!� + Ωgil1 + *� + Ωk+/Ω�� + ilΩk1Ωg + ilΩ�′�*2Ωg + AΩk+
+ Ωg/Ω��Ωk + �il + υ��'�il1� + il/AΩ�′� + '�!� + υ��'�A1 + Ωk/AΩ�� + '�!� + AilΩk1
+ Ωg/Ω�� + Ωk� + 2��'�1 + 2ilΩgΩk�
+ a�:�ΩgilΩ�′�*� + 2Ωk+� + ilΩk/Ω�′� + '�!�1 + Ωgilυ��Ω��Ωk� + ilΩkΩgΩ�′�  
= 0                                                                                                                                                            *22+ 

This dispersion relation (22) is self-gravitating Alfven mode and represent the effect of the simultaneous 
inclusion of the suspended particles, finite Larmor radius, finite electron inertia, thermal conductivity, 
electrical resistivity, and viscosity on the self-gravitational instability of the system for the transverse 
propagation. The condition of instability and the expression for the critical Jeans length are obtained from 
the constant term of (22), which is identical to that for longitudinal propagation. We find that in the 
dispersion relation (22) some terms are multiplied by terms due to the suspended particles and finite 
electron inertia, but the constant term is independent of the suspended particles, finite Larmor radius and 
finite electron inertia. Hence the conditions of instability will not be affected by the presence of suspended 
particles, finite Larmor radius and finite electron inertia but growth rate of the system will be changed. In 
the absence of electrical resistivity the condition of instability is changed and the expression of the critical 
Jeans wave number is given by  

� < �� = 9 4.8�
6′� + !�;

��                                                                                                                                                         *23+ 

From (23) we find that a finite electrical resistivity removes of the magnetic field from the condition of 
Jeans instability field. Thus we see that the terms of the suspended particles, finite electron inertia and 
finite Larmor radius do not change the Jeans condition of instability for the system is electrical infinitely 
conducting as well as the system is finite conducting media.  

 



Now in order to see the effect of suspended particles, finite electron inertia, finite Larmor radius, viscosity 
and thermal conductivity on self-gravitational instability of the system we reduces the dispersion relation 
(22) for infinitely conducting mediums. Thus on putting Ωg = 0 in (22) we get. 

a�:�A + a�}:�XA*2� + 2Ωk + il+\ + 2A:~ + a��:��A/Ω��  + Ωk� + ��1 + 2�A*Ωk + il+ + AΩkil� +
2:XA*� + 2Ωk + il+\ + A� + an�:��*� + Ωk+Ω��A + AΩk� + Ail/Ω�′� + ��1� + :�*� + Ωk+*2AΩk + 2Ail+ +
/2AΩ�� + '�!� + υ��'�A1 + 2ΩkAil� + A*2il + 2Ωk+� + a��:�*� + Ωk+AilΩ�′� + :�il/2AΩ�′� + '�!� +
υ��'�A1 + *� + 2l+/AΩ�� + '�!� + AΩkil1 + ilA/Ω�� + ilΩk1�  + AΩ�� + '�!� + υ��'�A + AΩk*Ωk +
2il+� + a�  :�*� + Ωk+il/AΩ�′� + '�!�1 + ilΩ�′�AΩk� + il/AΩ�′� + '�!� + υ��'�A1 + Ωk/AΩ�� + '�!� +
AilΩk1� + ilΩk/Ω�′� + '�!�1  = 0                                                                                                                   *24+  

In order to study the effects of various physical parameters on the growth rate of gravitational instability, 
we have reduced the dispersion relation (24) in non-dimensional form in terms of self-gravitation as from 
defined as, 

 a∗�:∗�A∗ + a∗�:∗ �:∗ �A∗ �2'(∗ + 2υ∗ �'∗� − �
P�∗� + =∗�� + 2A∗� + a∗� ¤:∗� ¥A∗ ¦*'∗� − 1+ + υ∗� �'∗� − �

