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Abstract
After the free energy estimation of a binary alloy for any order, we show that the number of
equilibrium states of the system is obtained by the Taylor expansion to the 4-th order choice. This
order is necessary and sufficient. Likewise, we explicitly determine the stable states of alloy which
are characterized by the free energy.
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1 Introduction and motivation

a. Model to study
Let us consider a binary alloy constituted of a crystal structure1 of N sites randomly occupied by NA
atoms of type A and NB atoms of type B [1]. (figure 1)
Let us take the following data that characterizes the model to study (figure 1):
T : the absolute temperature.
CX = NX

N
: the X atom concentration.

εXY : the interaction between the species X and Y .
PXY : the probability for which an atom of type X has a neighbor of type Y .
z: the number of neighbors of each atom of type X or Y .
kB : the Boltzmann constant.

1In mineralogy and crystallography, a crystal structure is a unique arrangement of atoms in a
crystal. A crystal structure is composed of a unit cell, a set of atoms arranged in a particular way;
which is periodically repeated in three dimensions on a lattice [2].
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Figure 1: Binary alloy.

If we note Ω the space of the possible positions, then the number of permitted configurations is
nothing but:

card Ω = Ω =
N !

NA!NB !

Based on this formula and the Stirling’s approximation [1][3][4], we obtain the expression (1.1) of the
Boltzmann’s microscopic entropy based on the concentration:

S

N
= S0 − kB(cA ln cA + cB ln cB) with S0 = kB lnN (1.1)

b. Free energy formula
For the ideal case, that is to say the atoms of a different species are in very weak interaction or
identical, the thing which be translated by:

εAB = εAA = εBB

This situation provides to suppose that the internal energy U = U0 is independent of the atoms
arrangement in sites. Thus, giving a reminder that the free energy formula is F = U − TS, the free
energy of the ideal solution is obtained by the following formula [1][5]:

Eid =
Fid
N

=
U0

N
− TSid =

U0

N
− T S

N
= E0 + kBT (cA ln cA + cB ln cB) (1.2)

WithE0 = U0
N
−kBT lnN . In the regular case, the entropy always result from the randomly acquisition

of sites: the regular entropy notated by Sreg is equal to Sid, that is to say Sreg = Sid. Whereas, the
internal energy considers the interactions of neighboring species. The probability lows of atoms can
be written, for the equiprobability and the symmetry reasons, as:{

PAB + PAA = PBA + PBB
cAPAB = cBPBA

(1.3)

The symmetry, equiprobability as well as the interactions between the A and B species provide to
write the regular internal energy, which is notated by Ureg, as [1][5]:

Ureg =
1

2
NcAz (PABεAB + PAAεAA) +

1

2
NcBz (PBAεBA + PBBεBB) (1.4)

The 1
2

factor is used to not count the liaisons twice. The relation (1.3) and the fact that cA + cB = 1
provide, if we pose ε = εAB − 1

2
(εAA + εBB), to obtain the following expression:

Ureg = U0 +NzcAεPAB (1.5)

With a reasonable hypothesis which consists to do the approximations of the average field by their
average values which provide to confuse PAB with cB , the formulas overview of the regular internal
energy and the entropy give us the free energy of the regular solution:

Ereg = E0 + zcAcBε+ kBT (cA ln cA + cB ln cB) (1.6)
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Consequently, we are interested in this free energy of the regular solution since the one of the ideal
solution is a particular case. Indeed, it is enough to take ε = 0. Thereafter, to make our paper easy
to read, we use the following notationn: Ereg = E.

2 Free energy around the equilibrium

a. Free energy formula based on the order parameter
Our purpose is to write E based on a parameter which is linked to atoms concentration. For that,
we are going to exploit the symmetry compared to 1

2
. Indeed, our function is the sum, to within a

constant, of two symmetric functions in relation to 1
2
, the term zcAcB = zε(cA− c2A) with cB = 1− cA,

and its derivative is worth zε(1 − 2cA), the other term has kBT ln
(

cA
1−cA

)
as derivative. Both of

derivatives cancel each other out in cA = 1
2
. In addition, it is about two even functions in relation to

this axis. We notice that E(1− cA) = E(cA). Let us consider:

η ∈
]
−1

2
,

1

2

[
Such as cA = 1

2
− η, it is evident that cB = 1

2
+ η. Based on this new parameter, called order

parameter, η the free energy for an atom can be written as:

