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and (qﬁ*{k},ﬁ‘ (k)):d — @' remain the same as (156), that is

P, ()] = —z—j—i—lo{k—s).[mtk),a_,(snzo.
ARAE = 2 58k-s)
Frings S e e

(180)

(@), @) = 0=[¢"(k), ¢ ().

(4,00, A = 0=[A] (kLA )],

forall k,se B' and j,lel,3.
Now, concerning the Hamiltonian operators (177) and (179), the following Heisenberg
evolutionf equations

dy i -~ 01V .
L= [H" W], —=—[H!" ¥ 181
di ﬁ{ 1 o1 ni roy] (1)
with respect to the awffreference frame K; and the Heisenberg evolution equations
g i s . 8 iz
—“:':2-—H 3 ,—:*::—H.A 182
= [H,.9] T [H;.A] (182)

with respect to the qwri reference frame K. hold. Being further interested in the evolution
equations (173), suitably rewritten in the transformed Fock space & with respect to the
common temporal parameter re R, we need to take into account [116] that the following
functional relationships
U'ggimmp&n:ﬂinhm (183)
hold. In particular, from {183) t volum expressions follow
dy) ot = dy(E,0)10T L +w.D/dl_ .
(184)
A9t = O0AGT,7)/OT |, +OA(T.) /i L
for all feR. The latter will be useful when deriving the resulting quantum Maxwell

electromagnetic equations.
Before doing this, we need to take into account that the weak operator Lorenz

canstraints (160), rewritten in the transformed Fock space &, is compatible with the evolution
equations (182):

=i=i?

|f:‘"(k).ﬁ,,]=(}=IE"J(k)‘gﬁJ‘ -
yet they fail to be compatible with the evolution equations (181), that is
(G, ™1 02 C5 (). H{™),

This means that we can not impose on the transformed Fock pace @ the constraints
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C,()® : =i(<k,Alk)>~1kIP(k)® #0,
(186)
Cil® : =-i(<k, A" (k)>—1k|@ (k)P =0
invariantly for all ke E°. Notwithstanding, it is easy enough to check that the following slightly

perturbed operators
Cky + =C, %) +r§;;—];{|?2££;jllr—)jn_‘cxp[—f <k, y>r (Dw(nd'y,

{187)
ifexpliclk1T)
21kl @2n)*?
are commuting both to each other and with the Hamiltonian operators (177) and (179):

[CU),C(s)) = 0=[C"(k).C(s)]

C'ky 2 =G~ [ sexpli <k y > GWOI'y,

[C(k),H™) = 0=[C"(k).H], (188)

[C(k),H,) = 0=[C'(k).H,]

for all k,se E*. Thus, the related evolution flows (181) and (182) in the transformed Fock space
@ should be considered under the modified constraints

Clhy®=0=C"(h)® (189)
for all ke E’. Taking into account the exact expressions (187), the constraints (189} can be
equivalently rewritten as

CT:i,0dP=0, (190)

where for all v& R and the corresponding temporal parameters 1 and 1€ R
1

(i, x) ;:W‘[ﬁj{!-‘ké(hexp(i <k, x>—ilkll)+
=
+ﬁ?‘|-k!d"k(-'*(k)cxp(—f <k, x>+ilkIi)= (191)
e

¥k >+%%f§~% [ d'YOU(T =72 x—y Dy W)
in which we put, by definition, the relativistic generalized function
31 x— yl+e(T —1) =801 x— yl—e(f =1))
2lx—vl '
dual to the well known generalized solution [123] [124]
By PP iy Sl x=yl4e(t =N+ x—yl—e(T —1))
2lx—yl

(192)

lc(t=1)lx=yvl):=
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to the relativistic wave equation.

Remark 5. It is here worthy to mention that the above defined operator C(1):® — @,
depending parametgrically on the bosonic temporal parameter r € R, satisfies the relativistic

wave equation

idc AG=0, (193)

that can be easily checked —y{-& mak;q.lse oWen in the Fock space wave equations
(1671 ———

10°A - 199
"T'T.,—M=U,—;'"':;——ﬁ =0 {194
¢ o c ot .4 )
Moreover, as if can be shown_by means of direct calculations, the transformed bosonic
Hamiltonian operator {179) cﬂt_hgﬁ_educed via the modified Lorenz type constraints (JSIODFork

space ri")‘ﬁersists to be, as before, non-negative definite.