P�∗�
� +

'(∗�§ + 2'(∗A∗ �υ∗ �'∗� − �
P�∗� + =∗� + A∗υ∗ �'∗� − �

P�∗� =∗¨ + 2:∗A∗ �'(∗ + 2υ∗ �'∗� − �
P�∗� + =∗� + A∗© +

a∗n �:∗� �o'(∗ + υ∗ �'∗� − �
P�∗�u *'∗� − 1+A∗ + A∗υ∗� �'∗� − �

P�∗�
� + =∗A∗*'∗� − 1+ + '(∗� + :∗ �o'(∗ +

υ∗ �'∗� − �
P�∗�u �2A∗υ∗ �'∗� − �

P�∗� + 2A∗=∗� + 2A∗*'∗� − 1+ + '∗�!∗� + υ�∗�A∗'∗� + 2υ∗ �'∗� − �
P�∗� A∗=∗� +

A∗ o2=∗ + 2υ∗ �'∗� − �
P�∗�u� + a∗� �:∗�=∗A∗*'∗� − 1+ o'(∗ + υ∗ �'∗� − �

P�∗�u + :∗ �=∗*2A∗*'∗� − 1+ + '∗�!∗� +
υ�∗�A∗'∗�+ + *'(∗ + υ∗+ �A∗*'∗� − 1+ + '∗�!∗� + A∗υ∗ �'∗� − �

P�∗� =∗� + =∗A∗*'∗� − 1+ + =∗υ∗ �'∗� − �
P�∗��� +

a∗ �:∗ �o'(∗ + υ∗ �'∗� − �
P�∗�u =∗*A∗*'∗� − 1+ + '∗�!∗�+ + =∗A∗*'∗� − 1+υ∗ �'∗� − �

P�∗�� + =∗*2A∗*'∗� − 1+ +
'∗�!∗� + υ�∗�A∗'∗�+ + υ∗ �'∗� − �

P�∗� oA∗*'∗� − 1+ + '∗�!∗� + A∗υ∗=∗ �'∗� − �
P�∗�u� + υ∗=∗ �'∗� −

�
P�∗� /*'∗� − 1+ + '∗�!∗�1 = 0                                                                                                                                     *25+      

 Where the various non dimensional parameters are defined as, 

a∗ = p
f����  ,        '(∗ = P
N

�f����  ,      =∗ = j
�	cf����   ,     '∗ = P	

f����   ,     υ∗ = kf����
	
  ,         '�∗ = P�f����

	
  ,
      :∗ = :f4.8� ,                   !∗ = ¢f����

	 ,                υ�∗ = kªf����
	
                                                                        *26+    

In order to see the effects of various physical parameters [relaxation time  τ∗,  stokes drag '(∗, finite 
electron inertia  A∗ and finite Larmor radius υ�∗  ] on the growth rate instability, we have performed 
numerical conclusions  of the dispersion relation  to locate the positive real roots of the non-dimensional 
growth a∗ against the non-dimensional wave number �∗ for various values of relaxation time :∗, Stokes 
drag  '(∗, finite electron inertia A∗ and finite Larmor radius υ�∗ . These calculations are presented in figures 
(5 to 8) to show the variations of the growth rate (a∗) with wave number (�∗), of the considered system for 
different values of relaxation time ( τ∗ ), Stokes drags ( '(∗), finite electron inertia (A∗) and finite Larmor 
radius (υ�∗ ) respectively. 



 

 

Fig. 5. The growth rate of instability is plotted 
against the dimensionless wave number  y∗ 
with variation in the relaxation time  �∗= 0, 2, 
4, with taking the values of   v�∗,  «∗, υυυυ{∗ ,   ¬∗ , ­∗ 

and �∗ as unity . 

 

 

 

Fig. 6. The growth rate of instability is plotted 
against the dimensionless wave number  y∗ 

with variation in the Stokes’ drag constant  ��∗ 
= 0, 2, 4, with taking the values of   �∗,  ®∗, υυυυ{∗  , ­∗, υυυυ∗ and  �∗ as unity. 

 

 

Fig. 7. The growth rate of instability is plotted 
against the dimensionless wave number  y∗ 

with variation in the Electron inertia  ­∗ = 0, 2, 
4, with taking the values of  v�∗, υυυυ∗ �∗,  ®∗, υυυυ{∗  

and  �∗ as unity. 

 

Fig. 8. The growth rate of instability is plotted 
against the dimensionless wave number  y∗ 

with variation in the finite Larmor radius  υυυυ{∗  = 
0, 2, 4, with taking the values of  v�∗,   υυυυ∗,�∗,  ®∗, ­∗ and  �∗ as unity.



Fig.5.  shows the variation of the real part of the growth rate (a∗) with the wave number (�∗) for various 
values of the relaxation time parameter  τ∗ = 0, 2, 4 respectively. It is clear from this figure that for any 
wave number value the growth rate of instability decreases as increasing the relaxation time ( :∗ ). Hence 
the relaxation time have a stabilizing influence on the system. 

