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MHD mixed convection flow of a nanofluid over a nonlinear stretching sheet with 

variable Brownian and thermophoretic diffusion coefficient 

Abstract: 

Investigation has been carried out to analyze the effects of variable wall temperature and 

concentration on MHD mixed convection flow of a nanofluid over a nonlinear stretching 

sheet with variable Brownian and thermophoretic diffusion coefficient. The governing 

differential equations were transformed into a set of non-linear coupled ordinary differential 

equations using similarity transformations. Results are shown graphically for the velocity 

profile, the temperature profile, and the concentration profile with different values of physical 

parameters like suction parameter, magnetic parameter, Grashof number, local modified 

Grashof number, thermal diffusivity, Prandtl number, Lewis number, the thermophoresis 

parameter and the Brownian motion parameter, the variable thermophoretic diffusion 

coefficient parameter and the variable Brownian motion diffusion coefficient parameter. A 

comparison with previously published work has been carried out and the results are found to 

be in good agreement. Finally, numerical values of pertinent physical quantities, such as the 

local Nusselt and local Sherwood numbers were presented graphically.  

Keywords: Mixed convection; MHD; Brownian motion; Thermophoresis; Nonlinear 

Stretching parameter 

Introduction: 

In fluid dynamics the effects of external magnetic field on magnetohydrodynamic (MHD) 

flow over a stretching sheet are very important due to its applications in many engineering 

problems, such as glass manufacturing, geophysics, paper production, and purification of 

crude oil. A broad effort has been made to gain information regarding the stretching flow 

problems in various situations. The flow due to stretching of a flat surface was first 

investigated by Crane [1]. The effect of external magnetic field on the MHD flow over a 

stretching sheet was investigated by Pavlov [2]. The MHD flow and heat transfer over a 

stretching sheet with variable fluid viscosity has been discussed by Mukhopadhyay [3]. An 

excellent collection of articles on this topic can be found in [4-7]. Furthermore, many vital 

properties of MHD flow over stretching sheet were explored in various articles [8–10] in the 

literature. Several important investigations on the flow due to stretching/shrinking sheet are 

available in the literature [11–12] 

All the above mentioned investigations deal with the flows over a linear stretching sheet. 

Cortell [13, 14] has worked on viscous flow and heat transfer over a nonlinearly stretching 

sheet. Awang and Hashim [15] obtained  the series solution  for  flow over a nonlinearly 

stretching sheet with chemical reaction and magnetic field.The flow and heat transfer 

characteristics in a viscous fluid over a nonlinearly stretching sheet without heat dissipation 

effect was studied by Vajravelu [16]. The boundary layer flow of a nanofluid flow over a 

UNDER PEER REVIEW



2 

 

non-linearly stretching sheet was later studied by Rana and Bhargava [17]. The analytical 

solution of the boundary layer flow of an incompressible viscous fluid over a non-linear 

stretching sheet has been investigated by Hayat [18]. Approximate Solution of the Magneto-

Hydrodynamic flow over a nonlinear stretching sheet has been studied by Eerdunbuhe and 

Temuerchaolu [19]. An excellent collection of articles on this topic can be found in [20-22]. 

Nanofluids are the suspension of nanometer-sized solid particles and fibers, which have been 

proposed as a means for enhancing the performance of heat transfer liquids currently 

available, such as water, toluene, oil and ethylene glycol mixture. Choi [23], was the first 

person who utilizes nanofluid. Choi et al.  [24] affirmed that the addition of a one percent by 

volume of nanoparticles to usual fluids increases the thermal conductivity of the fluid up to 

approximately two times. Recently several modeling of the natural or mixed convection of 

nanofluids have been investigated numerically. The pioneer work on the boundary layer flow 

of a nanofluid over a stretching sheet has been carried out by Khan and Pop [25] using 

Buongiorno’s model [26], in his theory he explained that nanofluids have higher thermal 

conductivity compare to the base fluids. Some other recent articles describing the properties 

of nanofluid are cited in Refs.[27–31].  

Mixed convection (or combined convection), one of the transport phenomena, is the 

composition of both natural and forced convection flow. These flow patterns are discovered 

simultaneously by both an external forcing mechanism and internal volumetric forces. 

 Prasad et al. [32] analyzed the mixed convection heat transfer over a non-linear stretching 

surface with variable fluid properties. The mixed convection flow of a non-newtonian 

nanofluid over a non-linearly stretching sheet was discussed by Gorla and Kumari [33]. 