| =
Now we can proceed to deriving the quantum Maxwell equations starting from the
operator equations (194) and the\suitablytransformedito the Fock space b )electromagnetic
fields definitions (158) and (159)¢

(Vx B——a—E)cp —%VL; YO((T =) =y~ ()@ (195)
and
<V E>®=2 L[ a0 - x-y W (WD (196)
i ox af R L

which are considered in the weak operator sense. Taking now into account the relationships
(182) and (184}, one can obtain strang operator relationships for the electrical and magnetic
fields
po 19 oo 1A oo hovsi (197)
cor cof
with respect to the common reference frame K. Similarly one can easily calculate the weak

operator relationship
1dp 5 g
S —“3+4V,A >)® =0, (198)
which holds for the comman temporal parameier re R. Now we will calculate the weak
Maxwell type operator relationships (195) and (196) with respect to the common reference
frame K :

1 0F

1ok 5
(VxB-—=

Wy, &=V j d*yOET =)l x=y ' (v, =0  (199)
2r ®

and
<vz«>cp————j & YO((T ~1) x—y W' (., @ =&y yb,  (200)

where t,here—was used the known [121] [124] generalized function relationship
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P

1j1®ouan$:-Qzﬁu) (201)
¢ s

for all ze R*. To calculate further the expression (199}, we need to make use of the strong
operator relationships (184) and find that

oF JOF OF A . OF
— =] . =———[HY" El=—+ &y ay. 202
i e R e e “
Thus, from (202) and (199) one can obtain that
o o Yo "
(VxB—l%Fyb=§v‘aw® (203)
&

with respect to the common reference frame K. The combined tegether weak operator
relationships (200) and (203)

. 10E - E o .
(VxB——a—ﬂD:éw' ayd, <V, E>d =5y’ yb (204)
¢ o
in the*reduced by the weak constraint (198) ock__sgggr____@) jointly with the evident strong
operator relationships

vXé+i§§=QVsz0 ’ (205)
*Lg‘ c of

compile the complete system of*guantum Maxwell equations with respect to the common
reference frame K.

“Really, From the Heisenberg evolution equations (181) one easily obtains the strong
operator charge conservative flow relationship

,%@ < V. tay >=0, (206)
in which the quantity
p=svy (207)
is interpreted as the operator charge density and the quantity
J =&y cay (208)

is naturally interpreted as the operator current density in the space R’. Whence the weak

operator equations (204) can be rewritten, taking into account the definitions (207) and (208),
in therstandard Maxwell equations fweak for
.~ 10E = = s =
NxB-l%ﬂ¢=£4a<VEb¢=p¢ (209)
o odf c
under the Fock space @ constraint (198). Moreover, based on the weak operator Maxwell
equations (209) and the Lorenz constraint (198), one can derive aasily the following weak
operator linear wave equations
1% a5 1FA =z Jx
: =22 _Apyd = pb, (=22 - A ==d (210)
¢ o’ oo’ c
‘i, respect to the common laboratory reference frame K, allowing to calculate thejinduced by

the charged fermionic fieidqcausal quantum bosonic potentials (@é,ﬁ;):&)—)@ in the

analytical form:
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Lp pUndy 3 _ 1 ¢ JEndy

250 kgL, (211)
4z * |x=yl > dme®  |x-yl

é% -
where the "retarded” temporal parameter 1 :=1—|x—yl/ce R, making the equations (210}
exactly satisfied modulo the solutions to their uniform forms. Moreover, owing to (2086), the
expressions {211) satisfy exactly the strong operator Lorenz constraint
199,
c oo
with respect to the laboratory reference frame K.
From the analysis of the quantum charged particle fermionic field model, interacting
with the self-generated quantum bosonic electromagnetic field, one can infer the following
important conseguences:

+<V,A >=0 (212)

s the physical effective evolution of the fermionic-bosonic system with respect to the
common reference frame K, is governed by the reduced fermionic Hamiltonian operator (177),
acting on the canonically transformed Fock space @, reduced by means of the weak Lorenz
type operator constraint {198);

« the compatibility of evolutions of the quantum fermionic and bosonic fields with
respect to the common temporal reference frame K entails the reciprocal influence of the

fermionic field on the bosonic one and vice versa, being clearly demonstrated both by the weak
field potentials operator equations (210) and the Lorentz type weak constraint (198) imposed

on the Fock space @;

o subject to the basic self-interacting fermionic-bosonic system described by the joint
Hamiltonian operator {172) in the transformed Fock space @, one can claim that the basonic
electromagnetic impact into the quantum charged particle dynamics is decisive, as owing to it
the fermionic system can realize its charge interaction property through the physical vacuum
deformation, caused by the related deformation of the weak Lorenz type operator constraint
(190), and resulting intq the weak operator potential equations (211).

