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THE HAMILTONIAN OPERATOR AND EULER POLYNOMIALS

ABSTRACT. In this paper we obtain some identities related to the Hamiltonian
operator and Euler polynomials and confirm these properties through exam-
ples.

1. INTRODUCTION

Various functions appear in many areas of theoretical physics, for example, Euler
polynomials is shown in the field of non-commutative operators in quantum physics.
Let us define the commutator of two operators p and ¢ as

[p,q] = pqg — qp

and their anti-commutator as

{p,q} = pa +qp.

Generally we define the iterated anti-commutators as

{p, a2 = {{p, g}, 4}, {pats ={{{p, 4}, 4}, 4} = {{p, ¢}2, ¢}

and moreover for all positive integer n, we have

{p.a}tn ={{p. ¢}n-1.4}
We introduce the Hamiltonian operator H as

1
Hzi(pz—i—qz).

C. Bender and L. Bettencourt [2] suggest the following result

m setaetty, = 3 famai+ )

where we can find the Euler polynomials E,(z) (n € N) are given by the power
series
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The integers E,, = 2"E,,(1/2) are called Euler numbers. The first few Euler poly-
nomials are
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It is well-known [3] that
(3) E,(z) = (Z) Ep_(0)z*
k=0
and
(4) E.(z)+ E,(z+1) =22" for all n € N.

In this article we start from the paper [1] and we try to generalize some identities
shown on it thus we obtain the following relations of the Hamiltonian operator
involving Euler polynomials :

Theorem 1.1. Letn € N and a € R. Then we have
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Corollary 1.2. Letn € N and a € R. Then we have
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2. SOME IDENTITIES FOR THE HAMILTONIAN OPERATOR

Let N and R denote the sets of all positive integers and real numbers, respectively.
We introduce the symbolic notation, with a € R,

n

(g HY +a)n =Y (};‘) Mg, B}y

k=0

(5)

and the convention {¢, H}o = ¢.
Proposition 2.1. (See [1]) For a € R and n € N,

a
{an—i_*

51 = (aH)+a),.



Corollary 2.2. Letn € N and a € R. Then

(a)

DN | =

" /2
2 (an) 0 e -

k=0

(b)

(et 3y, vl =31,)

D

k=0

1 a a
(o3, -3,
2 ({q * 2J)ont1 U 2 ) on41

Proof. By (5) and Proposition 2.1 we observe that
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(a) After putting n = 2N in Eq. (6) and (7), adding them we obtain
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(b) Let n =2N + 1 in (6) and (7). Then adding them we have
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Proposition 2.3. (See [1]) An equivalent form of identity (1) is

1 1 1 1
H- = —SqH+=}p ={¢H").
2n {q7 2} + on {q’ + 2}n {q’ }

From the above proposition we consider the following lemma and we can see that
Proposition 2.3 is the special case a = 1.

Lemma 2.4. Letn € N and a € R. Then we have
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Proof. From (1) we can easily know that

1 1 1
H--Y = 2{qE,(H)},
7 {q, 2}n 5 14 En(H)}
which deduces that by (4)
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Example 2.5. In Lemma 2.4 the case n = 1 implies that
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But since

[p,H] = —iq  and  [q,H]=1ip

we have



qH? —2HqH + H?q = [q, H|H — H[q, H] = [[q, H], H] = [ip, H] = i[p, H]

and

gH? + H?>q—¢q

HqH =
q 2

This leads for the case n = 2 that
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Proof of Theorem 1.1. By (5) and Proposition 2.1 we note that
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Then by replacing k — [ with p and using
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(3), and (4), the above identity becomes
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This concludes that by (5) and Proposition 2.1

kz() (Z)E"_k(o);’f ({q’H B g}k * {q’H a g * 1}k)

Example 2.6. The case n =1 in Theorem 1.1 shows that
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thus it is satisfied. Also if n =2 in Theorem 1.1 then we have
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and so it is satisfied.

Proof of Corollary 1.2. From Theorem 1.1 we deduce that
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Example 2.7. Ifn =1 in Corollary 1.2 then we obtain
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And if n =2 in Corollary 1.2 then
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