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m,V , : — |G <dr,r—r ><dr ,r—r >-<dr,dr >)=<dr,V> Ln L,
= lr=rl (84)

which can be easily checked by means of integration by parts, #~te introducé the vector
potential

ol dr
Ary=——M.———— 85
=y |y {83}

generated by the conductor [ at point re E’, belonging to the infinitesimal element d/ of the
conductor /, the resulting infinitesimal force (83) gives rise to the following expression:

dF (r) =k, (—I <dr,V)A() +IV <dr, A(r) >) - (2k, +l, MV < dr, A(r) >=
= k ddrx (VX A(r)) = 2k, + k,)IV < dr, A(r) >= (86)

=k J (P)d’rx B(r)— 2k, +k,)V < Jd’r, A(r) >,
where we have taken into account the standard magnetic field definition

B(r):=VxA(r) (87)
and the corresponding current density relationship

J(P)d’r = Idr. (88)
There are, evidently, many different possibilities to choose the dimensionless
parameters k,,k, € R. In his analysis AM. Ampere had chosen the case when k =1,k, =-2
and obtained the well known rowadays magnetic force expression

dF(r)y=J(r)d’rxB(r), (89)
which easily reduces to the classical Lorentz expression

B0 =080 egad i o 0
for a force exerted by an external magnetic field on a movingv th a velocity #te T(R") peint

perticle with an electric charge £e R.

If to take an alternative choice and put k, =1,k, =—1, the expression (86) yields a
modified magnetic Lorentz type force, exerted by an external magnetic field generated by a
moving charged particle with a velocity u e T(RY) on a point particle, endowed with the

electric charge £€ R and moving with a velocity ue T(RY):

Lo dF’E (") = TP rxB(r)=V < J(1)d’r, A(r) >, (91)

which was-before occasionallMiscussed in different works [9] [10] [11] [69] [100] and recently
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enough-strongly-obtained-and analyzed in detail from the Lagrangian point of view inYworks
[18] [19] [50] [51] in the following{equivalent to (70))infinitesimal form,

H §f;l(r)=§er(VX§5A(r])—¢V 4if-—1rf,§A(r) e (92)
where SA(r)e T"(R") denotes the magnetic potential generated by an external charged point
particle moving with velocity uIET(R“) and exerting the magnetic force df,(r) on the
charged particle located at point re R* and moving with velocity 1e T(R") with respect to a
common reference system K. We also need to mention here that the Wfied Lorentz force

expression (91) does not take naturally into account the resulting pur every-weak electric
force, as the conductors [ and /' are considered to be electrically neutral. Simultaneously, we
see that the magnetic potential has a physical significance in its own right [6] [2] [11] [50] [68]
and has meaning in a way that extends beyond the calculation of force fields.

Really, to obtain the Lorentz type force (91) exerted by the external magnetic field
generated by the whole conductor I on an infinitesimal current element dl of the conductor [,

it is necessary to integrate the expression (92) along this conductor loop L

dF, (r) = [ﬂ.afL (r) = J (r)drx (Vx[{].a,q(r)) -V< J(:‘]dr,."[".é'A(;-) >+
+VL[‘. <t ESA(r) >= J(H)drx(VXA(r) -V < J(r)dr,[ﬂﬁ:&(r} >4
+V[j) <dr ,E8AGY 1 di >= T (r)drx B(r) =V < J(r}(h‘.m.c‘m(r) >+

+ij,) <dSU),VXESAQ) ] dr >= J (PdrxB(r)=V < J(r)dr,[ﬁ,é'A(r} Sk
(93)

+V|ﬁ. <dSW'),E8B(r) | dt >= I (r)drxB(r)-V < J’(r)dr.mﬁffs(r) >+
+EV(AD(r) [ df) = J(r)drx B(r) =V < J(r)dr, A(r) > —p(r)d* 1 VW =

= J(r)drxB(r) =V < J(1)dr,[[,6A(r) > +p(Hd 1 (=VW = A(r) 1 9 =

= J(PdrxB(r)-V < J(r)dr,mﬁA(r] > 4p()d E(r),
that is the equality
dF (r) = p(r)d*rE(r) +J (Nd’rx B(r)=V < J(r)d’r, A(r) >, (94)
where, by definition, the electric field E(r):= —VW —3A(#)/ 3. Now one can easily derive from
(94) the searched for Lorentz type force expression (91), if ¥ ta?%\to account that the whole
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electric field E(r); 0 owing to the neutrality of the conductors.

The presented above analysis of ¢he A.M., Ampere's derivation of the magnetic force
expression (86), as well as its consequences (91) and (92),make it possible to suppose that the
missed modified Lorentz type force expression (91) could’ also be embedded into the classical
relativistic Lagrangian and related Hamiltonian formalisms, giving rise to eventually new aspects

and interpretations of many observed during the-past-eenturiestooling“strange” experimental

phenomena.

1.5. The vacuum field theory electrodynamics equations: Hamiltonian
analysis

Any Lagrangian theory has an equivalent canonical Hamiltonian representation via the
classical Legendre transformation [64] [66] [96] [101] [102]. As we have already formulated
our vacuum field theory of a moving charged particle & in Lagrangian form, we proceed now to

its Hamiltonian analysis making use of the action functionals (50), (62) and (71).
Take, first, the Lagrangian function (52) and the momentum expression (51) for defining
the corresponding Hamiltonian function with respect to the moving reference frame K. :

H =<p,r>-L=

=—<p,p>W'(1=1 pP W) 2+ W (-1 p P W) =
(95)
=—|pP W (-1 pP WY LW (11 p P T2y =

:—(W"‘m I p [2)(Wz_| plz )—I.rz =—(W2— I plz]uz_ X
Consequently, it is easy to show [64] [96] [102] [66] that the Hamiltonian function {(95)1s a
conservation law of the dynamical field equation (49), thatis for all 7,re R
di ldr=dH [ dt =0, (96)
which naturally leads to an energy interpretation of H. Thus, we can represent the particle
energy as
=(W =1 p)". (97)
Accordingly the Hamiltonian equivalent to the vacuum field equation (49) can be written
as
¢ i=dridr=0Hdp=pW>=1pP)y"”
(98)
p =dpldr=-3H[3r=WVWW* = pF)"",
and we have the following result.