The consequences formulated above subject to the guantum fermionic-bosonic self-
interacting phenomenap, as it was shown in Errorl-Refarence-source-not-found., appeared to
be very important fromvlassical point of view, especially for physical understanding the inertial
properties of a charged particle under action of the self-generated electromagnetic field.

6. Classical reduction of the quantum charged particle and
electromagnetic field evolutions

Let's consider the vector position operator i:® — & and its weak,in the reduced Fock
space P (evolutionjwith respect to the complete and suitably renormalized charged particle
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Hamiltonian operator {177). Taking into account that the Hamiltonian operator H|" :® —®
can be represented as

B J'Md’xy/‘ <ca,p,>y+ ]‘R!dj_v{éw'y/@i ~&y' <ca A, >y, (213)
within which the operators (@;,,A,):® — & are given by the nonlocal integral expressions

(211) and ;‘)_l_:cf)—><f>‘ is the locally defined charged particle £ momentum operator

. h . 4 s o = :
p, =V, canonically conjugated [71] to the position operator x: — @, thatis
!

[ﬁ),_{']:ifé(,\'—_\-') (214)
i

for any x,ye R’. This also, in particular, means that the position operator P sdisa
priori given in the diagonal representation: i'f := af for any vector f ed.
As a result of a simple calculation one finds the expression

dxldi =y cay, (215)
which can be used for obtaining the classical charged particle & velocity u(t,x)e T(R?) as
wul(t, x) = (Q,d3 [ difd) = (" cayal), (216)

where the vector Qe @ is the ground state of the Hamiltonian operator (213) acting in the

Lorenz type reduced and suitably renormalized [71] [88] [121] ([123] Fock space &b,
Substituting (215) and (207) into the Hamiltonian expression (213) one obtains the expression

g (i 3 A - =~ 1 3
H}’:Lﬁfxcmzmdn>+Lfﬁup%—zjﬂy>x (217)
whose classical counterpart looks as
7 (i G L o
H; ”=Lid‘.l'(P'?J..='('EJ‘Aé >), (218)

within which there was taken into account the previously assumed quantum massless charged
particle & fermionic field. The expression (218) jointly with the renormalized bosonic field

Hamiltonian {162) gives rise to the complete classical Hamiltonian function

F7 lineh &5 B2 = 1 i
7 =L_‘d‘.\-{-i{| EF +1BP)+pp—<—J.A:>) (219)

governing the temporal evolution both of the charged particle £ and of the electromagnetic
fields with respect to the laboratory reference frame K. The obtained abewve Hamiltonian

function and its corresponding Lagrangian form (166} have been effectively used before in [125]
for describing the classical self-interacting charged particle dynamics and its inertial properties.

Being experienced with the analysis of a self-interacting charged quantum particle
fermionic field with the self-generated quantum bosonic electromagnetic field, we understand
well that the influence of the electromagnetic field on the charged particle should be
considered as crucial, strongly modifying the related fermionic Hamiltonian operator,
describing the charged particle dynamics. As the simultaneously modified bosonic
electromagnetic operator depends, owing to the self-interaction, on the charge and current
particle field densities, the joint impact on the charged particle dynamics can be effectively
classically modeled by means of its inertial mass parameter. In the quantum operator case the
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1512 physical charged particle mass parameter 1, € R_ can be naturally defined by means of the
1513  least quantum renormalized Hamiltonian (172) eigenvalue

1514

1515 "= ¢’ inf (F: H“"”f] H;';_' = !;’}"’" +!—?,,. (220)

Fedifi=
1516 in the suitably transfcrme‘qﬂaﬁé reduced by means of the operator Lorenz type constraint
1517 (198)(Fock 5éace @ )with respect to the common reference frame K,. As the quantum spectral
1518  problem (220) is very complicated, new tools are needed to be developed for its successful
1519  analysis.

