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ABSTRACT  7 

Magnetic field effects on a free convective mass transfer flow of chemically reactive 
micropolar fluid over a vertical porous plate are investigated in this work. A mathematical 
model related to the problem is developed from the basis of studying 
magnetohydrodynamics(MHD). A usual mathematical transformation is applied on the 
model to obtain a system of non-dimensional equations. Analytical solution of the problem is 
calculated by the use of perturbation technique. The computed numerical values of fluid 
velocity, angular velocity and species concentration are plotted in different figures. To 
observe the effects of various parameters on the above mentioned physical quantities, the 
results are discussed in detailed with the help of graphs. Finally, a conclusion is listed here.  
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1. INTRODUCTION  11 

 12 
The behaviors of fluid that contain suspended, metal or dust particles in many practical situations 13 
are first observed by the micropolar fluid theory (Eringen,1966) with internal structures in which 14 
coupling between the spin of each particle and the macroscopic velocity field is taken into account. 15 
Physically, the micropolar fluids contain dilute suspension of small, rigid, cylindrical 16 
macromolecules with individual motion and are influenced by spin inertia. Since the theory is used 17 
to investigate the flow character of polymeric fluids, colloidal suspension (Hadimoto and Tokioka, 18 
1969; Kucaba-Pietal, 2004; Khedr, 2009), human and animal blood(Arimanet al., 1974; Muthu, 2008), 19 
liquid crystal (Lockwood et al., 1987) and exotic lubricants so many scientists have been received a 20 
great interest to observe the micropolar fluid dynamics at present time. 21 
The authors (Ferraro and Plumpton, 1996; Cramer and Pai, 1973; Raptis, 2011; Samiulhaqet al., 22 
2012 and Seth et al., 2015) are notable for major contribution about MHD free convection flows and 23 
their significant application in the field of stellar and planetary magnetospheres, aeronautics, chemical 24 
engineering, electronics, and so on. In addition, many transport processes exist in industries 25 
andtechnology where the transfer of heat and mass occurs simultaneously as a result of thermal 26 
diffusion and diffusion ofchemical species. An extensive contribution on heat and mass transfer flow 27 
has been made (Gebhart, 1971) to highlight the insight on the phenomena. Thereafter, several 28 
authors, (Chamkha, 2000; Chaudhary, 2007; Haque and Alam, 2009; Samad and Mohebujjaman, 29 
2009; Eldabe, 2011 and Seth, 2015) have paid attention to the study of MHD free convection and 30 
mass transfer flows. 31 
The growing needs for chemical reactions in chemical and hydrometallurgical industries require the 32 
study of heat and mass transfer with chemical reaction. The effect of the first order homogeneous 33 
chemical reaction of an unsteady flow past a vertical plate with the constant heat and mass transfer 34 
has been investigated (Das et al., 1994). The chemical reaction effects on an unsteady MHD free 35 
convection fluid flow past a semi-infinite vertical plate embedded in a porous plate with heat 36 
absorption have been studied by (Ibrahim et al., 2008; Anand Rao et al., 2012; Das, 2012; and Raju 37 
et al., 2013). 38 
The author (Peddision and McNitt, 1970; Bakr, 2011) has recognized the boundary layer situation 39 
for steady micropolar fluid flow past a semi-infinite flat plate due to its important role in a number of 40 
technical processes. The micro inertia effects on the flow of a micropolar fluid past a semi-infinite 41 
plate are investigated (Ahmadi, 1976; Kucaba-Pietal, 2004; Khedr et al., 2009). The free convective 42 
micropolar fluid flow induced by the simultaneous action of buoyancy forces is of great interest in 43 
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nature and in many industrial applications as drying processes, solidification of binary alloy as well as 44 
in astrophysics, geophysics and oceanography. 45 
The processes of mass transfer play an important role in the production of materials in order to obtain 46 
the desired properties of a substance. Separation processes in chemical engineering such as the 47 
drying of solid materials, distillation, extraction and absorption are all affected by the process of mass 48 
transfer. Chemical reactions including combustion processes are often decisively determined by the 49 
mass transfer. The authors (Callahan and Marner1976;  Bakr 2011) studied a free convective steady 50 
flow with mass transfer past a semi-infinite plate. An investigation on free convective steady flow with 51 
mass transfer past asemi-infinite vertical porous plate with constant suction has been completed 52 
(Soundalgekar and Wavre 1977; Ahmed and Das 2013). Transient free convection flow on a semi-53 
infinite vertical plate with mass transfer has been observed (Soundalgekar and Ganesan1980).Hence 54 
our main goal is to investigate a free convective mass transfer steady flow of a chemically reactive 55 
micropolar fluid past a semi-infinite porous plate. 56 