Mustafa and Hayat [34] studied unsteady boundary layer flow of a casson fluid due to an 

impulsively started moving flat plate. The Keller-Box method introduced by Keller [35] is 

one of the best numerical method basically it’s a mixed finite volume method which consists 

in taking the average of a conservation law and of the associated constitutive law at the level 

of the same mesh cell. Sarif [36] obtained the numerical solution of the steady boundary layer 

flow and heat transfer over a stretching sheet with Newtonian heating by using Keller box 

method.  

Motivated by all the articles reviewed above, and in particular, for more physical 

implications,  this present investigation deals with the mixed convection flow of a nanofluid 

over a nonlinear stretching sheet with variable Brownian and thermophoretic diffusion 

coefficient by considering the effects of variable wall temperature and concentration. The 

basic governing equations are converted into ordinary differential equations by applying 

suitable similarity transformations and those equations were solved numerically by using 

finite difference method called as the Keller box method.    

 

Mathematical Formulation: 

                     We consider the two-dimensional steady laminar MHD mixed convective flow of 

a nanofluid due to a stretching sheet situated at y = 0 with stretching velocity u =����, where 
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�� is a constant and n is non linear stretching parameter. The fluid is electrically conducted 

due to an applied magnetic field B(x) normal to the stretching sheet. The magnetic Reynolds 

number is assumed small and so the induced magnetic field can be considered to be 

negligible. The wall temperature ��  and the nanoparticle fraction �� are assumed constant at 

the stretching surface. When y tends to infinity, ambient temperature and concentration are 

�∞and �∞, respectively. It is chosen that the coordinate system x-axis is along stretching sheet 

and y-axis is normal to the sheet.  

The continuity, momentum, energy and concentration equations of incompressible nanofluid 

boundary layer flow are as follows: 
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Boundary conditions are  

���, 0� = +��� = ���� , ���, 0� = ,-��� =  �(�., ���, 0� =  �� +  �/�0, ���, 0� =  �� +  �1�0   
And   ���, ∞� = 0, ���, ∞� =  �� , ���, ∞� =  ��               (5) 

 Where u , v are the velocity components along the x and y directions, respectively. T and C 

are the fluid temperature and concentration, respectively. ρ is the fluid density, g is the 

acceleration due to gravity, �� is the coefficient of thermal expansion, �� is the coefficient of 

expansion with concentration, ��, �(, �/, �1 are the constants, U�x� = ���� is the stretching 

velocity  of the plate,,���� = �(�. is the transverse velocity at the surface, B(x)=56�7 is the 

applied magnetic field, where s = 
�8�

( , m = 
�8�

( , r = 2n-1, The stretching surface has a uniform 

temperature �� and the free stream temperature is �∞ with �� > �∞. Also, it has a uniform 

concentration �� and the free stream concentration is �∞ with �� > �∞. 

  In this study, "���� and "���� :;< the variable thermophoretic and Brownian motion 

diffusion coefficients, and assumed to vary linearly with temperature and volume fraction of 

the nanoparticles, respectively. We difine them as: 

                                           "���� =  "�∞�1 + >
∆� �� − �∞��, 

                                          "���� =  "�∞�1 + ?
∆� �� − �∞��.                                                   (6)  

Where ∆� = ��- − �∞�, ∆C = �CB − C∞�, TB the surface temperature, �- the surface 

volume fraction of the nannoparticles, D the variable thermophoretic diffusion coefficient 

parameter, � Brownian motion diffusion coefficient parameter, "�∞ and "�∞  are 
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thermophoretic and Brawnian motion diffusion coefficients of the nanofluid far away from 

the sheet, respectively. 

The stream function ψ(x, y) is defined by � =  �E
�  :FG � =  − �E

�	 , such that the continuity 

Eq.(1) is satisfied automatically. With the help of following similarity transformations, the 

non linear partial differential equations (2), (3) and (4) were transformed into coupled non 

linear ordinary differential equations satisfied 

            H = IJ��K��
(

L�	�
M	   , N =  J (

��K�� ��+���O�H�, P�H� =  �8�%
�Q8�%  , R�H� =  �8�%

�Q8�%           (7)                                     

The transformed ordinary differential equations are 

OSSS + OOSS − (
��K�� TFOS( + UOS − V;P − VWRX =  0    (8) 

�
Y0 PSS + Z[�1 +  �R�RSPS + Z\�1 +  DP�P′( + OPS − (�(�8��

��K�� OSP = 0   (9)  

�
^_ `�1 +  �R�RSS + �1 +  DP� ab

ac PSSd − (�(�8��
��K�� OSR + ORS =  0    (10)  