1520

1521 7. Classical self-interacting charged particle dynamics and its
1522 inertial properties

1523

1524 experienced with the analysis of a self-interacting charged quantum particl

the self-generated quantum bosonic electromagnetic field, we understan
1526 Iell that the influerice_of the electromagnetic field on the charged particle should b
1527 konsidered as crucial, strongly modifying the related fermionic Hamiltonian operato
1528  describing the charged parti\cTe\dynamics. As the simultaneously maodified bosoni
1529  plectromagnetic operator depends, owing to the self- interaction, on the charge and curre i
1530  particle field densities, the joint impact on‘t{e charged particle dynamics can he effectivel H{Lij;uru
1531  tlassically modeled by means of its inertial mass- pa{ameter In the quantum operator case th
1532 physical charged particle mass parameter” m,eR, c}m\b\e naturally defined by means of t

1533 east quantum renormalized. Hamiltonian (172) eigenualué‘{zzoj in the suitably transforme
1534 and reduced by means of the operator Lorenz type constralnt (198) Fock space P wit
1535 espect to- the common reference frame K. As the guantum specﬁ‘a! problem (220) is ve
1536  domplicated, we will try below to analyze it from the classical point of view -
1537 The quantum operator Hamiltonian approach of Section 4. makes it possible to treat
1538  analytically the charged particle self-interaction mechanism, which can be described by means
1539  of the following two steps, The first one consists in producing the charged particle dynamics
1540 governed by the gauge type component of the charged particle Hamiltonian operator (177),
1541 and the second one - consists in modifying this dynamics by means of the self-generated
1542  electromagnetic field, whose influence is governed by the bosonic Hamiltonian (179), perturbed
1543 by the dependence of the electromagnetic field potentials on the related charge and current
1544  densities through the differential relationships (210). This mechanism can be classically realized
1545  analytically by means of the alternative and already before mentioned Lagrangian least action
1546  formalism, following the well known slightly modified [5] Landau-Lifschitz scheme. Namely, the

1547  Lagrangian function for the classical charged particle &, interacting with the self-generated

1548  electromagnetic field, is easily derived from the corresponding Hamiltonian function (219),
1549  giving rise to the classical Lagrangian expressions (166) in the following slightly extended form:

1525  fermionic field
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= "
Ly = Lsdl-"{‘( :L A>-pp)+

1 0A (221)
+

— < VXA VXA>)-<k,dxldt>,

where vector k = k{r,x)e E’ models the related radiation reaction momentum, caused by the
accelerated charged particle & with respect to the laboratory reference frame K, as well as

that the classical Lorenz type constraint (198) is satisfied a priori. Here we need to
mention that the first part of the Lagrangian (221) is responsible for the internal gauge type
charged particle self-interaction and the second one is responsible for the external charged
particle self-interaction induced by the suitably perturbed electromagnetic field, depending on
the particle charge and current densities. The physical difference between these two
phenomena proves to be especially important for calculation of an effective Lagrangian
function for the related dynamical properties of the self-interacting charged particle.

Before proceeding further we need to make an important comment concerning the
least action properties of the classical relativistic self-interacting Lagrangian (221). Namely,
taking inta account a deep quantum vacuum origin [121] of the electromagnetic field and its
effective measuring only with respect to the common laboratory reference frame K, we can
state that the related Maxwell equations should be naturally derived from the following least

action principle: the variation 85", = 0, where by definition, the action functional
=4

§0 .= j’:fl_‘,_{‘!,_,d.- (222)

S
is calculated with respect to the laboratory reference frame K, on a fixed temporal interval
[t,.t,1cR. Yet, as it is easy to check, the above action functional (222) fails to derive the
corresponding Lorentz type dynamical equations for the self-interacting charged particle &, if
to take into account that the related charged particle is considered to be pointwise, located at
point x(1)e E* for 1€ R and endowed with the current density vector J = pdx(r)/dr E* and
the charge density p:=&8(x—x(1)),xe E'. This, evidently, means that the action functional
(222) should be suitably modified with respect to the [1] [51] Feynman proper time reference

frame paradigm, owing to which the action functional for the charged particle dynamics has a
physical sense if and only If it is considered with respect to the proper time reference frame

K. :
§0, = J':"lj”_,,,)\/{ 1+15F /e)dr (223)

on a fixed temporal interval [7,,7,]cR, where we took into account, that

temporal parameter 7€ R. Then from the least action condition 5.§}i’b:ﬂ on the fixed
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temporal interval [7,,7,] R one easily obtains the well known classical Lorentz dynamical
equation

%(ruu)=§é+§nxﬂ (224)

the inertial mass
in part employed below when analyzing a suitably reduced Lagrangian function (221).