Proposition 6. The alternative freely moving point particle electrodynamic model (49} afiows the
canonical Hamiltonian formulation (98) with respect to the "rest" reference frame variables,
where the Hamiltonian function is given by expression (95). Its electrodynamics is completely

23



UNDER PEER REVIEW

773
774
775
776
777
778

779
780

781

782
783

784

785
786

787
788

789
790
791

equivalent to the classical relativistic freely moving point particle electrodynamics described in
Subsection 1.2.1.

In the analogous manner, one can now use the Lagrangian (62) to construct the
Hamiltonian function for the dynamical field equation (58), describing the motion of charged
particle £ in an external electromagnetic field in the canonical Hamiltonian form: a

fi=dr/dr=0H | 9P, P:=dP/dr=—-0H /9r, (99)
where
H =<Pi>-L=

=< P,i, —PW"' (1= PP W22 > 4W W2 (W -1 PPY '] =

=< P >-HP|2 {W',2_|P!2 )'uz —W"Z(W"E—I PIZ]'UZ -
(100)
= (W= PPYW =1 PP)"*+ < P,7, >=

=‘(W"2—| P!z)”z—§< A',P>(W"2_[p|?)~”2 _

(W1 EAF —IPPY? —E< A, P> (W =1 EAF -1 PP)'2,
being written with respect to the laboratory reference frame K. Here we took into account
that, owing to definitions (56), (57) and (63),
EA =Wu, =Wdr/d=§A=

= W%j—f= W'J}(I—Iu—uf N2 =
(101)
=Wi (+1i=7, Py =
=W (W= PP)PW = -, (W21 PF)",
and, in particular,
iy =—~EAGW 2= PPY" W =W (1-1u, )™, (102)

where A:M"* — R” is the related magnetic vector potential generated by the moving external
charged particle f‘,. Equations (99) can be rewritten with respect to the laboratory reference

frame K in the form
dridi=u,dpldt=EE+&uxB—&V < Au~u; >, {(103)
which coincides with the result (70).
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Whence, we see that the Hamiltonian function (100} satisfies the energy conservation
conditions

dH ldT=dH [ df =dH [ di =0, (104)
forall 7,¢ and te R, and that the suitable energy expression is
E=(W: =& 1AP -1PP)2 +£<AP> W =& AP -1PPY™, (105)

where the generalized momentum P = p+£A. The result (105) differs essentially from that

obtained in [5], which makes use of the Einstein's Lagrangian for a moving charged point
particle £ in an external electromagnetic field. Thus, we obtain the following proposition.

Proposition 7. The alternative classical relativistic electrodynamic model (103), which is
intrinsically compatible with the classical Maxwell equations (6), allows the Hamiltonian
formulation (99) with respect to the proper reference frame variables, where the Hamiltonian

function is given %oressian (100).

The inference above is a natural candidate for experimental validation of our theory. It
is strongly motivated by the following remark,

Remark 2. It is necessary to mention here that the Lorentz force expression (103) uses the
particle momentum p =mu, where the dynamical "mass" = -W satisfies condition (105),
The latter gives rise to the following crucial relationship between the particle energy E, and its
rest mass m, = —W, (for the velocity u =0 at the initial time moment t = 0):

[l—l(_,‘Auhnulf) , (106)
(1-21&A,1my )"
or, equivalently, at the condition |EA m, F<1/2

my =B (32 S I-EATET4IEA IR E | (107

where A, :=Al_ E®, which strongly differs from the classical expression i, = B —£a
following from (44) and is not depending a priori on the external potential energy &p,. As  the
quantity |EA,1E, 10, the following asymptotical mass values follow from (107):

E, = m,

€A I 4
ny E]___H_ZfEQFEO’ mi; iv’El‘fAul, (108)
; €A . .
The first mass value my Eo—m is physically reasonable from the classic
a gl

relativistic point of view, giving rise at wekk enough magnetic potential to the charged particle
energy E,, yet the second mass values mf"’ ; +\J21£A, | still need their physical interpretation,

as they may describe both matter and anti-matter states, consisting, at a very huge energy
modulus |E,|-» 00, of some charged particle excitations of the vacuum. It is also worth gf

mentioning that the sign of the mass m, coincides with that of the energy E, nly the
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inequality 1-1 EA, 1 my ' 20 holds.

To make this difference more clear, we now analyze the Lorentz force (76) from the
Hamiltonian point of view based on the Lagrangian function (74). Thus, we obtain that the
corresponding Hamiltonian function

H =< P,i>-L=<Pi>+W(+iF)* -E<Ai>=

=< P=EAF > AW (L1717 =
(109)
=—< p,p>W (=1 pP W 2 4+W (=1 pP W) =

fhe =1 p YW1 p Py =~ 1 pF)”,
Since p= Pm(fA‘,\{expression (109) assumes the final "no interaction” [5] [65] [103] [104] form

H=~(W'-1P-£AF)", (110)
which is conserved with respect to the evolution equations (72) and (73), that is
dH [dt=dH /dt =0 (111)

for all 7, R. These equations Tatter are equivalent to the following Hamiltonian system
; =0H[dP= (P"Lfﬁ)(ﬂ—’z—l P-EAR)™,

(112)
P =—0H/9r=(WYW-V<EA (P-EA)SYW = P=EATY?,
as one can readily check by direct calculations. Actually, the first equation
Fo=(P=EAW =1 P=£AP)" = pW =1 pF)"? =
(113)

=mu(W =1 pP)y"? = —Wa(W=1p )" =u(l-1uF)™"?,
holds, owing to the condition d7 = dt(1-1uF)"* and definitions p:=mu, m =—W, postulated
from the very beginning. Similarly we obtain that

P =—VW(~1pP W24V <EAu>(1-1 pP /W) =
(114)

=-VW(=lu Py +V < EAu> (I-1ul)™?,
coincides with equation (75) in the evolution parameter 1€ R. This can be formulated as the
next result.