E(η) = E0 + z

(
1

4
− η2

)
ε+ kBT

[
1

2
ln

(
1

4
− η2

)
+ η ln

( 1
2

+ η
1
2
− η

)]
(2.1)

For the physicists, it is interesting to study the variation of this energy. Because, the equilibrium is
characterized by its minimum. After simplification of calculation, we have:

dE(η)

dη
= −2zεη + kBT ln

( 1
2

+ η
1
2
− η

)
(2.2)

d2E(η)

dη2
= 2

(
2kBT

1− 4η2
− zε

)
(2.3)

The critical temperature is obtained when we have a perfect order, that is to say cA = cB = 1
2

where

η = 0. The second derivative of the free energy can be canceled d2E(η)

dη2
= 0 when η = 0 which

implies that:
T = Tc =

zε

2kB
(2.4)

b. Justification of order word
It is good to notice that the justification of the order word come from the sign of ε, itself is in relation to
η. Indeed, if ε > 0 the free energy of the mixture is higher than that one of phases, this corresponds
to a segregation tendency, the nature of the structure is in order. On the other hand, if ε < 0 the
structure has a tendency to mixture that is to say a disorder. The analysis of this free energy uses a
polynomial approximation, it is the aim of the following section.

3 Polynomial approximation and critical points

3.1 Approximation
The η variable play a role of order parameter. In the physical works and articles, even the Taylor
expansion of free energy is given to 2 or 4-th order, and in accordance with the polynomial canonical
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basis (1, x, x2, ..., xn). In this work we propose the Taylor expansion to any order, hence the following
result [1][6][7][8]:

Lemma 3.1. The free energy to the n− th order is approximated by:

E(η) = E1 + 2kB(T − Tc)η2 +
4

3
kBTη

4 + kBT

n∑
k=3

(2η)2k

2k(2k − 1)
+O(η2n+1) (3.1)

With E1 = E0 + zε
4

+ kBT ln 2 = U0
N

+ kB
2

(Tc − 2 ln(N
2

).T ).

Proof. Since the intervening functions in the energy given in (2.1) are C−n functions in their definition
field compared to η, the asymptotic expansion of the different terms to the n− th order are:

1

2
ln

(
1

4
− η2

)
= − ln 2− 1

2

(
4η2 +

(2η)4

4
+

(2η)6

6
+ ...+

(2η)2n

2n
+O(η2n)

)

η ln

(
1

2
+ η

)
= −η ln 2 + η

(
2η − (2η)2

2
+

(2η)3

3
− ...+ (−1)n−1 (2η)n

n
+O(ηn)

)

−η ln

(
1

2
+ η

)
= η ln 2 + η

(
2η +

(2η)2

2
+

(2η)3

3
+ ...+

(2η)n

n
+O(ηn)

)
By replacing each term by its equivalent expression, we obtain:

E(η) = E0 + zε

(
1

4
− η2

)
− kBT ln 2 + 2kBTη

2 +
4

3
kBTη

4 + kBT

n∑
k=2

(2η)2k

2k(2k − 1)
+O(η2n+1) (3.2)

Let us put F0 = E1, F1 = 2kB(T − Tc), F2 = 4
3
kBT and Fk = kBT

2k(2k−1)
∀k ≥ 3.

The polynomial that gives the approximation to the n− th order of the free energy can be written as:

E(η) = F0 + F1η
2 + F2η

4 + P (η) +O(η2n+1) (3.3)

With P (η) =
∑n
k=3 Fk.(2η)2k ≥ 0 ∀η. Hence, the lemma result.

3.2 Critical points and equilibrium states

a. Decomposition of the free energy writing

Lemma 3.2. The E free energy to the 4− th order based on η parameter can be written by:

E(η) = F0 + F1η
2 + F2η

4 +O(η4) (3.4)

It is enough to take O(η4) = P (η) = (2η4)
∑n−1
k=3 Fk.(2η)2k−4.

We notice that the free energy to the n− th order can be written as a sum of two polynomials.

E(η) = E4(η) + P3(η) +O(η2n+1) (3.5)

Where E4(η) = F0 + F1η
2 + F2η

4 and P3(η) =
∑n
k=3 Fk.(2η)2k.
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b. Justification of the 4− th order choice

Theorem 3.3. For all n order,
minE(η) = minE4(η) (3.6)

Proof. It exists a such that 0 < a <
1

2
, the free energy E is strictly increasing around

]
−1

2
,−a

[
and

]
a,

1

2

[
. Therefore, there are not any minimum of the free energy E in

]
−1

2
,−a

[
∪
]
a,

1

2

[
. The

question of minimal energy comes up only in I = [−a, a]  
]
− 1

2
, 1
2

[
.

