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          Original Research Article 1 
   A Hydrodynamic Model of Flow in Bifurcating Streams, Part 2: Effects   2 
                                      of Environmental Thermal Differentials 3 
 4 
Abstract This paper presents a hydrodynamic model of flow in a bifurcating stream, in which 5 
the effects of environmental thermal differentials are investigated. The governing nonlinear 6 
and coupled equations are solved analytically using similarity transformation and 7 
perturbation series expansions methods. Solutions for the temperature, velocity and 8 
concentration are obtained and analyzed quantitatively and graphically. The results show 9 
that the heat exchange parameter reduces the velocity of the flow, and this enhances early 10 
deposition of the stream bed loads. Furthermore, it is seen that free convection force 11 
increases the flow velocity, thus serving as a cushion for the adverse effect of heat 12 
exchange parameter on the flow. 13 
 14 
Keywords:   bifurcating stream, hydrodynamic model, thermal differentials,  15 
similarity transformation,  perturbation method 16 
 17 
 18 
 1.    INTRODUCTION 19 
 20 
Much of the studies on flow in streams and rivers have been carried out using non-21 
hydrodynamic approaches such as hydrologic model, which involves the use of spatial form 22 
of the continuity equation or water balance and flux relation (see [1]); hydraulic model, which 23 
is based on the use of St. Venant equations (see [2]); stochastic probability model, which 24 
involves the use of Monte Carlo method (see [3, 4]). Being motivated by this, we presented 25 
an analytic and hydrodynamic model of the flow in a bifurcating stream. In the said model, 26 
which is part one of the study, the effects of bifurcation angle and nature of the source rocks 27 
on the flow were investigated, while the effects of environmental thermal differentials were 28 
played down. Presently, we are motivated to examine the situation where the environmental 29 
thermal differentials are considered significant. Therefore, the purpose of this study is to 30 
investigate the effect of environmental thermal differentials on the flow of a bifurcating 31 
stream. 32 
 33 
Several reports exist in literature on the flow in bifurcating and non-bifurcating channels. 34 
Bifurcation phenomenon is seen in both natural and artificial worlds.Therefore, it is 35 
significant in science and engineering. This import greatly attracted the interest of 36 
researchers in the past decades. [5] introduced the use of theoretical approach or 37 
mathematical tools in the study of branching flows. [6] investigated a three-dimensional one-38 
to-two symmetrical flow in which the mother is straight and of circular cross-section, 39 
containing a fully developed incident motion, while the diverging daughters are straight and 40 
of semi-circular cross-section.  Using the method of direct numerical simulation and slender 41 
modeling for a variety of Reynolds number and divergent angles, they observed that there is 42 
a flow separation or reversal at the corners of the junction as well as the upstream and 43 
downstream influence with which the inlet pressure increases as the bifurcation angle 44 
increases.More so, [7] showed that changes in bifurcation angle alter the flow condition and 45 
changes the magnitude of the wall shear stress. [8] studied the flow phenomenon in micro/ 46 
mini channel networks of symmetrical bifurcation using computer simulation with analytic 47 
validation, and saw that oscillation amplitude has dominant effects on the streaming velocity 48 
in channel networks. Moreso, they observed that the streaming velocity is proportional to the 49 
oscillation frequency. [9] studied blood flow in abifurcating artery, using the method of 50 
regular perturbation, and noticed that an increase in bifurcation angle and Reynolds number 51 
increases the transport velocity factor.  52 
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 53 
Furthermore, the flow through porous media is prevalent in nature and artficial settings. 54 
Therefore it is of principal interest in science and engineering. It has relevance in petroleum 55 
engineering for the study of the movement of natural gas, oil and water through the oil 56 
reserviour; in chemical engineering for filtration of and purification processes; in hydrology 57 
for studying the underground water resources. [10] Investigated the flow in a rotating porous 58 
straight pipe, and showed that the Nusselt number increases with increase in porosity. [11] 59 
studied the flow in a curved porous channel with rectangular cross-section filled with a fluid 60 
saturated porous medium, the flow being driven by a constant azimuthal pressure gradient, 61 
and using a gerneralized Fourier series method of solution found that the velocity profiles 62 
depend on the geometry of the channel and Darcy number. 63 
 64 
Moreso, the study of the flow of fluid through porous media has also been extended to 65 
include the effect of magnetic field.  [12] investigated the effect of magnetic field on the flow 66 
in a rectangular enclosure using perturbation technique, and reported that the imposed 67 
magnetic field diminished the wall shear. [13] examined the influence of magnetic field on 68 
the skin friction factor of a steady fully developed laminar flow through a pipe experimentally 69 
and by finite difference numerical scheme, and observed that the pressure drop varies in 70 
proportion to the square of the magnetic field and sine angle; the pressure is proportional to 71 
the flow rate, and the axial velocity asymptotically approaches its limit as the Hartmann 72 
number becomes large. [14] studied the free convection flow through a vertical porous 73 
channel in the presence of an applied magnetic field using the finite difference numerical 74 
approach, and noticed that the velocity decreases with the increase in the magnetic and 75 
porosity parameters throughout the region. 76 
  77 
Similarly, magnetohydrodynamic convective heat and mass transfer in porous and non-78 
porous media is of considerable interest in techical field due to its applications in industries, 79 
geothermal, high temperature plasma, liquid metal and MHD power generating systems. [15] 80 
investigated the effects of magnetic field and convective force on the flow in bifurcating 81 
porous fine capillaries using the regular perturbation series expansions method, and found 82 
that magnetic field reduces the flow velocity, whereas the convective force increases it. 83 
Moreso, [16] examined blood flow in bifurcating arteries analytically, and observed that an 84 
increase in heat exchange parameter and Grashof number increases the velocity, 85 
concentration and Nusselt number of the flow, while an increase  in the heat exchange 86 
parameter increases the Sherwood number.  87 
 88 
The purpose of this present paper is to examine the effects of thermal differentials on a 89 
bifurcating flowing stream. 90 
     91 
The paper is organized in the following format: section 2 is the material and methods, 92 
section 3 is the results and discussion, and section 4 is the conclusion.  93 
    94 
 95 
 2.  MATERIAL AND METHODS 96 
       97 
There is always a temperature difference between the internal/ambient temperature of the 98 
stream and that at its surface called the external or environmental temperature condition. 99 
This temperature differential can be described in terms of the Newton’s law of cooling as 100 