Proposition 8. The dual to the classical relativistic electrodynamic model (76) allows the
canonical Hamiltonian formulation (112) with respect to the proper reference frame variables,
where the Hamiltonian function is given by expression (110). Moreover, this formulation
circumvents the “mass-potential energy” controversy attached to the classical electrodynamic
maodel (42).
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The maodified Lorentz force expression (76) and the related rest energy relationship are
characterized by the following remark.

Remark 3. If we make use of the modified relativistic Lorentz force expression (76) as an
alternative to the classical one of (46), the corresponding charged particle & energy expression

(110) also gives rise to a true physically reasonable energy expression (at the velocity
w:=0e B at the initial time moment t=0); namely, E, =m, instead of the physically
controversial classical expression B, =m, +&g,, where @,:=@|_,, corresponding to the case
(44).

1.6. g\:;clusfons

All offdynamical field equations discussed above are canonical Hamiltonian systems with
respect to the corresponding proper reference frames K., parameterized by suitable time
parameters 7€ R. Upon passing to the basic laboratory reference frame K, with the time
parameter te R, naturally the related Hamiltonian structure is lost, giving rise to a new
interpretation of the real particle motion. Namely, one that has an absolute sense only with
respect to the proper reference system, and otherwise being completely relative with respect
to all other reference frames. As for the Hamiltonian expressions (95), (100) and (110), one
observes that they all depend strongly on the vacuum potential energy field function
W :M" — R, thereby avoiding the mass problem of the classical energy expression pointed out
by L. Brillouin Brrori-Reference-seuree-nat-found.. It should be noted that the canonical Dirac
quantization procedure can be applied only to the corresponding dynamical field systems
considered with respect to their proper reference frames.

Remark 4. Some comments are in order concerning the classical relativity principle. We have
obtained our results relying only on the natural notion of the proper reference frame and its
suitable Lorentz parametrization with respect to any other moving reference frames. ft seems
reasonable then that the true state changes of a moving charged particle & are exactly realized
only with respect ta its proper reference system. Then the only remaining question would be
about the physical justification of the corresponding relationship between time parameters of
moving and proper reference frames.

The relationship between reference frames that we have used through is expressed as
dr=di(1-1ul)", (115)
where 1:=dr/dte E is the velocity vector with which the proper reference frame K, moves
with respect to another arbitrarily chosen reference frame K. Expression (115) implies, in
particular, that
di*=ldrP=dz’, {116)
which is identical to the classical infinitesimal Lorentz invariant. This is not a coincidence, since
all our dynamical vacuum field equations were derived in turn [18][19] from the governing
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equations of the vacuum potential field function W : M* —» R in the form

W 191> —V*W = Ep, oW [ dt +V(vW) =0,9p/ 91 +V(vp) =0, (117)
which is a priori Lorentz invariant. Here pe R is the charge density and vi=dr/df the
associated local velacity of the vacuum field potential evolution. Consequently, the dynamical
infinitesimal Lorentz invariant (116) reflects this intrinsic structure of equations (117). If it is
rewritten in the following nonstandard Euclidean form:

di’ =do*+1drl’ (118)

it gives rise to a completely different relationship between the reference frames K, and K,

namely
dr =dr(1+1717)"?, (119)

where F:=dr/drt is the related particle velocity with respect to the proper reference system.
Thus, we observe that all our Lagrangian analysis in this Section is based on the corresponding
functional expressions written in these "Euclidean" space-time coordinates and with respect to
which the least action principle was applied. So we see that there are two alternatives - the first
is to apply the least action principle to the corresponding Lagrangian functions expressed in the
Minkowski space-time variables with respect to an arbitrarily chosen reference frame K, and
the second is to apply the least action principle to the corresponding Lagrangian functions
expressed in Euclidean space-time variables with respect to the proper reference frame K_.

This leads us to a slightly amusing but thought-provoking observation: It follows from
our analysis that all of the results of classical special relativity related with the electrodynamics
of charged point particles can be obtained (in a one-to-one correspondence) using of our new
definitions of the dynamical particle mass and the least action principle with respect to the
associated Euclidean space-time variables in the proper reference system.

An additional remark concerning the quantization procedure of the proposed
electrodynamics models is in order: If the dynamical vacuum field equations are expressed in
canohical Hamiltonian form, as we have done in this paper, only straightforward technical
details are required to quantize the equations and obtain the corresponding Schrédinger
evolution equations in suitable Hilbert spaces of quantum states. There is another striking
implication from our approach: the Einstein equivalence principle [1] [S] [65] [89] is rendered
superfluous for our vacuum field theory of electromagnetism and gravity.

Using the canonical Hamiltonian formalism devised here for the alternative charged
point particle electrodynamics models, we found it rather easy to treat the Dirac quantization.
The results obtained compared favorably with classical quantization, but it must be admitted
that we still have not given a compelling physical motivation for our new models. This is
something that we plan to revisit in future investigations. Another important aspect of our
vacuum field theory no-geometry (geometry-free) approach to combining the electrodynamics
with the gravity, is the manner in which it singles out the decisive role of the proper reference
frame K_. More precisely, all of our electrodynamics models allow both the Lagrangian and

Hamiltonian formulations with respect to the proper reference system evolution parameter
7e R, which are well suited the to canonical quantization. The physical nature of this fact
remains j§ as yet not quite clear. In fact, as far as we know [5] [65] [75] [76] [89], there is no
physically reasonable explanation of this decisive role of the proper reference system, except
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for that given by R. Feynman who argued in [1] that the relativistic expression for the classical
Lorentz force (46) has physical sense only with respect to the proper reference frame variables
(7,7)e RXE", In future research we plan to analyze the quantization scheme in more detail
and begin work on formulating a vacuum quantum field theory of infinitely many particle
systems.

