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The electrodynamic vacuum field theory approach
and the electron inertia problem revisiting

It is a review of some new electrodynamics models of interacting charged point
particles and related with them fundamental physical aspects, motivated by the classical
AM.Amper's magnetic and H.Lorentz force laws, as well as O, Jefimenko electromagnetic field
expressions, Based on the suitably devised vacuum field theory approach the Lagrangian and
Hamiltanian reformulations of some alternative classical electrodynamics models are analyzed
in detaiv. A problem closely related to the radiation reaction force is analyzed aiming to explain
the Wheeler and Feynman reaction radiation mechanism, well known as the absorption
radiation theory, and strongly dependent on the Mach type interaction of a charged point
particle in an ambient vacuum electromagnetic medium. There are discussed some
relationships between this problem and the one derived within the context of the vacuum field
theory approach. The R.Feynman's "heretical” approach to deriving the Lorentz force based
Il electror tic equat is also revisited, its complete legacy Is argued both by
means of the geometric considerations and its deep relation with the devised vacuum field
theory approach. Based on completely standard reasonings, we reanalyze the Feynman's
derivation from the classical Lagrangian and Hamiltonian points of view and construct its
nontrivial relativistic generalization compatible with the vacuum field theory approach. The
electron inertia problem is reanalyzed within the Lagrangian-Hamiltonian formalisms and the
related Feynman proper time paradigm, The validity of the Abraham-Lorentz electromagnetic
electron mass origin hypothesis within the shell charged model Is argued, The electron stability
in the framework of the electromagnetic tension-energy compensation principle is analyzed.

Cet article présente un réexamen de certains n déles électrody {[+1
d'interaction entre particules chargées ponctuelles, et en lien avec des aspects physiques
fondamentales, motivés par les lols magnétiques classiques de A.M. Ampére et par les forces
classiques de H.Lorentz, ainsi que par les formulations du champ électromagnétique décrites
par . Jefimenko, Sur |a base d'une formulation adéquate de la théorie des champs en vide
quantigue, les reformulations Lagrangiennes et Hamiltoniennes de certains modéles alternatifs
de I'électrod ique classique sont analysés en profondeur, Un probléme étroitement lié & la
force de réaction de rayonnement est analysé pour objectif d'expliquer le mécanisme de
Wheeler et Feynman de réaction au rayonnement, bien connu comme la théorie
d'amorti de radiation, et dépend fortement de I'interaction de type Mach de particules
ponctuelles chargées dans un milieu électromagnétique en vide ambiant, Certains rapports
entre ce probléme et celui obtenu dans le cadre de I'approche de la théorie des champs en vide
quantigue sont examinds, L'approche "hérétique” de R.Feynman qui consiste & dériver la force
de Lorentz depuis équations électrc Etiques de M Il est égal t revisitée, et son
approche est justifiée 3 la fois par des considérations géométriques et sa relation profonde
avec |'apprache de la théorie des champs a vide quantique, Sur la base de raisonnements
complétement standards, nous réanalysons la dérivation de Feynman des points de wue
Lag! iens et Hamiltoniens classi et construisons sa généralisation relativiste non triviale

compatible avec I'approche de la théorie des champs en vide quantique. Le probleme de
1
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I'inertie des électrons est réanalysé dans les fi de Lagrange et Hamilton et dans le
paradigme de Feynman en temps propre correspondant. La validité de 'hypothése d'Abraham-
Lorentz sur ['origine électromagnétique de la masse de I'électron dans le modéle de couche
électronique est soutenu, La stabilité de |'électron dans le cadre du principe de compensation
tension-énergie électromagnétique est analysée,
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1. Classical relativistic  electrodynamics models  revisiting:
Lagrangian and Hamiltonian analysis

1.1. Introductory setting

The Maxwell's equations serve as foundational [1] [2] [3] [4] [5] to the whole modern
classical and quantum electromagnetic theory and electrodynamics. They are the cornerstone
of a myriad of technologies and are basic to the understanding of innumerable effects. Yet
there are a few effects or physical phenomena that cannot be explained [6] [7] (8] [9] [10] [11]
[12] [13] within the conventional Maxwell theory. It is important to note here that W (8] [14]
[15] [16] [IJl_m that the Maxwell equations™ag themselves do not determine
causal related" Electric and magnetic fields, which prove, in reality, to be
generated independently by an external charge and current distributions: "There is a
widespread interpretation of Maxwell's equations Indicating that spatially varying electric and
magnetic fields can cause each other to change in time, thus giving rise to a propagating
electromagnetic wave... H Jefi ko's eq) show an alternative point of view [3].
lefimenko says: ".neither Maxwell's equations nor their solutions indicate an existence of
causal links between electric and magnetic fields. Therefore, we must conclude that an
electromagnetic field is a dual entity always having an electric and a magnetic component
simultaneously created by their ¢ sources: tim iable electric charges and currents,”
... Essential features of these equations are easily abserved which are that the right hand sides
involve "retarded” time which reflects the "causality" of the expressions. In other words, the
left side of each equation is actually "caused" by the right side, unlike the normal differential
expressions for Maxwell's equations, where both sides take place simultaneously. In the typical
expressions for Maxwell's equations there is no doubt that both sides are equal to each other,
but as Jefimenko notes [3], “... since each of these equations connects quantities simultaneous
in time, none of these equations can represent a causal relation." The second feature is that the
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expression for (electric field) E does not depend upon (magnetic field) # and vice versa.
Hence, it is impossible for £ and B fields to be "creating” each other. Charge density and
current density are creating them both." As the lefimenko's equations for the electric field &
and the magnetic field B directly follow from the classical retarded Lienard-Wiechert
potentials, generated by physically real external charge and current distributions, one naturally
infers that these potentials also present suitably interpreted physical field entities mutually
related to their sources. This way of thinking proved to be, from the physical point of view, very
fruitful, having brought about a new vacuum field theory approach [18] [19] to alternative
explaining the nature of the fundamental Maxwell equations and related electrodynamic
phenamena.