int( )exth
y

θ θ θ∂ = −
∂

 where h is the film heat transfer coefficient which could be negative. The 101 

magnitude of the temperature at the surface of the stream is influenced by the climatic 102 
condition of the region where it is found. In particular, the environmental temperature 103 
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depends tremendously on the radiation from the sun. The higher the radiation the higher it 104 
becomes. When the environmental temperature is higher than the equilibrium temperature of 105 
the stream, heat flows from the surface into it, that is, the stream absorbs heat from the 106 
environmental source. The effects of heat absorption can be seen in the energization of the 107 
water particles.  108 
 109 
 110 
 111 

 112 
 113 
Figure 1 A physical model of symmetrical bifurcating flowing stream (with α=β, where α, β    114 

            are the bifurcation angles).                  115 

 116 
We assume the stream bifurcates symmetrically as shown in Figure 1, and that the flow is 117 
axi-symmetrical about the 'z -axis. Therefore, if ( ',' vu ) are respectively the velocity 118 

components of the fluid in the mutually orthogonal ( ',' yx ) axes, then the mathematical 119 
equations of mass balance/continuity, momentum, energy and diffusion governing the flow, 120 
considering the Boussinesq approximations, become: 121 
 122 
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The model examines the dynamics of a bifurcating stream flowing from a point −∞='x  129 

towards a shore at oxx =' , then continued towards +∞='x , as seen in Figure 1. The 130 

model shows that the channel is assumed to be symmetrical and divided into two regions: 131 
the upstream (or mother) region oxx <'  and downstream (or daughter) region oxx >' , 132 

where ox  is the bifurcation or the nodal point, which is assumed to be the origin such that 133 

the stream boundaries become dy ±='  for the upstream region and '' xy α=  for the 134 
downstream region. Due to the geometrical transition between the mother and daughter 135 
channels, the problem of wall curvature effect is bound to occur. To fix up this, a very simple 136 
transition wherein the width of the daughter channel is made equal to half that of the mother 137 
channel i.e.  d± is such that the variation of the bifurcation angle is straight-forwardly used 138 

(see [6]).  Furthermore, if the width of the stream ( d2 ) is far less than its length ( ol ) before 139 

the point of bifurcation such that the ratio of 1
2 <<ℜ=

ol

d
, (where ℜ is the aspect ratio), the 140 

flow is laminar and Poiseuille (see [17]). d  is assumed to be non-dimensionally equal to one 141 
(see [6]). Similarly, at the entry region of the mother channel, the flow velocity is given as 142 