2. ANALYSIS AND SOLUTION 57 

2.1 MATHEMATICAL FLOW 58 
A natural convective mass transfer steady flow of a chemically reactive micropolar fluid along a semi-59 
infinite vertical porous plate is considered in the presence of a uniform magnetic field. The flow is 60 
assumed to be in the x -direction which is taken along the plate in the upward direction and y -axis is 61 

normal to it. Initially, we consider that the plate as well as the micropolar fluid particles is at rest at the 62 

same species concentration level ( )∞= CC  at all points, where ∞C  is species concentration of 63 

uniform flow. It is also assumed that a magnetic field B of uniform strength is applied normal to the 64 
flow region. The physical configuration and co-ordinate system of the problem is presented in the 65 
following Fig.1.   66 

 

67 

 68 
 69 

Fig.1. Physical configuration of the flow 70 
 71 
Within the framework of the above stated assumption, the equations relevant to the problem are 72 
governed by the following system of coupled non-linear partial differential equations under the 73 
boundary-layer approximations, 74 
 75 
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Concentration Equation 
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with boundary condition, 83 

0,u = ,
u

s
y

∂
Γ = −

∂
wC C= at 0y =  84 

0,u = 0,Γ = C C∞= at y → ∞  85 

where u  is the velocity component, Γ  is the velocity acting in z - direction ( the rotation of Γ  is in 86 

the yx −  plane),
0

B  is the magnetic field component, g  is local acceleration due to gravity, χ  is the 87 

vortex viscosity, γ  is the spin gradient viscosity, β ∗
is concentration expansion coefficient. 88 

 89 

2.2 MATHEMATICAL FORMULATION 90 
Since our goal is to attain analytical solutions of the problem so we introduce the following 91 
dimensionless variables, 92 
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The dimensionless equations are,  94 
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M

f g f f G K M fη η η η ϕ η η′′′ ′ ′′ ′+ ∆ + ∆ + + − + = (4) 95 

( ) ( ) ( ) ( ) ( ) ( ) ( )2 0g f g f g g fη η η η η λ η λ η′′ ′ ′ ′′∧ + + − − = (5)                                                                              96 
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c c r
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with boundary conditions 98 
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( ) 0,f η′ = ( ) 0,g η = ( ) 0ϕ η = η → ∞  100 

Where, micro-rotational number
χ
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 105 

2.3 MATHEMATICAL ANALYSIS 106 
Since the solution is sought for the large suction further transformation can be made as, 107 

wfηξ =                                                                                                                                     (1) 108 

( ) ( )ξη Fff w=                                                                                                                        (2) 109 

( ) ( )ξηφ Gf w

2
=                                                                                                                       (3) 110 
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( ) ( )3

w
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Model with small quantity, 112 

( ) ( ) 01 =′+−+′′+′∆+′′′∆+ FMKGGFFHF M εε (4.3.8) 113 

02 =′′−−′+′+′′∧ FHHFHFH λελε (4.3.9) 114 

0=−′+′′ GCSFGSG rcc ε                                                                                                        (5) 115 

with boundary conditions 116 

( ) 1,F ξ = ( ) 0,F ξ′ =  ( ) ,G ξ ε=  ( ) ( )H sFξ ξ′′= −  at 0ξ =   117 

( ) 0,F ξ′ =  ( ) 0,G ξ =  ( ) 0H ξ =  at ξ → ∞  118 

 119 

2.4 SOLUTION  120 

Now for the large suction ( )1
w

>f , ε  will be very small. Therefore following Bestman(1990), GF ,  121 

and H  can be expended in terms of the small perturbation quantity ε , 122 
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The first order equations, 126 
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The second order equations, 131 
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Also the third order equations, 136 
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From Equation (4.4.4) we get first order solutions, 141 