We start from detailed revisiting the classical A.M. Ampere's law in electrody ics and
shaw that main inferences suggested by physicists of the former centuries can be strongly
extended for them to agree more exactly with many modern both theoretical achievements
and experimental results concerning the fundamental relationship of electrodynamic
igjenomena with the physical structure of vacuum as their principal carrier.

s ke important theoretical physical principles, characterizing the related electrodynamic
vacuum field structure, we-discuss subject to different char, e&) int particle dynamics, based
on the fundamental least action principle. In Dal’ﬁﬂ:“gf_‘vl & ‘main classical relativistic
relationships, characterizing the charge point particle dynamics, we-ebtein by means of the
least action principle within the Feynman's approach to the Maxwell electromagnetic equations
and the related Lorentz type force derivation. Moreover, for each of the least action principles
constructed in the work, we describe the corresponding Hamiltonian pictures and present the
related energy conservation laws, The elementary point charged particle, like electron, mass
prablem was inspiring many physicists [20] from the past as 1. J. Thompson, G.G. Stakes, H.A.
Lorentz, E. Mach, M. Abraham, P.A. M. Dirac, G.A. Schott and others. Nonetheless, their studies
have not given rise to a clear explanation of this ph that stimulated new researchers
to tackle it from different approaches based on new ideas stemming both from the classical
ll-Lorentz electr gnetic theory, as in [1] [12] [21] [22] [23] [24] [25] [26] [27] [28] [29]
[30] [31] [32] [23] [34] [35] [36] [37] [38] [39], and modern quantum field theories of Yang-Mills
and Higgs type, as in [40] [41] [42] [43] and others, whose recent and extensive review is done
in [44].

We will mostly concentrate on det}? nalysis and consequences of the Feynman proper
time paradigm [1] [22] [45] [46] subject to deriving the electromagnetic Maxwell equations
and the related Lorentz like force expression considered from the vacuum field theory
approach, developed in works [47] [48] [49] [50] [51], and further, on its applications to the
electromagnetic mass origin problem. Our treatment of this and related problems, based on
the least action principle within the Feynman proper time paradigm [1], has allowed to
construct the respectively modified Lorentz type equation for 2 moving in space and radiating
energy charged point particle. Our analysis also elucidates, in particular, the computations of
the self-interacting electron mass term in [29), where there was propased a not proper solution
to the well known classical Abraham-Lorentz [52] [53] [54] [55] and Dirac [56] electron
electromagnetic "4/3-electron mass" problem. As a result of our scrutinized studying the
classical electramagnetic mass problem we have stated that it can be satisfactory solved within
the classical H. Lorentz and M. Abraham reasonings augmented with the additional electron
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stability condition, which was not taken before into account yet appeared to be very important
tor balancing the related electromagnetic field and mechanical electron momenta. The latter,
following recent enough works [31] [35], devoted to analyzing the electron charged shell
model, can be realized within thepe suggested pressure-energy comp ion principle, suftably
applied to the ambient electromagnetic energy fluctuations and the pwi electrostatic Coulomb
electron energy.

In our investigation, we were in part inspired by works [35] [39] [43] [44] [57] [58] [53]
to solving the classical problem of reconciling gravitational and electrodynamic charges within
the Mach-Einstein ether paradigm, First, we will revisit the classical Mach-Einstein type
relativistic electrodynamics of a moving charged point particle, and second, we study the
resulting electrodynamic theories associated with our vacuum potential field dynamical
equations (31) and (32), making use of the fundamental Lagrangian and Hamiltonian formalisms
which were specially devised In [S0] [51).

1.2. Classical Maxwell equations and their electromagnetic potentials form
revisiting

As the classical Lorentz force expression with respect to an arbitrary inertial reference
frame is related with many theoretical and experimental controversies, such as the relativistic
potential energy impact into the charged point particle mass, the Aharonov-Bohm effect [60]
and the Abraham-Lorentz-Dirac radiation force [2] [5] [6] expression, the analysis of its
structure subject to the assumed vacuum field medium structure s a very interesting and
important problem, which was discussed by many physicists including E. Fermi, G. Schott, R.
Feynman, F. Dyson [1] [45] [46] [61] [62] [63] and many others. To describe the essence of the
electradynamic problems related with the description of a charged point particle dynamics
under external electromagnetic field, let us begin with analyzing the classical Lorentz force
expression

dpldt=F, =EE+Euxh, (1)
where £e R is a particle electric charge, e T(RY) is its velocity [47] [64] vector, expressed
here in the light speed ¢ units,

E=-dAld-Veg {2)
is the carresponding external electric field and
Bi=VxA (3)

is the corresponding external magnetic field, acting on the charged particle, expressed in terms
of suitable vector A:M "' —E® and scalar @:M® — R potentials. Here, as before, the sign
"§* is the standard gradient operator with respect to the spatial variable re E*, "x" is the
usual vector product in three-dimensional Euclidean vector space E’:= (R, <.+ >), which is
naturally endowed with the classical scalar product <-,->. These potentials are defined on the
Minkowski space M*; RxE’, which madels a chosen laboratory reference frame K. Now, it
is a well known fact [1] [5] [27) [65] that the force expression (1) does not take into account the

dual influence of the charged particle on the electromagnetic field and should be considered
valid only if the particle charge & — 0. This also means th}t{tpression (1) cannot be used for
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studying the interaction between two different moving charged point particles, as was
pedagogically demonstrated in classical manuals [1] [5]. As the classical Lorentz force
expression (1) is a natural consequence of the interaction of a charged paint particle with an
ambient electromagnetic field, its corresponding derivation based on the general principles of
cly Ics, was deeply lyzed by R. Fey and F. Dyson [1] [45] [46].