( )2'1' yUu o −= , where oU is the characteristic velocity, which is taken to be maximum at 143 

the centre and zero at the wall (see [6]). Based on the fore-going, the boundary conditions 144 
are: 145 
 146 
                                                 1'=u , 0'=v , 1'=T , 1'=C   at  0'=y                                  (6)                       147 

                                             0'=u , 0'=v , 'T = wT , wCC ='    at  1'=y                     (7)                                                           148 

for the mother channel 149 
                    0'=u , 0'=v , 'T = 0, 0'=C    at  0'=y                          (8)                                           150 

                      0'=u , 0'=v , 'T = γ 1 wT ,  wCC 2' γ= , γ 1 < 1, γ 2 < 1  at '' xy α=              (9)                           151 

for the daughter channel    152 
 153 
 Introducing the dimensionless variables and similarity transformations, 154 
 we have                                                                      155 

                                                         0'' =f                    (10)  156 

                    
''' '' 2 ' ' '' ''

1 Re( )f f M f f f ff Gr+ − + + = − Θ Gc− Φ              (11)                                                    157 

             0)Pr(Re 2'''''' =Θ+Θ+Θ−+Θ+Θ Nff                   (12)                                                158 

              
'' ' ' ' ' 2

1( ) 0R eSc f f δΦ + Φ + − Φ + Φ + Φ =                                                    (13)                                                159 

with the boundary indications: 160 

                          1,1,0,1 ' =Φ=Θ== ff     at 0=η                  (14)                                         161 

                 
1 =  at      = ,= ,0,0' ηwwff ΦΦΘΘ==

            (15)
162 

 
 163 

 for the mother channel                                                               164 

                 0,0,0,0 ' =Φ=Θ== ff     at  η  = 0                 (16)165 
                

   

 166 
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'
1 20, 0, , ,w wf f γ γ= = Θ = Θ Φ = Φ  1 21, 1γ γ< <

   
at  ax=η                     (17)167 

        

 168 
for the daughter channel                                               169 
where 170 
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are the dimensionless variables, 176 

                                    Ψ = (Uoυ x ) ½ f ( )η ,   η = y
x

U o

2/1










υ
             (18) 177 

the similarity transformations,  178 

                                      u = 
y∂
Ψ∂

 ,  v = 
x∂
Ψ∂−                 (19) 179 

the velocity components,    180 
 181 
and βt   and  βc  are  the volumetric expansion coefficient for temperature and concentration 182 

respectively; 'p  is the pressure; C∞  is the concentration at equilibrium; T∞  is the 183 

temperature at equilibrium;κ  is the permeability parameter of the porous medium; 2
oB is the 184 

applied uniform magnetic field strength due to the nature of the fluid; eσ is the electrical conductivity 185 

of the fluid; ok  is the thermal conductivity of the fluid; Cp is the specific heat  capacity at constant 186 

pressure; Q is the heat absorption coefficient; 
2
rk   is the rate of chemical reaction of the fluid, which 187 

is homogeneous and of order one;'C  is concentration (quantity of material being transported); D  188 

diffusion coefficient; g is gravitational field vector; 'T   is the fluid temperature; 'ρ   is the density of 189 

the fluid;µ   is the viscosity of the fluid; mµ  is the magnetic permeability of the fluid;υ  is the  190 

kinematic viscosity; cl is the scale length; Uo is the characteristic or reference velocity which 191 

is maximum at the centre and almost zero at the wall; wC  is the constant wall concentration 192 

at which the  channel is maintained; wT  is the constant wall temperature at which the  193 

channel is maintained; 
∞

p  is the ambient/equilibrium pressure; Re is the Reynolds number; 194 

Gr is the Grashof number due to temperature difference; Gc is the Grashof number due to 195 
concentration difference; χ 2 is the local Darcy number; M2 is the Hartmann’s number; Pr is 196 

the Prandtl number; Sc is the Schmidt number; 2
1δ  is the rate of chemical reaction; and N2 is 197 

the heat exchange parameter. 198 
 199 
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Equations (10) - (13) are coupled and highly non-linear. Therefore, to linearize and make 200 
them tractable, we introduce the regular perturbation series solutions of the form:                                       201 
                                 202 