For the self-interacting charged particle to be physically specified by the mentioned
above phenomena in detail, we will consider below a so-called shell model particle, whose
charge is uniformly distributed on a sphere of a very small yet fixed radius. Then, following the
similar calculations from [5], one can obtain from (221) that

Writt?ﬂ jith respect to the laboyatory reference frame K.. When deriving (224) there-was-put,

it mi=—@/c’. The reasonings presented above will be

. | .1 _-9E_ 1 _ - 0A
=—| APV, E>+—<A—>——<AJ+—>)—
L 2"“' M c or 3 ¢ ar ?

< = fow o
_é(i;_ dx<AE>+[ dx(< ~J.A>=pp)-

-"l'lirn_lls2 < @E+ ﬁxé.ds,’ >—<k, dv/dr>=

ok : ] - oy 3. ] . -
- —J‘ﬂ“@){! x(<=d,A>=pf) +J'ﬁ @ @l N A>=pp)

_ZL;‘_J Rld“,r< AE>—<k,dcld>=
¢ dt

(225)

ol T T | S T A > —pi) -
- 2L: (‘f)a’ X< CJ,A> p“’”zjn_(‘:)ug(g)" ,\(<CJ,A> PP}

_ZL%!R-‘(’-‘-\' <AE>-<kdx!de>,
C Al
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Fig. 1. The courtesy picture from [31] et .S‘ylynr,l,( th Mn}n\ Sl‘uﬁ'ftf

where we took into account that 1im,_*,,,J-52 < ¢f{+ AxB.dS’ >=0, meaning the vanishing of % : !

the radiated by-the-aceelerated-eharged-particle energy, as-well-as we denoted by Q (§):= M% o W
suppé_ < S* and by ©,(£) = suppé, < S° the corresponding charge & parts supports, located
on the electromagnetic field shadowed rear and on the electromagnetic field exerted on semi- *.f)
spheres of the charged particle spherical shell Q(£):= Q (5)uQ, (), respectively (see Fig 1.)
to its mation with velocity u := dx/ dre E' with respect to the laboratory reference frame K.

The expression (225) demonstrates explicitly that during the charged particle motion
the self-generated electromagnetic field interacts effectively only with its frontal part
Q,(£) S of the particle spherical shell §?, as the rear part  (£) < §° of the particle shell
enters during its motion into the shadowed interior region of the sphere, where the net electric
field £  E* is vanishing owing to the charged particle spherical symmetry. To proceed further
we need to calculate the electromagnetic potentials (@,A):M‘ — RxE’, using the
determining expressions (211) as 1/¢ = 0:
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pu-¢y) e,\)

~ Id ,0(1.!)
) lx—yl

—5 ‘;i
= [x—yl e el ;P‘}J-Ri‘

+]un _[ d'ylx—y|d p(t—g,y) o +

| >
Hjﬂ:’?‘l-"’djy lx—yP dp(r—£,y)/dt+0(1/c") = (226)

Iy P(f 5 L.

=Jo. & Viamyl ?L; 3 P

L < ey Ey : 4
+6("‘ J.n‘\(c:.)ff ylx—yF dp(r.¥)/dt+0(1/c"),
1 3 J "'1 i 1 . Jt—E,¥
A=-IR3f1')'~——(_ 2 =Iim—f,d,\‘——{ 2_
- l“‘-"';':f—l.t-—_\*l:"(‘ elo ¢ % lx=yl

—ij‘j—}_fﬁjri’)f&!{r —&,v)/dt+

+lnn ) J“d ylx=ylo®Jt—e )/ o +0(1/c*)=

3 f(f y)

l
.[n (‘f) l—\| P I {éd \EU((,\}[E};.;.

l 3 : . 2 Y. 2 A
+—2?LL(§):J ylx=y19°1(t, y)/ 9 +O(1/ ¢*),

1p() was treated physically, that is taking into account the assumed abeve
spherical shell model of the charged particle £ and its corresponding self-interaction during its
motion. Now, as a result of simple-smeugh calculations based on the electromagnetic potentials
(226), the effective expression for the classical Lagrangian (225) can be equivalently rewritten

upto Of1/¢") accuracy with respect to the laboratory reference frame K, as

where the limit lim

¥l

I e (227)
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UJ‘L'JRW‘. 'ww-x M‘ULK

if-te-make use of the following integral expressions:
L @0 @ o @roa @ TyPENPED=E

-1_ s Pl v)pi,y)
2o @oa @ o@ue @ — "