Taking this into account, it is natural tor lyze this problem from-the-classical, taking
only into account the Maxwell-Faraday wave theory aspect, specifying the corresponding
vacuum field di Other guestionable inferences from the classical electrodynamics
theary, which strongly motivated the analysis in this work, are related both with an alternative
interpretation of the well-known Lorenz condition, imposed on the four-vector of
electromagnetic observable potentials (@,A):M* —T'(M") and the classical Lagrangian
formulation [S] of charged particle dynamics u aternal electromagnetic field, The
L i hdattas is strongly dependent on 84 important Einstein notion of the proper
refermftrame K, and the related least action principle, so before explaining it in more detail,
we firstto analyze the classical Maxwell electromagnetic theory from a strictly dynamical point
of view,

Let us consider, with respect to a laboratory reference frame K, the additional Lorenz

candition ’
h dgld+ <V, A>=0, (4}
a priori assumo&lhe Lorentz invariant wave scalar field equation
dpla’ -Vip=p (5}
and the charge continuity equation
dpldt+<V,l>=0, (6}

where g:M* =R and J:M"* = E are, respectively, the charge and current densities of the
ambient matter. Then one can derive [18] [51] that the Lorentz invariant wave equation
DAl -ViA=] (7)
and the classical elect ic Maxwell field equations [1] [2] [5] [65] [66]
VxE+dBldt =0,<V,E>=p,

(8)
VxB-dEld =J, <V ,B>=0,
hald for all (r,r)e M* with respect to the chosen laboratory reference frame K. As\was
shown by 0.D. lefimenko [3] [4], the corresponding solutions to (8) for the electric
E:M* = E' and magnetic B:M" — E” fields can be represented (in the light speed c=1

units) by means of the following causally independent to each other(field expressions
7 g ey S
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[ pit.ry L dpl.r) :
) e = oL S T o\ {7 L ] [, S
e Ax-[l’[[lr—r' et &
L A, r) |
P % Jn‘ {7 9

= = Jit,.r) 1 ad.r) s
Barie "‘[]r—r'1"+li'—i"1z p }x(r i
where (1,r)e My and 1, =7—|r— | is the retarded time. The result (9) was based on direct
derlvation from the classical Lienard-Wiechert potentials [2] [3] solving the field equations {5)
and (7), causally depending on the corresponding charge and current distributions. Based
strongly on this fact iw’a[ [& there was argued from-ghysical point of view that related with-
equations (5) and (7)velectric and magnetic pe ials really consti some sultably
interpreted physical entities, in contrast to the usual statements [1] [2] [5] about their pu y
mathematical origin. \
It is worth to notice here that, inversely, Maxwell's equations {8) do not directly reduce,
via definitions {2) and (3), to the wave field equations (5) and (7) without the Lorenz condition
(4). This fact and reasonings presented above are very important: ﬂ?ﬁ'g suwg%gst that, when it
comes to choose main governing equations, it proves to be natural.repl theé M iI's
equations (8) with the electric potential field equation (5), the Lorenz condition (4) and the
charge continuity equation (6). To make the equivalence statement, claimed above, more
transparent we formulate it as the following proposition.

Proposition 1. The Lorentz invariant wove equation {5) together with the Lorenz
condition (4) for the observable potentials (. A):M* T (M *Y and the charge continuity

relationship (6) are c letely equivalent to the M Il field equations (8).
Proof. Substituting (4), into (5), one easily obtains
Pplor =—< V.00t >=<V, Vo> +p, {10)
which implies the gradient expression
<V,—ddid-Vg>=p (11)
Taking into account the electric field definition (2), expression {11) reduces to
<V, E>=p, {12)

which is the second of the first pair of Maxwell's equations (8).
Now upan applying V' to definition {2), we find, owing to definition (3), that
VxE4+dB/or=0, (13)
which is the first pair of the Maxwell equations (B). Having differentiated with respect to the
temporal variable re I-‘!;"t{-e'equatlnn (5) and taken into account the charge continuity equation
(6), one finds that 0
<V, Al -VA-J >=0, (14)

6
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S
The Iatter is equivalent to the wave equation (7} if "tq ohsewe that the current vector
J:M* = E' is defined by means of the charge continuity equation (6] up to a vectar function
Vx§:M' 3 E', Mow applying operation Vx to the definition (3), owing to the wave
equation (7) one obtains
VxB =Vx(VxA)=V<V,A>-VA=

=-V(@p!d)-d'AlH +@ Al -V A) = (15)

%(—Vw—aA!arHJ =dEldi+ 1,
leading directly to
VxB=adElh+1,
which is the first of the second pair of the Maxwell equations (8). The final "no magnetic
charge” equation
<V, B2=<V,VxA>=0,
in (8] follows directly from the elementary identity < V,Vx >=0, thereby completing the proof.