...),(),(),( 1 ++= yxhyxhyxh o ξ                  (20)203 

  204 

 where 1
Re

1 <<=ξ  Is the perturbing parameter. We choose this parameter because, 205 

almost at the point of bifurcation, due to a change in the geometrical configuration, the 206 
inertial force rises and the momentum increases. The increase in the momentum is 207 
associated with a drastic increase in the Reynolds number, indicating a sort of turbulent flow. 208 
In this regard, equations (10) - (17) become: 209 
 210 
for the zeroth order: 211 

                                                            
0"=of

                 
(21)                            212 

                                    oooo GcGrfMff Φ−Θ−=−+ '"'" o
2

1                  (22)  213 

                                        0'" 2 =Θ+Θ+Θ ooo N
                  

(23)214 

                            0'" 1
2 =Φ+Φ+Φ ooo δ                       (24)                                                       215 

with the boundary conditions 216 

                  of = 1, '
of  = ''

of  = 0, oΘ = 1, oΦ =1   at η   = 0                                   (25) 217 

                 of  = 0, '
of  = ''

of =0, oΘ = Θ w, oΦ = Φ w   at η   =    1                        (26)                   218 

for the first order:   219 
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)'''('" o1

2
111 ooo ffSc Φ−Φ=Φ+Φ+Φ δ

                   
(30) 223 

with the boundary conditions  224 

         0,0,0,0 11
'

11 =Φ=Θ== ff   at  η  = 0                         (31)             225 

         
'

1 1 1 1 1 20, 0, , ,w wf f γ γ= = Θ = Θ Φ = Φ 1 21, 1γ γ< <
  at  axη =                        (32)                226 

      227 
The zeroth order equations describe the flow in the upstream channel, while the first order 228 
equations describe the flow in the downstream channels. The presence of the zeroth order 229 
terms in the first order equations indicate the influence of the upstream on the downstream 230 
flow. 231 
    232 
The solutions to equations (21) - (26) and (27) - (32) are: 233 
                               

234 
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η η
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µ µ

− −−Θ −Θ = +
                                        

(33)                              235 

 236 

                      
( ) ( )1 1
1 1

2 2
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2 2

sinh sinh (1 )
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sinh sinh
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e e
η η
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  238 

                     ( ) ( ) ( ) ( )( ) ( ) ( ) ( )( )3 2 1 2 1
3 3

3 3

0 sinh 1 sinh

sinh sinh

o p o p

o

f e f e
f

µ η ηµ η µ η
η

µ µ

− + − −

= +  239 

                                240 

                                           ( ) ( ) ( )
( ) ( )3 20o op pf e fµ η η− +− +

                                                (35)                                  
 241 

for the mother channel 242 
 243 
                     244 
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1 10 x
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  255 

 256 
and for the daughter region. 257 
 

                                                       

258 
3     RESULTS AND DISCUSSION        

 

259 
 260 
This paper investigates the effects of thermal differentials on the flow in a bifurcating stream. 261 
To this end, Figure2 – Figure 8 obtained using Maple 12 computational software show the 262 

profiles of the flow variables obtained for various values of 2
1χ , N2 and Gr/Gc. For realistic 263 

values of Pr =0.71, γ1 = 0.6, γ2 =0.6,  γ =0.7, Φw = 2.0, Θw =2.0, 2.02
1 =δ , M2= 0.2, α =10, 264 

Re=400,  and for varying values of  and 2χ = 0.1, 0.5, 1.0, 10; N2= 0.001, 0.01, 0.1, 0.4 and 265 

