
A New Quantum Paradox

Abstract: A gauge transformation of a simple electromagnetic system is analyzed.

The Hamiltonian which is derived from the Dirac Lagrangian density is used for

determining the state of an electron. The fact that this Hamiltonian is free of time

differential operators plays a key role in the analysis. It is proved that an application

of a specific gauge transformation yields inconsistent results. These results call for

a further analysis of the role of gauge transformations in the theoretical structure of

electrodynamics.
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1. Introduction

This work discusses a paradox that is obtained from an application of a gauge

transformation to a simple electromagnetic system. Electrodynamics is a widely stud-

ied sector of theoretical physics and it is relevant to many physical disciplines, ranging

from solid state physics to astrophysics. Therefore, the entire physical community is

expected to belong the the readership of this work.

A paradox is regarded as a useful tool for finding out new properties and inter-

relations between elements of a theory. A physical paradox describes a hypothetical

device and relevant physical laws are assumed to determine the behavior of the sys-

tem. The outcome of a paradox is an apparent contradiction. Such a contradiction

provides a motivation for a further investigation of the relevant physical laws. This

kind of investigation generally contributes to a better understanding of these laws.

The following lines briefly describe two well known paradoxes which are used here as

an illustration of this matter.

In the 1930s, Einstein, Podolsky and Rosen (EPR) described a quantum paradox

of an action at a distance [1]. They used a principle which they called physical reality

and regarded the result as an indication that quantum mechanics is an incomplete

theory. For this reason, EPR put forward the need for finding hidden parameters

that will promote quantum mechanics to the status of a complete theory. Later

Bohm and Aharonov [2, 3] and Bell [4] have added elements that were used in an

experimental test of the EPR idea. Experimental results support the idea that there is

a kind of quantum information that propagates instantaneously (see [5] and references

therein). Thus, the apparent EPR paradox has provided a motivation for acquiring

new information on how physical processes work.

In the 1960s Shockley and James presented a paradox where a stationary system

of a charge and a magnet has an electromagnetic nonzero linear momentum [6]. Soon
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after the publication of this paradox, Coleman and Van Vleck provided a general

proof showing that the system’s total linear momentum must be balanced [7]. Later

Comay has shown that an explicit mechanical linear momentum exists in the system.

In particular, if a nonvanishing pressure gradient exists along a closed loop of current

then effects related to the energy-momentum tensor yield a nonzero mechanical linear

momentum [8]. This mechanical momentum balances the electromagnetic linear mo-

mentum and also supports the validity of Coleman and Van Vleck general analysis.

Thus, the Shockley and James paradox has ended up with a better understanding of

elements of classical physics.

This paper discusses gauge transformations in the quantum domain. In classi-

cal physics, electrodynamic equations of motion - namely, Maxwell equations and

the Lorentz force - are independent of the 4-potentials. Therefore, classical electro-

dynamics is invariant under a gauge transformation. On the other hand, quantum

theories depend explicitly on the 4-potentials. The analysis abides by physical laws

and proves that the Dirac Hamiltonian is not invariant under a specific gauge trans-

formation. This outcome demonstrates the need for a further analysis of the role of

gauge in theoretical physics.

The paradox of this work is described in the second section. The third section

contains the conclusions. Expressions are written in units where h̄ = c = 1. The

relativistic metric is diagonal and its entries are (1,-1,-1,-1). Greek indices run from

0 to 3.

2. The Paradox

The paradox described below arises from an examination of a specific gauge trans-

formation that pertains to the state of an electron which obeys the Dirac equation.

3

UNDER PEER REVIEW



To this end, let us examine the Lagrangian density of a Dirac electron [9, see p. 78]

LD = ψ̄[γµ(i∂µ − eAµ)−m]ψ, (1)

where Aµ = (V,A) denote the components of the electromagnetic 4-potential [10,

see p. 10] or [11, see p. 48]. Here one sees that in this equation, like in any other

quantum equation, the charge interacts with the 4-potential.

It is well known that the Lagrangian density of (1) is invariant under the gauge

transformation Λ(x) which is an arbitrary function of the space-time coordinates

(denoted by x) [9, see p. 78] and [12, see p. 345]

Aµ(x) → Aµ(x) + Λ(x),µ ; ψ(x) → exp(−ieΛ(x))ψ(x). (2)

Here e is the electronic charge, which is a dimensionless Lorentz scalar in the units

where h̄ = c = 1. Indeed, substituting (2) into (1), one finds that the contribution of

the gauge 4-potentials Λ(x),µ is canceled out by the additional terms obtained from

the partial differentiation of exp(−ieΛ(x))ψ(x).

Let us turn to the paradox and examine a motionless electron located at the

vicinity of point P in a field-free space. The Dirac Hamiltonian is used for finding the

time evolution of this electron. (A quantum expression for the Hamiltonian is also

required by the Bohr correspondence principle. Here the classical limit of quantum

theories should agree with classical physics. Evidently, in classical physics energy is

a well defined quantity. Therefore, one requires that quantum theories should have

a self-consistent expression for energy.) This Hamiltonian can be derived from the

Lagrangian density of (1) in the following steps.