Py ;J(f ¥) l
I (‘53{! s ‘)I (‘f ly—xl ZF‘"?
(228)

3 ply) l..
J {f)d xplt, \)I (‘:)d Ly—xi 2]3“,

B ply) <y-xu>, E o
J‘ (‘f)d.\p(r \)j (e |\—nl_—|\—\| P>i= “luf,

Ly), <y—xu> ., E >
_[ (é)d xplt, I)In @&t iy p[ )i —I_‘_—“——l >.=—E’—Iu!',

obtained owing to the reasonings similar to those in [2] [126]. Now, to derive from the reduced

Lagrangian function (227) the corresponding dynamic equation for the charged shell model

particle &, we need within-the—diseussed—above the Feynman proper time paradigm to

transform this Lagrangian with respect to the charged particle proper time reference frame

K.

"“!]-h; L:? n= Mo ].i'iz <k, x>, (229)

where we denoted by

i, = m Jl-1ul /¢ (230)
the so-called relativistic rest mass of the charged particle with respect to the proper time
reference frame K_, and by

m, =g /c (231)

the so-called charged particle electromagnetic mass with respect to the laboratory reference
frame K. Based on the Lagrangian function (229) one can construct up to O(l/¢c*) the
generalized charged particle inertial momentum

E=myu—k (232)
as
=7, ldk=mu-k, (233)
satisfying,with respect to the praper time reference frame K,’the evolution equation
dit, 1dr =01}, /9x =0, (234)
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Ha

which is equivalent toLorentz type equation

dim, )/ di = dk(ty/!dt = F', (235)
with respect to the laboratory reference frame K. where the right hand side of (235) means,
by definition, the corresponding radiation reaction force F . Having applied to the Lagrangian
function (229) the standard Legendre transformation, one easily finds the quasi-classical
conserved Hamiltonian function

s m_lul
) e e g0 e
H, =<, 4> -1, = =

{_l+% lulP /c?), (236)

satisfying,with respect to the laboratory reference frame K, ,the condition dH ", 1 dt=0 forall
re R.Yet, the most interesting and important consequence from (236)and the dynamic
equation (235),consists in coinciding the electromagnetic mass parameter m_, € R, :

My 1= My {237)
defined by (231), with the naturally related and physically observed inertial mass m,, R, as
it was conceived by H. Lorentz and M. Abraham more than one hundred years ago.

8. The radiation reaction force analysis

To caleulate the radiation reaction force (235) one can make use of the classical Lorentz
type force expression (224) and obtain in the case of the charged particle shell model, similarly
to [2] [126], up to O(1/¢") accuracy, the resulting self-interacting Abraham-Lorentz type force
expression with respect to the laboratory reference frame K. Owing to the zero net force
condition, we have that

d7, ldi+F, =0, (238)
where, by definition, 7, 1= m,u, the Lorentz force can be rewritten in the following form:

1 " d -
= —— Pap(t,x)— A, x) -
F 2.:-[“_(‘):]‘ vplt ,1)‘” Alr,x)

1 N
_ZLu(é)uQ & d -mu.ndf A(1,x)

(239)
1

i -‘_- NVt x | 2y
zfqlgfit;ﬂr,a) @1, x) (1=tulcl)

—%L!@hig(éﬁupuvﬂV@UJ)ﬂ—HﬂrFl

Based on calculations similar to those of [2] [126], from (239) and (226) one can obtain, within
the charged particle shell model, for small lu/cl= 1 and slow enough acceleration that
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1664  The relationship above can be rewritten, owing to the charge continuity equation (206)-(208)
1665 and the rotational symmetry property, giving rise to the radiation force differential-integral
1666  expression:

- ="
Fs a [mz;‘ onle " =] 5 (é)P(f ‘)d )+ 5 (.f)uﬂ {g)ﬂ’(f l)d x()]x
Ii!] A (l) “'Il P }__
1667 j' (é)d yla—yl —J(r ¥) g‘——ml —I n_((:)p(r..x)d )+ (241)