2. The Lorentz type force analysis within the Feynman proper time
paradigm and the radiation theory

2.1. Introductory setting

The elementary point charged particle, like electron, mass problem was inspiring many
physicists [20] from the past as J. J. Thompson, G.G. Stokes, H.A. Lorentz, E. Mach, M. Abraham,
P.A. M. Dirac, G.A. Schott and others. Nonetheless, their studies have not given rise to a clear
explanation of this phenomenon that stimulated new researchers to tackle it from different
approaches based on new ideas stemming both from the classical Maxwell-lorentz
electromagnetic theory, as in [1] [12] [21] [22] [24] [25] [26] [27] [28] [29] [30] [31] [32] [33]
[34] [35] [36] [37] [39] [74] [105] [106] [107], and modern quantum field theories of Yang-Mills
and Higgs type, as in [40] [41] [43] [108] and others, whose recent and extensive review is
done in [44]. e

In the present work | will mostly concentrate on detaitanalysis and consequences of the
Feynman proper time paradigm [1] [22] [45] [46] subject to deriving the electromagnetic
Maxwell equations and the related Lorentz like force expression considered from the vacuum
field theory approach, developed in works [49] [50] [51], and further, on its applications to the
electromagnetic mass origin problem. Our treatment of this and related problems, based on
the least action principle within the Feynman proper time paradigm [1], has allowed to
construct the respectively modified Lorentz type equation for a moving in space and radiating
energ Our analysis also elucidates, in particular, the computations of
the self-interacting electron mass term in [29], where there was proposed a not proper solution
to the well known classical Abraham-Lorentz [52] [53] [54] [55] and Dirac [56] electyon
electromagnetic "4/3-electron mass" problem. As a result of our scrutinized studyi he
classical electromagnetic mass problem we have stated that it can be satisfactory solved within
the classical H. Lorentz and M. Abraham reasonings augmented with the additional electron
stability condition, which was not takeet appeared to be very important
for balancing the related electromagnetic field and mechanical electron momenta. The latter,
following recent -eneugh. works [31] [35], devoted to analyzing the electron charged shell
model, can be realized within théve suggested pressure-energy compensation principle, suitably
applied to the ambient electromagnetic energy fluctuations and the owp electrostatic Coulomb
electron energy.

2.2. Feynman proper time paradigm geometric analysis
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In this section, we will develop further the vacuum field theory approach within the
Feynman proper time paradigm, devised before in [49] [51], to the electromagnetic J.C.
Maxwell and H. Lorentz electron theories and show that they should be suitably modified:
namely, the basic Lorentz force equations should be generalized following the Landau-Lifschitz
least action recipe [5], taking also into account the pure electromagnetic field impact. When
appl e devised vacuum field theory approach to the classical electron shell model, the
resulting Lorentz force expression appears to satisfactorily explain the electron inertial mass
term exactly coinciding with the electron relativistic mass, thus confirming the well known
assumption [2] [109] by M. Abraham and H. Lorentz.

As was reported by F. Dyson [45] [46], the original Feynman approach derivation of the
electromagnetic Maxwell equations was based on an a priori general form of the classical
Newton type force, acting on a charged point particle moving in three-dimensional space R?
endowed with the canonical Poisson brackets on the phase variables, defined on the associated
tangent space T(R'). As a result of this approach thete only the first part of the Maxwell
equations were derived, as the second part, owing to F. Dyson [45], is related with the charged
matter nature, which appeared to be hidden. Trying to complete this Feynman approach to the
derivation of Maxwell's equations more systematically we have observed [49] that the original
Feynman's calculations, based on Poisson brackets analysis, were performed on the tangent
space 1!"(R")|I which is, subject to the problem posed, not physically proper. The true Poisson
brackets can be correctly defined only on the coadjoint phase space T'(R*)§ as seen from the
classical Lagrangian equations and the related Legendre transformation [47] [64] [96] [110]
from T(R*). to T"(R’). Moreover, within this observation, the corresponding dynamical
Lorentz type equation for a charged point particle should be written for the particle
momentum, not for the particle velocity, whose value is well defined only with respect to the
proper relativistic reference frame, associated with the charged point particle owing to the fact
that the Maxwell equations are Lorentz invariant.

Thus, from the very beginning, we shall reanalyze the structure of the Lorentz force
exerted on a moving charged point particle with a charge £e R by another point charged
particle with a charge é"fe R, making use of the classical Lagrangian approach, and rederive
the corresponding electromagnetic Maxwell equations. The latter appears to be strongly
related to the charged point mass structure of the electromagnetic origin as was suggested by

R. Feynman and F. Dyson.
Consider a charged point particle moving in an electromagnetic field. For its description,

it is convenient to introduce a trivial fiber bundle structure 7:M — R* M = R*xG , with the

abelian structure group G:=R\{0 ), equivariantly acting on the canonically symplectic

coadjoint space T'(M ) endowed both with the canonical symplectic structure
&Jm(p, wrg) = dpr'am(r,g) =< dp,ndr >+ (120)
+ <dy,agldg >+ < ydg”  adg >¢

for all (p,yir,g)eT'(M), where a"(r.g)i=<p.dr>+<yg'dg>,eT (M) is the

corresponding Liouville form on M , and with a connection one-form A : M =T (M)XG as
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A(r,g)=g" <A(r).dr>g+g dg, (121)
with e G',(r,g)e R*xG, and <--> being the scalar product in E*. The corresponding
curvature 2-form ¥ e A’ (R ® G is