Fig.6.  shows the variation of the positive real part of growth rate (a∗) with wave number (�∗) for various 
values of Stokes drags parameter  '(∗ = 0, 2, 4 respectively, if   τ∗ = 1  , A∗ =  1 , υ�∗ = 1, υ∗ = 1,  λ∗ =
1,  V∗ = 1. It is clear from this figure that, for any wave number value, the real positive root of growth rate 
a∗ decreasing by increasing the Stokes drag parameters by indicates that the Stokes drag '(∗ has a 
stabilizing effect. 

Fig.7.  shows the variation of the positive real part of growth rate (a∗) with wave number (�∗) for various 
values of finite electron inertia parameter A∗ = 0, 2, 4 respectively, if   τ∗ = 1  ,  '(∗ = 1 , υ∗ = 1, υ�∗ =1,  λ∗ =
1,  V∗ = 1. It is clear from this figure that, the any wave number value, the real positive root of growth rate 
of instability a∗ increases  by increasing the finite electron inertia (A∗) parameter which  indicates that the 
finite electron inertia has a destabilizing effect. 

Fig.8. shows the variation of the positive real root of growth rate (a∗) of unstable mode with the wave 
number (�∗) for various values of finite Larmor radius  υ�∗  = 0, 2, 4 respectively, if   τ∗ = 1,υ∗ = 1,  '(∗ = 1  , 
A∗=1,  λ∗ = 1,  V∗ = 1. It is clear from this figure that, the any wave number value, the real positive root a∗ 
of instability slightly decreases by increasing the finite Larmor radius parameter, which indicates that the 
finite Larmor radius parameter has stabilizing effect.  

5. CONCLUSION 

 We have studied the gravitational instability of a self gravitating media under the combined influence of 
FLR correction, finite electron inertia, suspended particles, viscosity, thermal conductivity and electrical 
resistivity in the presence of transverse magnetic field. The general dispersion relation is obtained using 
normal mode analysis. The analytical expression of the general dispersion relation is obtained with the 
help of linearized perturbation equations. The general dispersion relation is modified due to the presence 
of these parameters. The Jeans criterion of instability remains valid but the critical Jeans wave number is 
modified. The viscosity parameter has a stabilizing effect of the system in the longitudinal modes of 
propagation. The Thermal conductivity has destabilizing influence on the longitudinal wave propagation. 
The Relaxation time and Stoke drag parameter has a stabilize the system in both the longitudinal and 
transverse mode of propagation. From the curves it is found that the thermal conductivity and viscosity 
show mutually reverse effects on the growth rate of the instability. In other words, the thermal conductivity 
has a destabilizing influence, while the viscosity has a stabilizing role on the growth rate of the system. 
The FLR corrections has a stabilizing influence on the transverse wave propagations. In the case of 
longitudinal propagation, the gravitating mode is influenced by viscosity, thermal conductivity, 
permeability and suspended particles but not affected by finite electron inertia, magnetic field and FLR 
correction. The parameters of magnetic field, finite electron inertia, FLR (finite Larmor radius) corrections 
and suspended particles do not change the Jeans condition in this case .The dynamical stability of the 
system in this case is analyzed by applying the Routh-Hurwitz criterion. In the transverse mode of 
propagation, the self gravitating Alfven mode is influenced by finite electron inertia, FLR, suspended 
particles, viscosity, permeability and thermal conductivity of the medium. The Jeans condition of instability 
is modified by finite electron inertia, thermal conductivity and magnetic field but not affected by viscosity 



and suspended particles. In this case curves depict the effects relaxation time (:∗), Stokes drag ('(∗), 
electron inertia *A∗+ and FLR corrections (υ�∗ ) parameters. From the curve it is found that thermal 
conductivity and FLR correction time shows mutually reverse effects on the growth rate of instability. In 
other words, the thermal conductivity has a destabilizing influence, while the FLR correction has a 
stabilizing role on the growth rate of the instability. The finite electron inertia has a destabilizing influence 
on the growth rate of instability. Also, it decreasing the peak value of the growth rate means that the 
system become more and more unstable for higher values of the finite electron inertia parameter. Also 
the system becomes more unstable in the presence of finite electron inertia effects and it is more 
probable to have larger clouds comparing to ideal system. Although the vital role of FLR corrections in 
very dense interstellar cloud is a key process in standard theory of star formation, our results show that 
such non-ideal mechanisms may operate thermally unstable systems such as warm interstellar medium 
and astrophysical problem.  
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