+, @un @ 5Ol |, lcfd ylx—yb
1668 -F-Fem-thrh&eﬁ_faking into account the integral expressions [228}, one finds from (241)
1669 uptothe O(1/¢") accuracy the final radiation reaction force expression
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(242)
1 2 d’ | 2E?
= —(—(m”u)+-2-§-;- ff z—‘—(mnu— é} L
di 3¢ dr It 3¢’ dt

holds. We mention here that following the reasonings from [7] [31] [35] [105] [106], in the
expressions above there is taken into account an additional hidden and the velocity v e T(RY)
directed electrostatic Coulomb surface self-force, acting only on the front half part of the
spherical electron shell. As a result, from (238), (239) and the relationship {232} one obtains
that the generalized charged particle momentum

i “d
£ o=mu— 2{ 2o m_u—k, {243)
i 3c* dt

5 £2
“é.; dr_r:rl for all 7€ R and the
t

thereby defining both the radiation reaction momentum k(1) =]—
=i

correspanding radiation reaction force

28 du

: o (244
i dr’ P

1680 V coincides exactly with the classical Abraham-Lorentz-—-Dirac expression. From (243) one easily

1681
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1692
1693
1694
1695
1696
1697
1698
1699
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follows that the observable physical charged particle shell model inertial mass
my=m, = B /¢t (245)
is of the electromagnetic origin, coinciding exactly with the result (237) obtained abaove.
Moreover, (243) ensues the final force expression
;—’;(Jrr”u) =%§,—%+ o(1/¢*). (246)
The latter means, in particular, that the real physically observed * inertial” mass m  of
the charged shell model particle & is strongly determined by its electromagnetic self-
interaction energy E, with respect to the laboratory reference frame K. A similar statement
there was recently discussed in [31] [35], based on the vacuum Casimir effect type
considerations, Moreover, the assumed sbeve boundedness of the electrostatic self-energy E,
appears to be completely equivalent both to the presence of the so-called intrinsic Poincare
type " tensions" , analyzed in [7] [31] [118], and to the existence of a special compensating
Coulomb " pressure" , suggested in [35], guaranteeing the assumed electron stability in the
works of H. Lorentz and M. Abraham.

8.1, Comments

The electromagnetic mass origin problem was reanalyzed in details within the Feynman
proper time paradigm and related vacuum field theory approach by means of the fundamental
least action principle and the Lagrangian and Hamiltonian formalisms. The resulting electron
inertia appeared to coincide in part, in the quasi-relativistic limit, with the momentum
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expression obtained more than one hundred years ago by M. Abraham and H. Lorentz [53]
[54] [55] [64], yet it proved ta contain an additional hidden impact owing to the imposed
electron stability constraint, which was taken into account in the original action functional as
some preliminarily undetermined constant component. As it was demonstrated in [31] [35],
this stability constraint can be successfully realized within the charged shell model of electron
at rest, if to take into account the existing ambient electromagnetic " dark" energy fluctuations,
whose inward directed spatial pressure on the electron shell is compensated by the related
outward directed electrostatic Coulomb spatial pressure as the electron shell radius satisfies
some limiting compatibility condition. The latter also allows to compensate simultaneously the
corresponding electromagnetic energy fluctuations deficit inside the electron shell, thereby
forbidding the external energy to flow into the electron. ™ €ontrary to the lack of energy flow
inside the electron shell, during the electron movement the corresponding internal momentum
flow is not vanishing owing to the nonvanishing hidden electron momentum flow caused by the
surface pressure flow and compensated by the suitably generated surface electric current flow.
As it was shown, this backward directed hidden momentum flow makes it possible to justify the
corresponding self-interaction electron mass expression and to state, within the electron shell
model, the fully electromagnetic electron mass origin, as it has been conceived by H. Lorentz
and M. Abraham and strongly supported by R. Feynman in his Lectures [1]. This consequence is
also independently supported by means of the least action approach, based on the Feynman
proper time paradigm and the suitably calculated regularized retarded electric potential impact
into the charged particle Lagrangian function.

The charged particle radiation problem, revisited in this Section, allowed to conceive the
explanation of the charged particle mass as that of a compact and stable objectjyyhich should
be exerted by a vacuum field self-interaction energy. The latter can be satisfied #-+t8 impose dn
the intrinsic charged particle structure [30] some nontrivial geometrical constraints. Moreover,
as follows from the physically observed particle mass expressions (245), the electrostatic
potential energy being of the self-interaction origin, contributes Mto the inertial mass as its
main relativistic mass component.