This proposition allows us to consider the observable potential functions
(@.A): M* T (M") as fundamental ingredients of the ambient vacuum field medium, by
means of which we can try to describe the refated physical behavior of charged point particles
imbedded in space-time M. As fvace was Sl written by 1K, Maxwell [67]: "The conception of
such a quantity, on the changes of which, and not on its absolute magnitude, the induction
currents depends, occurred to Faraday at an early stage of his researches. He observed that the
secondary circuit, when at rest in an electl gnetic field which ins of constant intensity,
does not show any electrical effect, whereas, if the same state of the field had been suddenly
produced, there would have been a current. Again, if the primary circuit is removed from the
field, or the magnetic forces abolished, there is a current of the opposite kind. He therefore
recognized In the secandary circuit, when in the electromagnetic field, a #uaculiar electrical
condition of matter' to which he gave the name of Electrotonic State." The following
ohservation provides a strong support of this reasonings within this vacuum field theory
approach:

Ohservation. The Larenz condition (4) actually means that the scalar potential field
@M * 3R continuity relationship, whose origin lles in some new field canservation law,
characterizes the deep intrinsic structure of the vacuum field medium,

To make this observation more transparent and precise, let us recall the definition [1]
[5] {65] [66] of the electric current J :M* — E” in the dynamical form

g = pu, (16)
where the vector we T(R?) is the corresponding charge velocity, Thus, the following continuity
relationship

Aplatt <V, pu>=0 {17)
holds, which can easily be rewritten Error-Reference source not found. as the integral

4
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canservation law
;—;‘L Pl r=0 (18)

for the charge inside of any bounded domain Q, < E', moving in the space-time M* with

respect to the natural evolution equation for the moving charge system
dridt=u. (19)

Following the above r ing, we obtain the following result.

Proposition 2. The Lorenz condition (4) Is equivalent to the integral canservation law
d . T
= .{n’w,r)d r=0, {20

where £, = E* is any hounded domain, moving with respect to the charged point porticle &
evolution equation
dridi =ult,r), (21)

which represents the velocity vector of the related local potential field changes propagating in
the Minkowski space-time M*. Moreover, for a particle with the distributed charge density
21 M* = R, the following Umov type local energy conservation relationship

d ALt )

}Ejn. (=lu(t, ) )= i 5
holds for any 1€ .

Proof. Consider first the corresponding solutions to potential field equations (5), taking into
account condition (16). Owing to the standard results from [1] 5], one finds that

A=qu, (23)
which gives rise to the following form of the Lorenz condition (4):
A/ ot < V. >=0, (24)

This obviously can be rewritten [68] as the integral conservation law (23], so the expression (20}
Is stated,

To state the local energy conservation relationship (22) it is necessary to combine the
conditions {17), (24) and find that

@)/ i+ <u,Vipg) = +2pp <V, u>=10. (25)
Taking into account that the Infinitesimal volume transformation d'r = (r,r)d"r,, where the
lacobian  y(r,#):=ldr(ri) | of the corresponding fi ion r:Q, = £, induced

by the Cauchy problem for the differential relationship (21) for any te R, satisfies the
evolution equation
dyldr=<Vu>y2, ; (26)

easily followirg from (21), and applyinglto the equality (Zsh:he operator L‘u(..,) 2’ one

obtains that
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d ags, 4 i
0= — i, =— Jd'r =
L, PP jnmwz! G
{27)

d Al

=— =—E(c:0Q,).
o, e WPri=RE0)

Here we denoted the conserved charge &:= Iu'p(r. rid*r and the local energy conservation

quantity E(€): =In (pey )d‘r——-E{r,‘;Q,b),rs R. The latter quantity can be simplified,
owing to the Infinit;slmal Lorentz invariance four-volume measure relationship
dr(t, ) mdt =d’r, adty, where variables (1,1)e R, xQ,cM* are, within the present
context, taken with respect to the moving reference frame K, related to the infinitesimal
charge quantity d&(1,r):= pit,r)d’r, and variables {1,.5)e R, x4, cM* are taken with
respect to the laboratory reference frame K\, related to the infinitesimal charge quantity
d&(ty 1) = plig, i )d’n, satisfying the charge conservation invariance
leg{r‘ "= j%dr,‘(.r,,,q,)‘ The joned Above i imal Lorentz invariance relationships

make it possible to calculate the lacal energy canservation quantity E(Z.€,) as

3
E(§Q) = fo_(mki’m[n'(pw:—,f y'r=

d*r it d'ry adty

= )y = d’r = 28,
L_(Pﬂ 'y adt ne Iﬂ,(pw dry ndr i feek
diy, pyd’r
= Loy =
L‘(PW P r In. =lnf )
where we took into account that dr = dr,(1—=1u 1), Thus, owing to (27) and (28) the local

energy conservation relationship (22) is satisfied, proving the proposition.

The constructed aheve local energy conservation quantity (28) can be rewritten as
; - déit,riplt,r) ; & g .
B = [, =y = o w00 = Jo G =EER), @)
where dE(1,, 1) = d&(t, 1,001, 5,) is the distributed [A-Vaeuum electromagnetic field energy
density, related with the electric charge d£(1,,5,), located initially &\%im {tn)eM*,
The above proposition suggests a physically motivated interp! ion of electr
phenomena in terms of what should naturally be called the vacuum potential field, which
determines the observable interactions between charged point particles, More precisely, we
can a priorf endow the ambient vacuum medium with a scalar potential energy field density

9
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function W:=£&p:M* — R, where £ R, is the value of an elementary charge quantity, amd
satisfying the governing vacuum field equations
FW AT -VW = p£, AW [dr+<V,A>=0,
(30)
FAIN -V'A=Eov, A=Wy,

taking into account the external charged sources, which possess a virtual capability for
disturbing the vacuum field medium, Moreover, this vacuum potential field function
W:M' R allows the natural potential energy interpretation, whose origin should be
assigned not only to the charged interacting medium, but also to any other medium possessing
interaction capabilities, including for instance, material particles, interacting through “the

gramt'.hTh.-: |atter leads naturally to the next important step, consisting in deriving the equation

governing the corresponding potential field W:M* =R, assigned to a charged point particle

moving In the vacuum field medium with velocity we T(R') and located at point

Ht):=R(f)e E' at time 1€ R. As can be readily shown [18] [19] [50] [68], the corresponding

evolution equation governing the related potential field function W:M"* — R, assigned to a
Umoving in the space E’) charged particle £7under the stationary distributed field sources, has
the form

T — _
2 )= -VW, 31
g ",c.} (31)
where W= W(r,1)| g, #(r):=dR(1)/dt atpoint particle location (1, R(r))& M*.