E4 and P are two continuous functions on I. Since E4(η) ≥ minE4(η) and P (η) ≥ minP (η) for
all η ∈ I, so:

min (E4(η) + P (η)) ≥ minE4(η) + minP (η) (3.7)

Let us suppose by absurd that:

min (E4(η) + P (η)) > minE4(η) + minP (η)

And let η0 be the point that realizes the minimum. Since I is compact and E4 and P are continuous,
therefor the minimum in η0 is attended. Let ηn a sequence that converges to η0, then E4(ηn) +
P (ηn) = (E4 + P ) (ηn). By passage to limit:

lim
ηn−→η0

E4(ηn) + P (ηn) = E4(lim ηn) + P (lim ηn)

= E4(η0) + P (η0)
= (E4 + P ) (η0)

Absurd. So:
min (E4(η) + P (η)) ≤ minE4(η) + minP (η) (3.8)

By (3.7) and (3.8) we have:

min (E4(η) + P (η)) = minE4(η) + minP (η) (3.9)

Well, P (η) =
∑n
k=3 Fk.(2η)2k then,

P
′
(η) =

n∑
k=3

4kFk.(2η)(2k−1)

Since 4kFk > 0 ∀k, so P
′
(η) = 0⇐⇒ η = 0. Thus, the unique critical point of P is (0, 0).

P
′′

(η) =
n∑
k=3

8k(2k − 1)Fk.(2η)(2k−2)

Since k(2k − 1)Fk > 0 ∀k ≥ 3, then P
′′

(η) > 0 ∀η ∈]0, 1
2
[, therefor P is strictly convex and the

unique minimum of P is 0. Hence,
minE(η) = minE4(η)

Which explain the fact to do the analysis of a 4 − th order Taylor expansion. We conclude that the
4− th order is necessary and sufficient for the stability study of the alloy.

After the justification of the 4− th order choice, we are going to study the stability for n = 4.
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c. Study for the 4− th order case

Let us consider the free energy up to the 4− th order, and let F0, F1 and F2 be the coefficients earlier
defined. Since E is even, we do the analysis in [0, 1

2
[. Let un put,

T ∗c =
2U0

NkB(2 ln(N
2

)− 1)
(3.10)

And,

T ∗∗c =
U0

NkB ln(N
2

)
+

1

2 ln(N
2

)
Tc (3.11)

We have then:

Case where T = Tc, T = T ∗
c or T = T ∗∗

c

1. In the case where T = T ∗c we have F0 = F1 = 0. And E4(η) can be written as:

E4(η) =
8U0

3N(2 ln(N
2

)− 1)
η4 (3.12)

In that case,
minη E4 = E4(0) = 0 (3.13)

2. In the case where T = Tc, we have F1 = 0. Consequently E4(η) can be written as:

E4(η) = F0 + F1η
4 (3.14)

And,
minE4 = E4(0) = F0 = U0

N
+
(
1
2
− ln(N

2
)
)
kBTc (3.15)

• If Tc < T ∗c , then F0 > 0, therefor E4(η) > 0 and it admits a unique value η = 0 that realizes
the minimal state, consequently:

minη E4 = E4(0) = F0 (3.16)

• And if Tc > T ∗c then F0 < 0. Let be dE4(η)
dη

= 4F2η
3, E4(η) admits a unique root, and:

minη E4 = E4(0) = F0 (3.17)

3. In the case where T = T ∗∗c , then F0 = 0. The free energy can be written as then:

E4(η) = F1η
2 + F2η

4 (3.18)

And,
dE4(η)

dη
= 2η(F1 + 2F2η

2) (3.19)

• If Tc < T ∗c , then F1 > 0. Consequently, E4(η) admits a unique root η = 0 that realizes the
minimum, then:

minη E4 = E4(0) = 0 (3.20)

• If Tc > T ∗c , then F1 < 0:

minη E4 = E4(
√
−F1
2F2

) =
−F2

1
4F2

(3.21)
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Case where T 6= Tc, T 6= T ∗
c or T 6= T ∗∗

c

In this case, the free energy can be written as the following form:

E4(η) = F0 + F1η
2 + F2η

4 (3.22)

And,
E

′
4(η) = 2η

(
F1 + 2F2η

2) (3.23)