The Hamiltonian density H is derived from the Lagrangian density by the well

known Legendre transformation

H =
∑

i

∂L

∂ψ̇ i

ψ̇i − L, (3)
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where the index i runs on all functions. In the specific case of a Dirac particle one

obtains from (1) and (3)

HD = ψ†[α · (−i∇− eA) + βm+ eV ]ψ, (4)

which is written here in the standard notation [10, see p. 11]. The density of a Dirac

particle is ψ†ψ [10, see p. 9]. Thus, removing the density from (4), one obtains the

operator form of the Dirac Hamiltonian

HD = [α · (−i∇− eA) + βm+ eV ]. (5)

This Hamiltonian stands on the right hand side of the Dirac equation [10, see p. 11]

i
∂ψ

∂t
= HDψ = [α · (−i∇− eA) + βm+ eV ]ψ. (6)

As is well known, the Dirac Hamiltonian (5) does not contain a time differential

operator.

The Dirac equation (6) is used for finding the time evolution of an electron at

the vicinity of point P . Here the field-free 4-potential is

Aµ = 0. (7)

Hence, the Dirac equation for a free electron

i
∂ψ

∂t
= [α · (−i∇) + βm]ψ (8)

determines the electronic state.

Let us examine how this system is affected by the following gauge function

Λ(x) = et/r. (9)

Here e is the absolute value of the electronic charge, t is the time and r is the distance

from the origin of the spatial coordinates. Certainly, the gauge function of (9) is a
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legitimate gauge expression because it depends on space-time coordinates. This gauge

transformation casts the null 4-potential of (7) into the following expression

A′
µ =

∂(et/r)

∂xµ
= (e/r,−etr/r3). (10)

The gauge transformation of (2) also transforms the Dirac wave function. Introducing

the specific gauge function of (9), one finds that the transformed wave function (2) is

ψ′(x) = exp(ie2t/r)ψ(x). (11)

And indeed, substituting (10) and (11) into the Dirac Lagrangian density (1), one

finds that this Lagrangian density is invariant under the transformation of the gauge

function (9).

On the other hand, the new function ψ′(x) of (11) must satisfy the Dirac equation

(6), where the gauge terms of (10) are used in the expression for the 4-potential. Here

one obtains

i
∂ψ′

∂t
= HDψ

′(x) = [α · (−i∇− eA) + βm+ eV ]ψ′(x)

= exp(ie2t/r)[α · (−i∇) + βm− e2/r]ψ(x) (12)

It turns out that similarly to the case of the Dirac Lagrangian density (1), the contri-

bution of the 3-vector part of the gauge (10) is eliminated from the Dirac Hamiltonian

of (12). On the other hand, the 0-component of that gauge remains as is. This out-

come stems from the fact that the Dirac Hamiltonian (5) contains spatial differential

operators but is free of a time differential operator.

Now, let us define the point P of the electron so that its distance from the origin of

the spatial coordinates is about the Bohr radius. In this case the gauge transformation

(9) produces (12), which is the equation of a bound electron of the hydrogen atom

(multiplied by a phase factor) [10, see p. 52]. This outcome is inconsistent with the

free electron state of the null potential (7).
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There is another problem with the gauge transformed function ψ′ of (11). Thus,

an ordinary wave function of a motionless particle in a well-defined energy state takes

the form

ψ(x) = exp(−iEt)χ(x, y, z). (13)

Here the time dependence of ψ(x) appears only in the phase where the energy E is

a constant and χ(x, y, z) is a spatially dependent energy eigenfunction. On the other

hand, the phase factor of the gauge transformed function ψ′ of (11) also depends on

the radial coordinate r. Thus, one obtains for the motionless free electron

i
∂ψ′

∂t
= i

∂ exp(ie2t/r)

∂t
ψ + i exp(ie2t/r)

∂ψ

∂t

= (−e2/r +m)ψ′, (14)

where m is the electronic mass. Therefore, the coordinate-dependent quantity −e2/r

of (14) proves that the gauge-transformed wave function ψ′ is not an energy eigen-

function. This is a contradiction because an electron in a free space has a well defined

energy and in the case of a motionless electron E = m [10, see p. 28].

3. Conclusions

The paradox described herein is related to two expressions of the 4-potential (7)

and (10) which differ by a gauge transformation. It turns out that contrary to a

general expectation, two physically different results are obtained. The state of a free

electron which is derived from (8) is inconsistent with that of the solution of (12),

where the electron is bound to the hydrogen atom. An examination of the derivation

of the final form of (12) indicates that the problem stems from the fact that unlike

the Dirac Lagrangian density of (1), the Dirac Hamiltonian density of (4) and its

associated Hamiltonian of (5) are independent of a time differential operator. The
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result of this work provides a motivation for a further investigation of the role of

gauge in electrodynamics. Such an investigation is expected to end up with a deeper

understanding of the role of gauge in electrodynamics.
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