Similarly, if there are two interacting charged point particles, located at points
r(t)=R(t) and r,(1)=R, (e B’ at time reR and moving, respectively, with velocities

wi=dR()/dr and u, = dR,(1)/di, the carresponding potential field function WiM*' SR,
considered with respect to the reference frame K:. specified by Euclidean coordinates
(f,r=r,) E* and moving with the velocity u, e T(R") subject to the laboratory reference
frame K,, should satisfy [18] [19] with respect to the reference frame K' the dynamical
equality
e i -
—[-W (' —u,)|=-VW, 32
o [=W (u —u,)] (32)
where, by definition, we have denated the velocity vectors i :=dr/ dr ug=dr, di € TRY.
The latter comes with respect to the laboratory reference frame K, about the dynamical
equality
i:'-;—ﬁ (=) =-YW(i-lu, F). (33)
[

The dynamical potential field equations (31) and (32) appear to have important
properties and can be used as means for rep ing classical electrod phenomena.

10
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Consequently, we shall proceed to investigate their physical properties in more detail and
compare them with classical results for Lorentz type forces arising in the electrodynamics of
moving charged point particles in an external electromagnetic field.

1.2.1. Classical relativistic electrodynamics revisited

The classical relativistic electrodynamics of a freely moving charged point particle in the
Minkowski space-time M*: RxE" is based on the Lagrangian approach [1] (5] [65] [66] [70]
with Lagrangian function

L, i=—my(1=lu )", (34)
where m,e R, s the so-called particle rest mass parameter with respect to the so called
proper reference frame K,, parameterized by means of the Euclidean space-time parameters
(r.rie E', and we T(R") is its spatial velocity with respect to a laboratory reference frame
K, parameterized by means of the Minkowski space-time p. (r.r)e M*, expressed
here and in the sequel in light speed units (with light speed ¢ =1). The least action principle in
the form

85 =0,8 = -m, [ (1-1u ) de (35)
L]

for any fixed temporal interval [r,,1,] =R gives rise to the well-known relativistic relationships
for the mass of the particle

m:iuq(!—lul]}_”z. (36)

the momentum of the particle
pr=mi=mg(1=lu 'y (37)

and the energy of the particle
]-;J:m:motl—lulz}'m. (38}

It follows from [5] [65], that the origin of the Lagrangian (34) can be extracted from the
action

1 5 T,
5 ::—m,,j;’( 1= )2t = —mn]"“n‘r. (39)
on the suitable temporal interval [7, 7,] © R, where, by definition,
dri=di(l=1u)? (40)
and re R is the so-called, proper temporal parameter assigned to a freely moving particle with
respect to the proper reference frame K. The action (39) Is rather questionable from the

dynamical point of view, since it is physically defined with respect to the proper reference
frame K_, giving rise to the constant action § =—wm,(r,—7), as the limits of integrations

1, <1, € R were taken to be fixed from the very beginning. Moreover, considering this particle
to have charge £ R and be moving in the Minkowski space-time M* under action of an
electromagnetic field (@, A)e T'(M"), the corresponding classical (relativistic) action

11
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functional is chosen (see [1] [5] [47] [51] [65] [66]) as follows:
5= f’[—m“dn E< A i >dr-Ep(i-1u Py de), (41)

with respect to the proper reference frame, parameterized by the Euclidean space-time
variables (r,r)e E', where we have denoted f:=dr/dT in contrast to the definition
1= dr [ dt, The action (41) can be rewritten with respect to the laboratory reference frame K,

as
5= I:JL(.-,‘:r iy Lir,dr f dt) ==y (-1 )7 +& < Au>—Ep, {42)

on the suitable temporal interval 1,,4,] © R, which gives rise to the following [1] [S] [65] [66]
dynamical expressions

P=p+EA, p=mum=m(1-luf)y*, (43)
for the particle momentum and

E, = (m+1 P=£AF)Y" +&p (44)

for the charged particle £ energy, where, by definition, Pe E' is the common momentum of
the particle and the ambient electromagnetic field at a Minkowski space-time point (t.rye M*,
The related dynamics of the charged particle £ follows [1] [5] [65] [66] from the Lagrangian

equation
AP fdt = VL(r,dr | di) =—V(Ep—& < Au ). (4s)

The expression (44) for the particle energy [, also appears to be open to question, since
the potential energy £, entering additively, has no affect on the particle “inertial" mass
=iy (1= i By, This was noticed by L. Brillouin [21], who remarked that the fact that the
potential energy has no affect an the particle mass tells us that "... any possibility of existence
of a particle mass related with an external potential energy, is completely excluded". Moreaver,
it is necessary to stress here that the least action principle (42}, formulated with respect to the
laboratory reference frame K, time parameter /€ R, appears logically inadequate, for there is
a strong physical inconsistency with other time parameters of the Lorentz equivalent reference
frames, This was first mentioned by R. Feynman in [1] in his efforts to physically argue the
Lorentz force expression with respect to the proper reference frame K. This and other special
relativity theory and electrody ics problems lated many promi physicists of the
past [1] [21] [65] [71] [72] and present [7] [23] [24] [25] [286] [44] (57] [52] [60] [73] [74)
[75] [76] [77] [78] and [79] [80] [81] [11] [82] [69] [83] [84] {85] [86] [87] to try to develop
alternative relativity theories based on completely different space-time and matter structure
principles. Some of them prove to be closely related with a virtual relationship between
electrodynamics and gravity, based on classical works of H. Lorentz, G. Schott, J. Schwinger, R.
Feynman (1] [22] 53] [54] [63] [88] and many others on the so called “electradynamic mass" of
elementary particles. Arguing this way of this mass, one can readily come to a certain paradox:
the well-knawn energy-mass relationship for the particle mass suitably determines the energy
of its gravitational field. Yet this energy should lead to an increase in the mass of the particle