1. If T > T ∗∗c , then F0 > 0, so we have two possible cases:
• If Tc < T ∗c , then F1 > 0. Therefore,

minE4(η) = E4(0) = F0 = U0
N

+ kB
2

(
Tc − 2 ln(N

2
)T
)

(3.24)

• On the other hand, if Tc > T ∗c , then F1 < 0. We distinguish two possibilities then:
– If F0 <

F2
1

4F2
:

minη E4 = E4

(√
−F1
2F2

)
= F0 − F2

1
4F2

< 0 (3.25)

– if F0 >
F2
1

4F2
,

minη E4 = E4

(√
−F1
2F2

)
= F0 − F2

1
4F2

> 0 (3.26)

2. If T < T ∗∗c , then F0 < 0, we distinguish:
• If Tc < T ∗c , then F1 > 0. So, E4(η) admits a unique root and (0, F0) as an equilibrium point:

minη E4 = E4(0) = F0 (3.27)

• However, if Tc > T ∗c , then:

minη E4 = E4

(√
−F1
2F2

)
= F0 − F2

1
4F2

< 0 (3.28)

3.3 Summary table: Equilibrium Values
It is evident that the signs of the coefficients F0 and F1 play a fundamental role to determine the
stability of the system, that is to say the minimum of E. As we have previously seen:

minη E = minη E4

We summarize all of possible situations of the free energy in the summary table (Table 1).

3.4 Possible curves of free energy
We represent all the possible situations of free energy in the following graphs:
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Table 1: Summary table
F0 F1 Thermal field minη E

case 1 0 0 T = T ∗
c 0

case 2 + 0 T = Tc and Tc < T ∗
c

U0
N +

(
1
2 − ln(N2 )

)
kBTc

case 3 - 0 T = Tc and Tc > T ∗
c

U0
N +

(
1
2 − ln(N2 )

)
kBTc

case 4 0 + T = T ∗∗
c and Tc < T ∗

c 0

case 5 0 - T = T ∗∗
c and Tc > T ∗

c −3
4kB

(T−Tc)2
T

case 6 + + T > T ∗∗
c and Tc < T ∗

c
U0
N + kB

2

(
Tc − 2 ln(N2 )T

)
case 7 + - T > T ∗∗

c , Tc > T ∗
c and

F0 <
F 2
1

4F2

U0
N +

kB
[(
2− 3Tc

4T

)
Tc −

(
ln
(
N
2

)
+ 3

4

)
T
]

case 8 + - T > T ∗∗
c , Tc > T ∗

c and
F0 >

F 2
1

4F2

U0
N +

kB
[(
2− 3Tc

4T

)
Tc −

(
ln
(
N
2

)
+ 3

4

)
T
]

case 9 - + T < T ∗∗
c and Tc > T ∗

c
U0
N + kB

2

(
Tc − 2 ln(N2 )T

)
case 10 - - T < T ∗∗

c and Tc > T ∗
c

U0
N +

kB
[(
2− 3Tc

4T

)
Tc −

(
ln
(
N
2

)
+ 3

4

)
T
]
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Figure 2: F0 = F1 = 0
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Figure 3: F1 > 0;F0 > 0
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Figure 4: F1 = 0;F0 > 0
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Figure 5: F1 = 0;F0 < 0
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Figure 6: F0 = 0;F1 > 0
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Figure 7: F0 = 0;F1 < 0
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Figure 8: F0 > 0;F1 < 0
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Figure 9: F0 > 0;F1 < 0
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4F0

−0.5 −0.4 −0.3 −0.2 −0.1 0 0.1 0.2 0.3 0.4 0.5
−0.2

−0.1

0

0.1

0.2

0.3

0.4

0.5

Figure 10: F0 < 0;F1 <
0
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Figure 11: F0 < 0;F1 >
0
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Remark 3.1. fundamental

1. We have proposed a logical procedure to do analysis of free energy which characterizes the
stability of a binary alloy. Indeed, the value of the temperature field in relation to critical values
of Tc, T ∗c and T ∗∗c provide to determine the F0 and F1 signs, nay their values, which have
facilitated to us to analyze the minimum matter of free energy linked to the stability of system.

2. The terms of minimal free energy are always characterizes by U0, Tc and N .

4 CONCLUSIONS
In this article, we have obtained two results:

1. The first translates into the fact to show that the 4 − th order Taylor expansion is necessary
and sufficient to approximate the free energy of a binary alloy.

2. Finally, based on the continuity we have determined the minimal states that characterize the
system stability.
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