3
()= dA(r,8) +A(r,g) AA(r. g) = £ ) F,(r)dr' ndr’, (122)
i j=1
where
04, 04
Fu(!] I=‘-af:—'a—rj- {123}

for i,j:fj is the electromagnetic tensor with respect to the reference frame K,

characterized by the phase space coordinates (r, p)e T°(RY). As an element £e G is still not
fixed, it is natural to apply the standard [47] [64] [96] [110] invariant Marsden-Weinstein-
Meyer reduction to the orbit factor space fff =F, /G, subject to the related momentum

mapping [:T"(M )= G, constructed with respect to the canonical symplectic structure (120}
on T'(M), where, by definition, £€G s constant, P:=/"'(§)c T'(M) and
G:={geG: Ad_£) is the isotropy group of the element Se G'.

As a result of the Marsden-Weinstein-Meyer reduction, one finds that G,; G, the
factor-space f_’{; T*(R*) is endowed with a suitably reduced symplectic structure
Zz')?] eT’( Pg-} and the corresponding Poisson brackets on the reduced manifold }5; are

{r.ri), =0,(p;,r'); =4,

(pop;ly =EF;(n)
for f,j:l,_S, considered with respect to the reference frame K. Introducing a new
momentum variable

(124)

= p+EA) (125)
on P, , itis easy to verify that & — @ :=< d7,ndr> , giving rise to the following “minimal
interaction” canonical Poisson brackets:

frie }d}h =0, {.ﬁp’j }d'{_z; = 5_:-'» {}E—:sﬁ'—j}ﬂézp =0 (126)
(< <
for i, j =1,3 with respect to some new reference frame th,. characterized by the phase space

coordinates (r,7)e 13§ and a new evolution parameter 1 € R if and only if the Maxwell field
compatibility equations
OF, 10, +0F 1 95, +0F, 1 9r, =0 (127)

are satisfied on R* forall i, j,k = f';' with the curvature tensor (123).
Now we proceed to a dynamic description of the interaction between two moving
charged point particles & and g“’r, moving respectively, with the velocities u:=dr/dt and

u, i=dr, /dt subject to the reference frame K,. Unfortunately, there is a fundamental problem

in correctly formulating a physically suitable action functional and the related least action
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1049  condition. There are clearly possibilities such as
1050 S = [P rdr 1 dr) (128)
h
1051  ona temporal interval [1,,4,] € R with respect to the laboratory reference frame K,,
oY g @) g
1052 2= j.—dr LY rydr f dr') (129)
1
1053  on atemporal interval [;;,r;] — R with respect to the moving reference frame K, and
- f

1054 § = [PdeLOrdr ) de) (130)
o

1055 on a temporal interval [7,,7,]cR with respect to the proper time reference frame K,
1056 naturally related to the moving charged point particle £.

1057 It was first observed by Poincaré and Minkowski [65] that the temporal differential d7
1058  is not a closed differential one-form, which physically means that a particle can traverse many
1059 different paths in space R’ with respect to the reference frame K, during any given proper
1060  time interval d7, naturally related to its motion. This fact was stressed [65] [111] [112] [113]
1061  [114] by Einstein, Minkowski and Poincaré, and later exhaustively analyzed by R. Feynman, who
1062  argued [1] that the dynamical equation of a moving point charged particle is physically sensible
1063  only with respect to its proper time reference frame. This is Feynman's proper time reference
1064 frame paradigm, which was recently further elaborated and applied both to the
1065 electromagnetic Maxwell equations in [23] [24] [74] and to the Lorentz type equation for a
1066  moving charged point particle under™éxternal electromagnetic field in [47] [49] [50] [51]. As w
1067  was there argued from a physical point of view, the least action principle should be applied only
1068 to the expression (130) written with respect to the proper time reference frame K., whose
1069  temporal parameter 7€ R is independent of an observer and is a closed differential one-form.
1070 Consequently, this action functional is also mathematically sensible, which in part reflects the
1071 Poincaré's and Minkowski's observation that the infinitesimal quadratic interval

1072 dt* =(di' Y -\dr—dr, V', (131)
1073  relating the reference frames K, and K., can be invariantly used for the four-dimensional

1074  relativistic geometry. The most natural way to contend with this problem is to first consider the
1075 quasi-relativistic dynamics of the charged point particle £ with respect to the moving

1076 reference frame K. subject to which the charged point particle aff is at rest. Therefore, it 1/5
r
1077  possible to write down a suitable action functional (129), up to O(1/¢"), as the light velocity

1078 ¢ — o, where the quasi-classical Lagrangian function L: )[r;a'rfdr'] can be naturally chosen
1079  as
1080 L 0sdr 1 Y= m (9)|dr

). (132)

1081  where m (r)e R, is the(charged particle £Jinertial mass paramet rand @ (r) is the potential

1082  function generated by the charged particle é"f at a point re R* with respect to the reference
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1083 frame K.. Since the standard temporal relationships between reference frames K, and K:. :
1084 di = di(1-|dr, /i [ )", (133)
1085  as well as between the reference frames K. and K_:

1086 dr=df (1-|drdi —dr, 1dr| )", (134)
1087  give rise, up to O(1/¢*), as ¢ —co, to dr' 3 dr and dt; dr, respectively, it is easy to verify
1088  that the least action condition 55':'} =0 is equivalent to the dynamical equation

1089 drldt = VL:‘)[r‘;(h‘f drfl= (—;-|d;- [ dt—dr, id.rr)Vm - &V @(r), (135)
1090  where we have defined the generalized canonical momentum as