12
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that in turn should lead to increased gravitational field and so on. In the limit, for instance, an
electron must have infinite mass and energy, what we do not really observe. There also is
another controversial inference from the action expression (42). As one can easily show, owing
to {45}, the corresponding expression for the Lorentz force

dpldt=F =§E+EuxR (46)
holds, where we have defined here, as before,
E=—=Ala-Ve (47)

the corresponding electric field and

B=VxA (48)
the related magnetic field, acting on the charged point particle £ The expression (46}, in
particular, means that the Larentz force F, depends linearly on the particle velocity vector

we T(R"), and so there is a strong dependence on the reference frame with respect to which
the charged particle £ moves, Attempts to reconcile this and some related controversies [21]
[1] [89] [11] [69] [13] forced Einstein ta devise his special relativity theary and proceed further
to creating his general relativity theory trying to explain the gravity by means of geometrization
of space-time and matter in the Universe, Here we must mention that thie classical Lagrangian
function L In (42) is written in terms of a combination of terms expressed by means of both
the Euclidean proper reference frame variables (r,r)e E' and arbitrarily chosen Minkowski

reference frame variables (r,r)e M*,

These problems were recently lyzed using a c ly different " no-geometry”
approach [18] [19) [68], where new dynamical equations were derived, which were free of the
controversial elements mentioned above. Moreover, this approach avoided the intraduction of
the well known Lorentz transformations of the space-time reference frames with respect to
which the action functional (42) is invariant. From this point of view, there are interesting far
-disemssien conclusions from [90] [91] [92] [93), in which some electrodynamic models,
possessing intrinsic Galilean and Poincarg-Lorentz sy ries, were T lyzed from diverse
geometrical points of view. From<<Completely different point of view the related
electrodynamics of charged particles was reanalyzed in [3] [4] (8] [14] [15], where all relativistic
relationships were successfully inferred from the classical Lienard-Wiechert potentials, solving
the corresponding electramagnetic equations. Subject to a possible geometric space-type
structure and the related vacuum field background, exerting the decisive influence on the
particle dynamics, we need to mention here recent works [79] [85] [13] and the closely related
with-theirideas the classical articles [94] [95]. Next, we shall revisit the results obtained in [18]
[19] fraom the classical Lagrangian and Hamiltonian formalisms [47] [64] [66] [96] in order to
shed new light on the physical underpinnings of the vacuum field theory approach to the study
of combined electromagnetic and gravitational effects,

13, The vacuum field theory electrodynamics equations: Lagrangian

analysis

1.3.2. A moving in vacuum point charged particle - an alternative electrodynamic

13
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482 model
483
484 In the vacuum field theory approach to combi electre tism and the gravity,

485  devised in [18] [19], the main vacuum potential field function W:M* 5 R, related to a
486  charged point particle £ under the external stationary distributed field sources, satisfies the

487  dynamical equation (30), namely

488 %( W) = (49)
489 in the case when the external charged particles are at rest, where, as above, i1:= dl dt is the
490  particle velocity with respect to some reference system.

491 To analyze the dynamical equation (49) from the Lagrangian point of view, we write the
492  carresponding action functional as

493 §i= —[?Wdf =- th 1+ Py 2 dr, {50

fi
494  expressed with respect to the proper reference frame K. Fixing the proper temporal
495  parameters 7, <7, € R, one finds from the least action principle {88 =10) that

p o= AL = =W+ F) Y =W,
496 {51)
=dpldr=aL9r=-VW(+1 i),

497  where, owing ta (50), the corresponding Lagrangian function is

498 L= =W, {52)
499 Recalling now the definition of the particle mass

500 =W (s3)
501  and the relationships

502 dr=di(1=lul’)"”, idr = ndt, (54)
503 from (51) we easily obtain exactly the dynarical equation (49). Moreaver, one now readily
504  finds that the dy ical mass, defined by means of expression (53), is given as

505 m =g (1=lu | i

506  which coincides with the equation {36) of the preceding section. Now one can formulate the
507 following proposition using the above results.

508

509  Proposition 3. The alternative freely moving point particle electrodynomic model (49) allows the
510 least action formulation (50) with respect to the “rest” reference frame variables, where the
511  Lagrangian function is given by expression (52). Its electrody ics is completely eq ta
512  that of a classical relativistic freely moving point particle, described in Subsection 1 21,

513

514 133, ﬁf@\dng in va:uun'i\ Intemtins two charge system®- an alternative
515 electrodynamic model

516

517 We proceed now to the case when our charged point particle £ maoves in the space-
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time with velocity vector ue T(R') and interacts with another external charged point particle
&+ moving with velocity vector 1, € T(R") with respect to a common reference frame K. As
was shown in [18] [19), the respectively modified dynamical equation for the vacuum potential
field function W :M* — R subject to the moving reference frame K: is given by equality
(32), or
fr—.r--ﬁ'(u' ==V, (s5)

where, as before, the velocity vectors w :=dr/di i, = dr, fdi & T(R"). Since the external
charged particle £, moves in the space-time M*, it generates the related magnetic field