And the boundary conditions are transformed into 

 O�0� =  e, OS�0� =  1, f�0� =  1, ℎ�0� =  1  

and  OS�∞� =  0, f�∞� =  0, ℎ�∞� =  0  

Where the prime denotes differentiation with respect to H and the parameters are given by: 

e =  −W(J (
��K��Mhi

 , U =  �?j�
�hi

 , V; =  k?$��Q8�%�
hi�	�lmi  , VW =  k?n��Q8�%�

hi�	�lmi ,  

Pr =  M
q  , � =  r

�hs
 , t< =  M

#u%
 , Z\ =  ��h�s#$%��Q8�%�

��h�v�%M  , Z[ =  ��h�s#u% ��Q8�%�
��h�vM .   (12) 

Here, S, M, Gr, Gc, Pr,  �, Le, Nt and Nb,  denote the suction parameter, magnetic parameter, Grashof 

number, local modified Grashof number, Prandtl number, thermal diffusivity, Lewis number, the 

thermophoresis parameter and the Brownian motion parameter, respectively. 

And the physical quantities of the local Nusselt number Z�	  and the local Sherwood number 

eℎ	are defined as: 

Z�	 =  	xy
r��Q8�%�  and eℎ	 =  	xz

#u��Q8�%�    (13)   

Where {�:FG {.are the wall heat and mass fluxes, respectively, and are given by 

{� = −| &��
�'}6and  {. =  −"� &�h

�'}6     (14) 

Now equation (12)  becomes 

a�~
��_~

=  −PS�0�  and  
��~

��_~
=  −∅S�0�    (15) 
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Where �<	 =  �y	
M  is the Reynolds number.  

Results and Discussion: 

The non-linear ordinary differential equations Eqs. (8) – (10) with the boundary conditions 

(11) were solved numerically by Keller Box method. The computation have been carried out 

for different values of governing parameters viz. suction parameter S, magnetic parameter M, 

Grashof number Gr, local modified Grashof number Gc, Prandtl number Pr, Lewis number 

Le, the thermophoresis parameter Nt and the Brownian motion parameter Nb, D the variable 

thermophoretic diffusion coefficient parameter and � Brownian motion diffusion coefficient 

parameter. The velocity, temperature and concentration profiles for different governing 

parameters has also been examined for both values of non linear stretching parameters n=1, n 

=10.The results obtained in the study are compared with the existing literature and found in 

good agreement which is presented in the Table 1.    

Table1: Comparison of Nusselt and Sherwood numbers when Pr = Le = 2 and M = Gr = Gc = S = D =  � =  0 

      Rana and Bhargava [17]            Present Result 

N Nt Nb  - θ' ( 0 )  -φ ' ( 0 )  - θ' ( 0 )  -φ ' ( 0 ) 

0.2 0.1 0.5 0.516 0.9012 0.5161 0.9014 

  0.3   0.4533   0.8395  0.4536  0.8386 

  0.5    0.3999  0.8048  0.3998  0.8039 

3 0.1    0.4864  0.8445  0.4766  0.8447 

  0.3    0.4282  0.7785  0.4279  0.7785 

  0.5       0.3786  0.7379  0.3782  0.7378 

10 0.1    0.4799  0.8323  0.4799  0.8322 

  0.3    0.4227  0.7654  0.4228  0.7654 

  0.5    0.3739  0.7238  0.3739  0.7232 

 

            

       Fig 1 : Velocity profile with variation in                Fig 2 : Velocity profile with variation in  M 

                   nonlinear stretching parameter 
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      Fig 3 : Temperature profile with variation in           Fig 4 : temperature profile with variation in  

                  variable Thermoporetic diffusion                             variable Brownian motion diffusion   

                  coefficient D                                                              coefficient � 
 

The nature of velocity profile with variations in nonlinearly stretching parameter n and 

magnetic parameter has been displayed in figures 1 and 2. The velocity of the fluid is found 

to decrease with an increase in n. But the decrease of the velocity profile is negligible for 

large values of n since the coefficient  
(�

�K� approaches to 2 when n→∞. Figure 2 shows the 

effect of magnetic parameter for nonlinear stretching parameters n=1, n =10. It can be 

observed that when the magnetic parameter M increases the velocity decreases this is because 

the transverse magnetic field creates the Lorentz force. It is a resistive force similar to the 

drag force which will result in the deceleration of the flow.  

The effect of variable Thermoporetic diffusion coefficient parameter D and variable Brownian 

motion diffusion coefficient parameter � on temperature of the nanofluid are displaced in 

figure 3 and figure 4. It is observed from the figures that increasing both the parameters can 

also increase the temperature of the fluid by keeping other parameters fixed. In this regard, 

temperature of the fluid is higher in injection situation than that of suction as it is revealed by 

the figures. 