1091 7= 0L {rsdr 1 di)13(dr | diy = m(dr [ de~dr, | di), (136)

1092  with the dash signs dropped and denoted by " V" the usual gradient operator in E*. Equating
1093  the canonical momentum expression (136) with respect to the reference frame K. to that of

1094  (125) with respect to the canonical reference frame I{r,, and identifying the reference frame

1095 K ; with Kr,, one obtains that

1 o RS m(dr I dt—dr, | dt) = mdr [ dt—EA(r), (137)
1097 gw«-u‘g rise to the important inertial particle mass determining expression

1098 m==&e(r), (138)
1099  which right away follows from the relationship

1100 qo(r)d:;, fdt = A(r). (139)
1101 The latter is well known in the classical electromagnetic theory [2] [5] for potentials
1102 (@, A)e T'(M") satisfying the Lorentz condition

1103 do(r)/dt+ <V, A(r) >=0, (140)

1104  vyet the expression (138) looks very nontrivial in relating the " inertial" mass of the charged
1105  point particle & to the electric potential, being both generated by the ambient charged point

1106  particles &,. As was argued in articles [49] [50], the above mass phenomenon is closely related
1107  and from a physical perspective shows its deep relationship to the classical electromagnetic
1108  mass problem. qvu;iwn.
1109 Before further analysis of the -completely relativisticthe charge ¢ metion under
1110  consideration, we substitute the mass expression (138) into the quasi-relativistic action
1111 functional (129) with the Lagrangian (132). As a result, we obtain two possible action functional
1112 expressions, taking into account two main temporal parameters choices:

: e 1 ; 2. s
1113 s¢) = ujfzf;-‘qa ) +5ldr.fdr ~dr, 1df [ ydt (141)

1

1114  onaninterval [1,,,]c R, or

1115 Lok -j Ltp (nQ1 +%|drldr—dr}. fa"i‘r)df (142)
r1
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onan [7,,7,] = R . The direct relativistic transformations of (142) entail that

5O = _J‘:foga' Q1 %[m- Idt~dr, 1dd] )dz;
o ~[PEp o+ |dr1 de—dr, 1ad ) dr = (143)
q

=—["¢p ()= dr 1 df iy 1dd )V dT=~[6p () ,
q Y

giving rise to the correct, from the physical point of view, relativistic action functional form
{129), suitably transformed to the proper time reference frame representation (130) via the
Feynman proper time paradigm. Thus, we have shown that the true action functional
procedure consists in a physically motivated choice of either the action functional expression
form (128) or (129). Then, it is transformed to the proper time action functional representation
form (130) within the Feynman paradigm, and the least action principle is applied.

Concerning the above discussed problem of describing the motion of a charged point
particle £ in the electromagnetic field generated by another moving charged point particle g’;},

it must be mentioned that we have chosen the quasi-relativistic functional expression (132) in
the form (129) with respect to the moving reference frame K., because its form is physically
reasonable and acceptable, since the charged point particle ff is then at rest, generating no

magnetic field.
Based on the above relativistic action functional expression

SO = —j:%,“.;a' (1 +|dr/ d—dr, | def )" dz (144)
written with respect to the proper reference from K., one finds the following evolution
equation:

dr, | de=~& ¢ (1 +|dr [ dz—dr, 1de] )™, (145)
where the generalized momentum is given exactly by the relationship (136):

7, =mldr/dt—dr, | dt). (146)

Making use of the relativistic transformation (133) and the next one (134), the equation
(145) is easily transformed to

d 2
< p+A)=-V () ey [, (147)
where we took into account the related definitions: (138) for the charged particle £ mass, (139)

' 2
for the magnetic vector potential and ¢(r)= @ (r)/(1 ~|uf| )2 for the scalar electric potential

with respect to the laboratory reference frame K. Equation (147) can be further transformed,

using elementary vector algebra, to the classical Lorentz type form:
dp/ldt=EE+&uxB~&V <u—u, A>, {148)

where
E=-0Aldi-Ve (149)
is the related electric field and
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B:=VxA {150)
is the related magnetic field, exerted by the moving charged point particle ff on the charged

point particle & with respect to the laboratory reference frame K. The Lorentz type force
equation (148) was obtained in [49] [50] in terms of the moving reference frame K:.. and

recently reanalyzed in [34] [50]. The obtained results follow in part [16] [17] from Ampére's
classical works on constructing the magnetic force between two neutral conductors with
stationary currents.

3. The self-interaction problem: historical preliminaries

The elementary point charged particle, likevelectron, mass problem was inspiring many
physicists [20] from the past as J. ). Thompson, G.G. Stokes, H.A. Lorentz, E. Mach, M. Abraham,
P.A. M. Dirac, G.A. Schott, J. Schwinger and many others. Nonetheless, their studies have not
given rise to a clear explanation of this phenomenon that stimulated new researchers to tackle
it from different approaches based on new ideas stemming both from the classical Maxwell-
Lorentz electromagnetic theory, as in [1] [21] [22] [24] [25] [26] [34] [74] [109], and modern
quantum field theories of Yang-Mills and Higgs type, as in [40] [41] [43] [108] and others,
whose recent and extensive review is in [44]. a