Bi=VxA, whose magnetic vector potentials A:M* —E’ and A :M* —E’ are defined,
owing to the results of [18] [19] [69], as

EA=Wu, A = “}'x!:, i (56)
Whence, taking into account that the field potential
W=W(1=tlu, Py (s7)
and the particle momentum p =—W u =-Wi, equality (55) becomes equivalent to
L +5a) =V, (s8)

if considered with respect to the moving reference frame K:‘ or to the Lorentz type force
equality
%tmid): VW (I=lu, F), (59)
if considered with respect to the laboratory reference frame K., owing to the classical Lorentz
invariance relationship (57), as the corresponding magnetic vector potential, generated by the
external charged point test particle £, with respect to the reference frame K, is identically
equal to zero. To imbed the dynamical equation (59} into the classical Lagrangian formalism, we
start from the following action functional, which naturally generalizes the functional (50):
Ty
== [ W (ae1i-i, F)?de. (60)
]

Here, as before, W' Is the respectively calculated vacuum field potential W subject to
the moving reference frame K., F=uds 1 dr, i, =udl 1dT, dr=di (1-1u —u, )", which
take into account the relative velocity of the charged point particle & subject to the reference
frame K., specified by the Euclidean coordinates (1, r—r,)& R*, and moving simultaneously
with velocity vector 1, € T(R') with respect to the labaratory reference frame K, specified
by the Minkowski coordinates (f,r)€ M* and related to those of the reference frame K.' and

o L T b o e e

K, by means of the 2 T F

15
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549 di® = (de Y+ \dr, P o(dr ) = de'+hdr—dr, [ (61)
550 S, it Is clear in this case that our charged point particle £ moves with the velacity vector
551w —u, e T(R') with respect to the reference frame K.' in which the external charged particle

552 £, is at rest. Thereby, we have reduced the problem of deriving the charged point particle £

553 dynamical equation to that beforessolved in Subsection 1.2.1.
554 Now we can compule the east action variational condition 45 =0, taking into account

555  that, owing to (60}, the corresponding Lagrangian function with respect to the proper reference
556  frame K_ is given as
557 Lo=—W (H17=7 £)7, (62)
558  As a result of simple calculations, the g lized um of the charged particle £ equals

P =L =-W (P (=i P =

559 =W (b= i, By W (=i 1) = (63)

=mn +EA = p +EA = p+EA,
560  where, owing to (57) the vectors p'i= Wi =-Wu=pe E', A =Wu, =Wu, =AeE’, and
561  giving rise to the dynamical equality
562 di(p'+¢n':=—vw"u+|f—:} Py (64)

T

563  with respect to the proper reference frame K. As df =de(l+1i—7# )" and
564 (H1F—F )" =(1=lu'—u, F)", we obtain from (64) the equality
565 % (p +EA)=-VW, (65)
566  exactly coinciding with equality (58) subject to the moving reference frame KJ Now, making

567  use of expressions (61) and (57), one can rewrite (65) as that with respect to the laboratory
568 reference frame K, :
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d... . =
—(p +EA)=-VW =
dt
Wi Vit viv
= d'{ w"} 112 t g‘v'"{ 112 = .'“" [TF) =
dr (L, FY™ 0 (Helu, 1) (-, 1)
(66)
~Wdr Wr, / VW
= d-{ 'wf'u 8t f“l"\’:';“‘ )= 'wi T
dtt (Ml BY7dt (WL, Y el (el 1Y
d =—dr =—dr - i
= —{-W—+EW—=) =-VW(l-lu, ),
d:( dt ‘:W:-'.-] R A
exactly coinciding with (59):
%(pﬂfm: VW (-lu, ). (67)
Remark 1. The equatian (67) allows to Infer the following important and physically reasonable

phenomencn: if the test charged point particle velocity u, € T(R") tends to the light velocity
c=1, the corresponding acceleration force F, w=~VW(l-lu, I'} is vanishing. Thereby, the
elec gnetic fields, g d by such ropidly moving charged point particles, have no

influence on the dynamics of charged objects if observed with respect to an arbitrarily chosen
laboratory reference frame K.

The latter equation (67) can be easily rewritten as

dpldt = —VW=EdAldt+VWu, =
(68)
= H-EWW —dAlon-E<u V> A+ <Au, >,
or, using the well-known Error! Reference source not found. identity
Veabs=<a,V>bt<bV>at+bx(Vxa)+ax(Vxb), (69)
where a,be E* are arbitrary vector functions, in the standard Lorentz type form
dpldt=EE+Eux B=V < fAu—u; >. (70)

The result (70), being before found and written down with respect to the moving
reference frame K‘ in [18] [19] [69] makes it possible to formulate the next important
proposition.

Praposition 4. The alternative classical relativistic electrodynamic model (58] allows the least
action formulation based on the action functional (60) with respect to the proper reference
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frame K, where the Lagrangian function is given by expression (62). The resulting Lorentz type
force expression equals (70), being modified by the additional force I t
Fi==V<EAu—u, >, important for explanation [97] [98] [99] of the well known Aharonov-
Bohm effect.