There exist different relativistic generalizations of the force expression (246), which
suffer the common physical inconsistency related to the no radiation effect of a charged
particle in uniform motion.

Another deeply related problem to the radiation reaction force analyzed above is the
search for an explanation to the Wheeler and Feynman reaction radiation mechanism, called
the absorption radiation theory, strongly based on the Mach type interaction of a charged
particle with the ambient vacuum electromagnetic medium. Concerning this problem, one can
also observe some of its relationships with the one devised here within the vacuum field theory
approach, but this question needs a more detailed and extended analysis.

9. Supplement: the "minimum" interaction principle and its

geometric backgrounds

In this Section we will sketch analytical backgrounds of the "minimum” interaction
principle widely used in modern theoretical and mathematical physics. For description of a
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1745  moving point charged particle unde@lxternal electromagnetic field, we will make use of the

1746 geometric approach [64]. Namely, let a trivial fiber bundle structure 7:M — R*M =R*xG,

1747  with the abelian structure group G:=R\{0 }, equivariantly act on the canonically symplectic

1748  coadjoint space 7" (M ). The latter possesses the canonical symplectic structure

1749 @®(p,zix,g) =d(pr) a"(x.g)=<dp,ndx>+ —_—
+ <dzagdg >, +<zdg ' adg >,

1750 for all (pzxg)eT (M), where a(x,g):=<p.dv>+<z,g'dg>eT (M) is the

1751  corresponding Liouville formon T'(M )and <--> isthe usual scalar productin E*.  On the

1752  fibered space M one can define a connection ' by means of an one-form

1753 A :M —T (M )xG, determined as

1754 Alx,g) =g <EA(x),dv>g+g'dg (248)

1755  with £ G',(x,g)e R*XG. The corresponding curvature 2-form Y?e A'RH® Gis

1756 TO(x) = dA (1, £)+ A (1, @) AA (1, g) = £ X F, ()Y’ Ady’, (249)
i.j=1
1757  where
0A, dA
1758 F()=—t-— 250
FJ(" a_\_l a_\,; ( ]

1759 for i, j= 1.3 is the spatial electromagnetic tensor with respect to the reference frame K,. For
1760 an element e G to be compatibly fixed, we need to construct the related momentum
1761  mapping /:7°(M ) — G with respect to the canonical symplectic structure (247) on T°(M ),
1762 and put, by definition, I(x,p):=£eG to be constant, F;:= '&e T1T°(M) and
1763 G, ={ge G:Ad &) to be the corresponding isotropy group of the element £e G Next we

1764  can apply the standard [47] [64] [96] invariant Marsden-Weinstein-Meyer reduction scheme to
1765  the orbit factor space F.:=F. /G, subjectto the correspanding group G action. Then, as a
1766  result of the Marsden-Weinstein-Meyer reduction, one finds that G‘;; G, the factor-space
1767 ;55 . T'(R") becomes Poisson space with the suitably reduced symplectic structure
1768 (T)?’ eT’( 13;}. The corresponding Poisson brackets on the reduced manifold f’, equal to
[xj..t"-}: :0.{;}},_\" }e =0,
(Popye =EF, )
1770  for .-',j:f,_j, being considered with respect to the laboratory reference frame K. Based on

. A AT " =
1771 (251) icworth-te observe that a new so called “shifted" momentum variable
1772 7= p+EA(Y) (252)
1773 on fff gives rise to the symplectomorphic transformation E)if' —)é)i;" =< di,ndx> €

1774  A'(T"(R")). The latter gives rise to the followingm@ "minimal

1775  interaction" canonical Poisson bracket

1769 {251)
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]

1776 (,27) ) = 0,70} o, =8, (B.7)) =0 (253)

£ 3 [

1777  for r‘,j:],__’;, represented already with respect to some new reference frame K.,
1778  characterized by the phase space coordinates ( x 7)€ 13 and a new evolution parameter

1779 1 €R, as the spatial Maxwell field compatibility equations
1780 F, 1 3x, +3F, /3y, +0F, /dx, =0 (254)
1781  are identically satisfied on R* forall i, j,k = ]_i owing to the electromagnetic curvature tensor

1782  (250) definition.
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