In the present work we mostly concentrate onvdetailed quantum and classical analysis
of the self-interacting shell madel charged particle within the Fock many-temporal approach
[115] [116] and the Feynman proper time paradigm [1] [22] [45] [46] subject to deriving the
electromagnetic Maxwell equations and the related Lorentz like force expression within the
vacuum field theory approach, devised in works [24] [49] [50] [51] [74] [117], and further, we
elaborate the obtained results to treating the classical H. Lorentz and M. Abraham [12] [27]
[28] [29] [30] (31] [32] [33] [35] [36] [37] [39] [52] [53][54] [107] [118] electromagnetic
mass origin problem. For the first time the proper time approach to classical electrodynamics
and quantum mechanics was possibly suggested sl in 1937 by V. Fock [119], in which, in
particular, there was constructed an alternative proper time based Lagrangian description of a
point charged particle undéréxternal electromagnetic field. A more detailed motivation of
using the proper time approach was later presented by R. Feynman in his Lectures [1].
Concerning the alternative and much later investigations of the a priori given quantum
electromagnetic Maxwell equations in the Fock space one can mention the Gupta-Bleiler [120]
[121] [122] and [61] [71] [88] approaches. The first one, as it is well known [71] [121],
contradicts ,one of the most important field theoretical principles - the positive definiteness of
the quantum event probability and is strongly based on making nonphysical use of an indefinite
metric on quantum states. The second one is completely non-relativistic and based on the
canonical quantization scheme [71] in the case of the Coulomb gauge condition. Inspired by
these and related classical results, we have stated that the self-interacting quantum mechanism
of the charged particle with its self-generated electromagnetic field consists of two physically
different phenomena, whose influence on the structure of the resulting Hamilton interaction
operator appeared to be crucial and gave rise to a modified analysis of the related classical shell
model charged particle within the Lagrangian formalism. As a result of our scrutinized studymg
the classical electromagnetic mass problem there was demonstrated that it can be satisfactory
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solved within the classical H. Lorentz and M. Abraham reasonings augmented with the
additional electron stability condition, which was not takeet appeared to
be very impartant for balancing the related electromagnetic field and mechanical electron
momenta. The latter, following the recent emeugh works [31] [35] [118] devoted to analyzing
the electron charged shell model, was realized within thepe suggested pressure-energy
compensation principle, suitably applied to the ambient electromagnetic energy fluctuations
and the self-generated electrostatic Coulomb electron energy. In the case of a point charged
particle the alternative relativistic invariant apgroach to studying the radiation reaction force
was befere suggested by Teitelbom [37], was hased on a forrjal relativistic invariant
splitting of the electromagnetic energy-momentum tensor, ard deriviig the related suitably
renormalized charged particle equations of motion. Ha ﬂumg

4. The charged particle self-interaction quantum origin

Consider a free relativistic quantum fermionic @ priori massless particle field described
[121] [123] by means of the secondly-quantized self-adjoint Dirac-Weil type Hamiltonian

H, = _fkjd’xw* < ca',%V >, (151)
where e E'® End M' denotes the standard Dirac spin matrix vector representation in the
Minkowski space M", ce R, is the light velocity, <--> denotes the usual scalar product in
the Euclidean space E*, w:R* — (End ®)*- a spinor of the quantum annihilation operators,
acting in a suitable Fock space @ endowed with the usual scalar product (. and
'R = (End ®)'-the respectively adjoint co-spinor of creation operators in the Fock space
. The following anticommuting [121] [123] operator relationships

v, 0p (Y () = 6,8(x-y),

v+ () = 0, (152)

vy N+ O (x) = 0
hold for any x,ye R'and j,le 1,4, being compatible with the related Heisenberg operator
dynamics, generated by the fermionic Hamiltonian operator (151):

awfa?:=%[ﬂ,.yj. dy* 197 = ;é[Hf,;zz*] (153)
I

with respect to its own laboratory reference frame K;, parameterized by the evolution

parameter 7 € R.

It is clear that the Hamiltonian (151) possesses no information of such an important
characteristic as the electric charge £e R, which generates the own electromagnetic field
interacting both with it and with other ambient charged particles. As j(is usually accepted, we
will model a free electromagnetic field by its bosonic self-adjoint operator four-potential
(@,A):R* = Hom (P,d"), whose evolution is generated by the self-adjoint Hamiltonian
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H, = 2]19{431{ 1k 12 [< A" (k), A(k) > — (k)" (k)] (154)

acting in the befere introduced common Fock space @ and represented by means of the field
operators expanded into the Fourier integrals

1 ; Ap iy
p(x) =an dkpk)expli < k,x>)+——— [ Ak (k) exp(—i <k, x>),

Q@ )w
(155)

AWt =osE m]‘ A KAk exp(i < k, Sk

The coefficients of the expansions (155) satisfy the following [115] [116] [121]
commutation operator relationships:

j AIA (yexp(—i < k,x >) .

@), @' () = *mé‘(k )

k), A ()] = 0,

[p(k),@(s)] = 0=[p" (k) @" ()] (156)
A " i 5.6

(ARLA ) = 5=8,005)

[A,(k),A()] = O=[A](k)A ()]
forall k,se E' and j.le 1,3, compatible with the related Heisenberg operator dynamics [121]

generated by the electromagnetic field Hamiltonian {154)

0A dg
e Al ~I='—H. 157
77 "[H,.Al P [H,. ], (157)
with respect to its own laboratory reference frame K, parameterized by the temporal
parameter fe R. In particular, based on the commutation relationships (156), one can check

that the electric

B 9p-L 08 (158)

¢ of
and magnetic
B:=VxA {159)

fields satisfy the operator Maxwell equations in vacuum, and the following weak Lorenz type
constraints

C,(® : =il<k,Alk)>—1klp()]P =0,
(160)
Crilyd @ =—il<k,A*(K)>~1klg"()]1@=0
hold in the Fock space @ for all ke E*. As the operators C,(k):®—® and Cilk)d—@
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1245

1246
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1260

1261

1262
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are commuting both to each other for all k € E* and with the Hamiltonian (154), that is
Cok), G (D] = 0=[C, (), Gy (D],
(161)
Cy(k),H,] = 0=[Cj(k),H,]
for any k,/€ B’, the constraints (160) are compatible with the evolution operator equations

{(157). Moreover, concerning the Hamiltonian operator (154), whose equivalent operator
expression is

H!,=%'|-33(IEF +1B), (162)

the following proposition holds.