1.3.4. A moving charged point particle dynamics formulation dual to the classical

relativistic invariant electrod: ic model

It is easy to see that the action functional (60) is written utilizing the classical Galilean
transformations of reference frames. If we now consider the action functional (50) for a
charged paint particle maoving with respect the reference frame K, and take into account its
interaction with an external magnetic field generated by the vector potential A: M* —E it
can be naturally generalized as

# r
8= j{—ﬁdx +E< A dr>)= _f[—ﬁ(lH;‘- Y2+ &< A i >ldr, (71
] ]
where dr=di{l-1ul)".
Thus, the corresponding common particle-field momentum takes the form
P o=dl i =-Wr(l 1Py +£A=

(72}
=mu+EA= p+EA,
and satisfies
P =dPldr=3Lidr=-YW(l+|i ) + &V < A f>=
(73)
=-VW(=lul)y" <& < Au > (1=1a )",
where
L= W+ 1AP)Y* + &< Ai> (74)
is the corresponding Lagrangian function. Since dr=dr(1-1ul")", one easily finds from (73)
that

dPldr=-VW+&V < Au>. (75)
Upon substituting (72) into (75) and making use of the identity (69), we obtain the
classical expression for the Lorentz force F, acting on the moving charged point particle £:

dpldt:=F, = EE+EuxB, (78)
where, by definition,
E=~£"'VW—0Aldt (77)
is its associated electric field and
B:=VxA (78)

is the corresponding magnetic field. This result can be summarized as follows.

Proposition 5. The classical relativistic Lorentz force (76) allows the least action formulation (71)

18



INDER PEER REVIEW

628
629
630
631
632
633
634
635
636
637
638
639

641
642
643
644
645
646
647

649
650

651

652
653
654
655
656
657

658
658
660
661
662

663

664

665
666

with respect to the proper reference frame variables, where the Lagranglan function is given by
Soarmula (74). Yet its electrodynamics, described by the Lorentz force (76), Is not equivalent to
the classical relativistic moving point particle electrodynamics, described by means of the
Lorentz force (46), as the inertial mass expression m=-W does nat coincide with that of (36).

Expressions (76) and (70) are equal up to the gradient like term F, ==~V <{Au-u, >,
which reconciles the Lorentz forces acting on a charged moving particle & with respect to
different reference frames. This fact Is important for our vacuum field theory approach since it
uses no special geometry and makes it possible to analyze both electromagnetic and
gravitational fields simultaneously by employing the new definition of the dynamical mass by
means of the Mach-Einstein type expression (53),

14. The A.M. Ampere's law in electrodynamics - the classical and modified
Lorentz force derivations

The classical ingenious Andre-Marie Ampere's analysis of magnetically interacting 4o
eaeh-ether two electric currents in thin conductors, asiswet-mown, was based [1] [S] [65] [66]
on the following experimental fact: the force between two electric currents depends on the
distance between conductors, their mutual spatial orientation and the
currents. Having additionally accepted the infinitesimal superposition principle of'A.M. Ampere
Trad derived a general analytical expression for the force between two infinitesimal elements of
currents whderregard:

(r=+)
lr=r P
where vectors r,r e B’ point at infinitesimal currents dr = sdl,dr' = s'dl with normalized
orientation vectors 5,5 € E' of two closed conductors | and ' carrying currents fe R and
I e R, respectively and the unit vector n:=(r—r )/|Ir—r |, fixing the spatial orientations of
these infinitesimal elements, and the function e:(5°F =5 =R being some real-valued
smoath mapping. Taking further into account the mutual sy y L the infinitesimal
elements of currents ol and /', belonging respectively to these two electric conductors, the
infinitesimal force (79) was assumed by A.M. Ampere to satisfy locally the third Newton's law:

dftrory=11' als,s yndidl’, (79}

df (r,r y=—df (r 1) (80)
with the mapping
s, s = %(3&, <50 >< 8 >4k <55 =), (81)

where <> is the natural scalar product in E* and &,k e R are some still undetermined

real and dimensionless parameters. The assumption (80) is evidently looking very restrictive
and can be considered as reasonable only subject to a stationary system of conductors under
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667  regard, when the mutual action at a distance principle [1] [5] can be applied. Ommﬂ

668 1.C. Maxwell [67]: ".. we may draw the conclusions, first, that action and reaction are not
669 always equal and opposite, and second, that apparatus may be constructed to generate any
670 amount of work from its own resources. For let two oppositely electrified bodies A and B
671 travel along the line joining them with equal velocities in the direction AB, then if either the
672  potential or the attraction of the bodies at a given time is that due to their position at some
673  former time (as these authors suppose), B, the foremost body, will attract A forwards more
674 than B attracts A backwards. Now let A and B be kept asunder by a rigid rod. The combined
675  system, if set in motion in the direction AB, will pull in that direction with a force which may
676 either continually augment the velocity, or may be used as an inexhaustible source of energy."
677 Based on the fact that there is no possibility to measure the force between two
678 infinitesimal current elements, A.M. Ampere took into account (80), (81) and calculated the
679  corresponding force exerted by the whole conductor /' on an infinitesimal current element of ‘ﬂu
680  other conductor under regard:

681
dF(r):= mdf(r. r)=
iy ¢ (r=r) r—r Cor=r r=r :
=01 - ir, - " - +k - dr,d =
682 4x Ir—rl’(u'<ulr—rlxdr te=r1 Pperd e (82)

=ﬂ‘amv. L_ |Gk <dr,r—¢ s<dr,r=F >+k, <dr.dr ),
ar “A\lr=r| ! .

683  which can be equivalently transformed as

684
dp(;):"—ﬂlm‘v. : — Bk, <dr,r—r ><dr' ,r—r >+k, <dr,dr >)=
ar rLlr=rl
="_"lm.v. -]— [k(B<dr,r—r ><dr ,r—r >-
4r c\r—rl
685 (83)

—<dr,dr >)+ (k, +ky) < dr,dr >]=

Ly I'dr
= _kl ; < dr,V[ﬂ.(m > _(kl + k;) < V.m <dr,

686  owing to the integral identity
687

Idr

>‘
lr=r|