Gr/Gc=0.01, 0.1, 0.5, 1.0, 5, 10  the profiles indicate that the flow velocity decreases as 2χ  266 
and  N2 increase, but increases with the increase in Gr/Gc.  267 
 268 
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A high porosity of the stream bank may give room for a soak-away of the water. Therefore, 269 
as the porosity increases the stream water is soaked away into its bank, thus leading to a 270 
dcreases in its volume. Moreso, the water level of the stream will remain decreased if there 271 
is not a commensurate increase in the water supplied from the aquifers that feed it, possibly, 272 
due to man’s water delivery activities on them. Consequent upon these, the flow velocity, 273 
which is usually maximum when the volume is high, decreases. These may account for what 274 
is seen in Figure 2. And, this is in perfect agreement with [11] and [14]. In another 275 
development, a high porosity of the source rock of the stream creates room for water to flow 276 
from the supplying aquifers into it. However, by the analysis of this model the flow velocity of 277 
the water from the aquifers decreases with high porosity of the source rock. Even so, the 278 
oscillatory/fluctuation motion, manifested in the form of back-and-forth movement of the 279 
water, as seen in Figure 3 and Figure 4, possibly, seems to be partly due to the internal 280 
waves developed in the water in the flow process, or may be due to the interaction between 281 
the pressure force and the gravity force. This is an account from wave theory.  282 
 283 
 284 
      285 
 286 
 287 
 288 
 289 
 290 
 291 
 292 
 293 
 294 
 295 
 296 
 297 
 298 
Figure 2 Velocity-porosity parameter (χ2) profiles at various distances (η) in the mother 299 
channel  300 
   301 

 302 
 Figure 3 Velocity profiles for various porosity parameter (χ2) in the daughter channel 303 
 304 
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 305 
 Figure 4 Velocity-porosity parameter (χ2) profiles at various distances (η) in the daughter  306 
channel 307 
 308 
Furthermore, as the environmental temperature increases, the stream may lose its water 309 
through evaporation, and soak-away into the dry flood plain. This leads to a decrease in its 310 
water level. Again, if the water supplied from the aquifers is not equatable to that which is 311 
lost (due to man’s water delivery activities on them), the stream water level in such a season 312 
remains reduced. Consequently, the velocity which is usually maximum when the water 313 
volume is high, drops. This accounts for the results seen in Figure 5. 314 
 315 

 316 
 Figure 5 Velocity-heat exchange parameter (N2) profiles at various distances (η) in the 317 
mother channel 318 
                319 
 320 
On the other hand, there is always a temperature differential between the environmental 321 
temperature and the ambient temperature of the water.The temperature differential in the 322 
presence of gravity produces free convection currents, which serve as lifting/buoyancy 323 
forces for the water particles. In particular, the temperature differential depends on the 324 
environmental temperature, which in turn depends on the radiation from the sun. The higher 325 
the radiation, the higher the temperature differential, and the higher the convection currents, 326 
otherwise called buoyancy force or Grashof number (which in this case is due to 327 
temperature change) produced. The increase in the buoyancy force increases the flow 328 
velocity (see Figure 6 –Figure 8). A comparison with previous research works shows a 329 
complete agreement, see [15] and [16]. 330 
 331 
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 332 
Figure 6 Velocity-Grashof number (Gr/Gc) profiles at various distances (η) in the mother 333 
channel. 334 
 335 

 336 
Figure 7 Velocity profiles for various Grashof numbers (Gr/Gc) in the daughter channel 337 
 338 

 339 
Figure 8 Velocity-Grashof numbers (Gr/Gc) profiles at various distances (η) in the daughter 340 
channel 341 
 342 
 343 
The increase and decrease in the velocity, coupled with the oscillating/fluctuating motion of 344 
the water have some great significance on the flow. The increase in velocity saves the 345 
stream from early shallow-up as it tends to delay the deposition of the sediments and bed 346 
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loads it is carrying in its course towards the standing water bodies into which it empties its 347 
water. On the other hand, the decrease in velocity produces the contrary situation. 348 
Furthermore, the oscillatory/fluctuating motion leads to loss of energy for the flow in the axial 349 
direction, and this also adversely affects the transport of the bedloads. 350 
 351 
4    CONCLUSION 352 
 353 
The steady flow in a bifurcating stream with emphasis on the effects of environmental 354 
thermal differentials is presented. The solutions of the problem are analyzed graphically. The 355 
analyses show that the porosity and heat exchange parameters decrease the flow velocity, 356 
while the free convection force increases it. Furthermore, an increase in the porosity leads to 357 
a fluctuating motion. These results have serious implications on the flow. The increase in 358 
velocity tends to delay the deposition of sediments/bed loads on the stream floor and flood 359 
plains, thus saving it from early shallow-up. On the other hand, the decrease in the velocity 360 
leads to the contrary. Similarly, the fluctuating motion leads to loss of energy for the axial 361 
flow.   In particular, the free convection force tends to cushion the velocity reducing-effects of 362 
porosity and heat exchange parameters. It is worthy to note that a considerable amount of 363 
work is needed to further study and understand the streaming flow hydrodynamically.  364 
 365 
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