 

Figure 5 shows the effect of velocity profile with respect to the variation in suction parameter 

S. It can be noticed that when the values of ‘S’ increase, the velocity profile graph decreases. 

Fig 6 reveals the effect of Grashoff number Gr on temperature profile, it is observed that 

temperature slightly decreases with increasing values of local Grashoff number Gr. 

Fig 7 presents the effect of Lewis number on dimensionless nanoparticle concentration. An 

increase in Lewis values will reduce the profile of nanoparticle concentration and larger Le 

values will also suppress concentration profile. Fig 8 shows the influence of Brownian 

motion parameter on temperature profile. It clearly indicates that the thermal boundary layer 

thickness increases with an increase in Brownian motion parameter Nb. 
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         Fig 5 : Velocity profile with variation in         Fig 6 : Temperature profile with variation in  Gr 

                     Suction parameter S 

 

 

  

            Fig 7: Concentration profile with variation    Fig 8: Temperature profile with variation in  

                     In Lewis number Le                                          in Brownian motion parameter         

 

 

 

                                                                                        
Fig 9: Temperature profile with variation Nt    Fig 10: Temperature profile with variation in Pr                 
 

 

Figure 9 shows the influence of thermoporesis parameter Nt on nanoparticle concentration. 

From the figure it is clear that nanoparticle concentration increases with increasing values of 

thermoporetic parameter Nt. The effect of Prandtl number Pr on the heat transfer process is 

shown by the Fig. 10. This graph reveals that an increase in Prandtl number Pr results in a 
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decrease in the temperature distribution, because, thermal boundary layer thickness decreases 

with an increase in Prandtl number Pr. 

 

         
 

Fig11: Concentration profile with variation in                 Fig 12: Temperature profile with variation in  

            Non linear stretching parameter n                                      nonlinear stretching parameter n 

 

Fig 11 dipicts the nature of nanoparticle volume fraction with variation in nonlinearly 

stretching parameter n. It shows that nanoparticle concentration decreases with an increase in 

n. The nature of temperature profile with variation in non linearly stretching parameter n has 

been depicted in Fig 10.  It can be observed that temperature decreases with an increase in n. 

  

Fig 13: Variation of local Nusselt number         Fig 14: Variation of local Sherwood number  

– PS�0�  with Nt for different values of Nb.                −∅S�0� with Nt different values of Nb  

 

Fig 11 shows the influence of both the Brownian motion parameter Nb and thermophoresis 

parameter Nt on local Nusselt number – PS�0�. As both parameters increase, the heat transfer 

rate on the surface of a sheet decreases. This indicates that an increment in thermophoresis 

parameter induces resistance to the diffusion of mass. This results in the reduction of heat 

transfer rate on the surface. 

Fig 12 depicts the variation of local Sherwood number −∅S�0� in response to a change in 

Brownian motion parameter Nb. The graph shows that the local Sherwood number increases 

as Nb increases and also increases with an increase in Nt. 
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Conclusion: 

                Investigation has been carried out numerically to study the effects of Brownian 

motion and thermophoresis on MHD mixed convection flow of a nanofluid over a nonlinear 

stretching sheet with variable temperature and concentration. The transformed nonlinear 

ordinary differential equations are solved by using Keller Box Method. The obtained 

numerical results are compared with previously published work and they are found to be in 

excellent agreement. The effects of governing parameters on the flow and heat transfer 

characteristics are thickness decreases with the effect of magnetic parameter and suction 

parameter.presented graphically and quantitatively. The main observations of the present 

study are as follows: 

1. Influence of non linear stretching parameter decreases both the velocity of the 

fluid as well as temperature. 

2. The boundary layer thickness is increases with an increase in both variable 

Thermophorotic diffusion coefficient parameter and variable Brownian motion 

diffusion coefficient parameter. 

3. The velocity of the fluid is decreases with an increase in both Magnetic parameter 

and Suction parameter.    

4. Thermal boundary layer thickness decreases with an increase in both Grashof 

number and Prandtl number.  

5. The thickness of thermal boundary layer increases with an increase in both 

Brownian motion and thermophoresis parameters.            

6. An increase in nanoparticle concentration decreases both the Lewis number and 

nonlinear stretching parameter. 

7. Heat transfer rate decreases with the influence of Brownian motion and 

thermophoresis parameters. 

8. The local Sherwood number increases with the effect of both Brownian motion 

and thermophoresis parameters. 
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