Proposition 9. The Hamiltonian operator (154) on th&reduced by means of constraints (160)
Fock subspace ®Jis Hermitian and non-negative definite.
n
Proof, Reallyf to define the operator

Blk):= A(k]—%(k,f‘l(k) >, (163)

the Hamiltonian operator (154) can be rewritten equivalently as

H, = 2f &kIkF (<K x B (k). ~-x Bk) > +

Ikl Ik
(164)
[ + ] + . +
+i:c_rq’(k)c” () + = (0 =1k 19 (G, (0))-
The latter, owing to the weak Lorenz type constraints (160), gives rise to the inequality
. k k
JH = 2 .k kPl(«—xB(k) f,—xB(K)f >) =
(FHS) = 2fq ¥ BUOS X BUOS >)
(165)

= 2 @k IkxBR)fIF20

for any vector f e &, proving the proposition.

Remark 5. The Hamiltonian operator expression (154) easily follows [116] [121] [123] from the
well known relativistic invariant classical Fock-Podolsky electromagnetic Lagrangian
1 10A 10A
L =—| dA<Vo+——Vot——>—
> 2""3 =¥ cor ¢ cor
(166)

- B VxA.VxA>—(l§£+~:V,A>)2]
c o

Based on thefcorresponding to (166))Euler-Lagrange equations,one finds that
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1 9°A 1 %9
] iy M - 0' 7
¢’ ot ¢t of
whose wave solutions allow to determine the electromagnetic fields (158) and (159) and to
check that the related Maxwell field equations in vacuum are satisfied if the Lorenz condition
C, (7, :=l%—i’3+ <V,A>=0 (168)
c ot
holds for all (f,x)e M". Moreover, from the Lagrangian expression (166) one easily abtains by
means of the corresponding Legendre transformation [64] [96] [121] the Hamiltonian operatar
H, = %Lsd“x(l EF +1BP -C2)+ _[Rjd33'(< V,ASP—<Vp,Ves>), (169)
being equivalent in the Fock space &, modulo the solutions (155) of the wave equations (167),

to the written-abeve operator expression (154).

Ap=0, (167)

Taking into account the operator equations (157), one easily obtains that
Cylk) = i<k, Alk)>—1klp(k)]£0,
(170)
Citk) = —il<k,A"(k)>—1klg*(k)]#0,
contradicting the imposed above Lorenz constraint (168). As the latter should be vanishing in
the Fock space, it was suggested in [115] to reduce the Fock space & to a subspace, on which

t-heﬁey the weak Lorenz type operator constraints (160} Concerning these
constraints, imposed on the Fock space @, it is necessary to mention that a corresponding

vacuum vector 10> e @ does not, evidently, annihilate the operators @(k):® — P and
A*(k): @ — D, as they do not form computing pairs with operators C;(k) and C,(k),

respectively.

5. The transformed Fock space, its Lorenz type reduction and the
Quantum Maxwell equations

As we are interested in describing the self-interaction of the fermionic quantum particle
field w:d —d" with the related self-generated bosonic electromagnetic potentials field
(@, A): @ — @", we need, within the Fock many-temporal description approach [115] [116],
first to consider the fermionic particle and bosonic electromagnetic fields with respect to the
common reference frame K, specified by the temporal parameter 1€ R. Secondly, we need to

make use of the classical "minimum interaction” principle [47] [117], (whose sketched
backgrounds are presented in Supplement, Section 9. and to apply to the Hamiltonian operator
expression (151):

Hi™ J'R_,djx;;r* < m,E_V Syt L_‘d"x(éy/"wa—§w" <ca,A> ), (171)
)

in which the fermionic :® —®* and bosonic (@,A):® — P* operators are commuting a
priori to each other as quantum fields of different nature. Since the whole quantum field
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system consists of the fermionic particle and bosonic self-generated electromagnetic fields, its
evolution is described by means of the joint Hamiltonian operator

H, 6 =H"+H (172)
It f &

via the Heisenberg equations

a i apt i +
R LS e EAN
(173)
A i d i
"_af = ‘;_L]‘[Hf—bv A]s a? = %I-h(f—b’ 1;0]

with respect to the common temporal parameter re R, as in this case there is assumed that
the corresponding temporal parameters / € R and 1 € R coincide, that is f=f=teR and,
by definition, the operator spinor W(f,x):=W(r,)l; ;. . Simultaneously, there(should be,

evidently, satisfied|the-before-derived-beth the electromagnetic field evolution equations (157},
with respect to the own reference frame K and the modified fermionic charged particle field

equations
; i3
W e L), e St (174)
with respect to the own reference frame K.
Being mostly interested in the evolution of the quantum particle fermionic field
w:d — P, we can get rid of the bosonic Hamiltonian impact into (174) having applied to the
Fock space @ the unitary canonical transformation
P d=UM)D, (175)
where we denoted by U (r): @ — @ the unitary operator satisfying the determining equation
i
h
subject to the bosonic Hamiltonian operator (154) and the temporal parameter teR. As a
consequence of the transformation (175) we obtain the effective fermionic particle field
interaction Hamiltonian operator

AU dt=-H,U() (176)

H’ff"” : =UMHU (1) =
(177)
= J-Rxdsa\'WJr <C(I,L_IV > W+Injdjx(§w"¥,@_§w+ - C‘a,A?' >y,
i
where, by definition,
A=UMAU' (1), p:=U0@U" ()], (178)

subject to which the evolution in the transformed Fock space &, induced by the Hamiltonian
operator (154)

H,:=U@OHU (1) = 2;.;-“13}‘ Lk 1P [< A k), A(D) > — @U@ ()], {179)
became completely eliminated. Concerning the Hamiltonian operator (179) here we need to
mention that the related commutation relationships for the operatars (k) A(k)): P — D'
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