1
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From Equation (10) we get second order solutions, 143 
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From Equation (4.4.6) we get third order solutions, 145 
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From the Equation (9), (10) and (11) we have series for the solution. Putting the equations of first, 149 
second and third order solution in the Equations (9), (10) and (11), we get the values of F, H and G. 150 
Substituting the values of F, H and G to the equation. 151 
The fluid velocity equation, 152 
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The fluid angular velocity equation, 157 
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The fluid concentration equation, 160 
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 164 

3. RESULT AND DISCUSSION 165 

 166 
To discuss the results of the problem, the analytical solutions are obtained by using the perturbation 167 

technique. In order to analyze the physical situation of the model, we have computed the numerical 168 

values of the flow variables for different values of Modified grashof number Gm ,Suction parameter fw, 169 

Magnetic force number M, permeability of porous plate K, Micro-rotational number ∆, Vortex viscosity 170 

λ, Spin gradient viscosity number ( )∧ , Schmidt number Sc  and Chemical reaction parameter Cr. The 171 

fluid velocity, angular velocity and concentration versus the non-dimensional coordinate variable η
 

172 

are displayed in Figures. 173 

The increase values of magnetic parameter create a drug force known as Lorent force. The velocity 174 

profiles are illustrated in Fig. 1. As it is observed, the velocity profiles curve climb up at the increase of 175 

magnetic force number. Afterwards, the suction parameter stabilize the boundary layer growth. So the 176 

velocity profiles curve decline with go up suction parameters. And same behavior is shown for 177 

Schmidt number, modified Grashof number. The velocity profiles curve go down for permeability of 178 

prous plate. Then with increase of vortex viscosity, the velocity profiles plunge. The angular velocity 179 

profiles are displayed in Fig. 2. Firstly, angular velocity profiles curve decline with rise of suction 180 

parameter. Afterthat, it increases at the modified Grashof number. But in Fig. 2(c) angular velocity 181 

profiles show flactution for Schmidt number. Then at the upsurge of micro-rotational number the angle 182 

velocity increase.at the end of the list of figure, angular velocity decline due to soar of spin gradient 183 

viscosity number and vortex viscosity. 184 

Schmidt number decrease the molecular diffusivity. Fig. 3 describes the concentration profiles. As it is 185 
noticed, concentration profiles curve with increase of suction parameter, Schmidt number, chemical 186 
number and micro-rotational number.   187 
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(a) (d) 

(b) (e) 

(c) (f) 
Fig. 1. Velocity profiles for different values of (a) modified Grashof number (b) suction parameter (c) 

Schmidt number (d) magnetic force number (e) permeability of porous plate (f) spin gradient viscosity 
number. 
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(a) (d) 

(b) (e) 

(c) (f) 
Fig. 2. Angular velocity profiles for different values of (a) modified Grashof number (b) Schmidt 

number (c) suction parameter (d) micro-rotational number (e) spin gradient viscosity number (f) vortex 
viscosity. 
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(a) (c) 

(b) (e) 
Fig. 3. Concentration profiles for different values of (a) suction parameter (d) Schmidt number (c) 

micro-rotational number (d) chemical reaction parameter.                                                    
 188 

4. CONCLUTION 189 
Some of the important findings of the present work obtained from the graphical representation of the 190 
results are listed below: 191 

1. The fluid velocity and angular velocity profiles decreases with the increase of Modified 192 

grashof number. 193 

2. The velocity and angular velocity profiles decreases with the increase of Suction parameter 194 

and also the concentration profile decreases with the increase of Suction parameter. 195 

3. The velocity profile decreases and angular velocity profiles decreases with the increase of 196 

Schmidt number and also the concentration profile decreases with the increase of  Schmidt 197 

number. 198 

4. The velocity profile go up with Magnetic force number. 199 

5. The velocity profiles decreases with the increase of Permeability of porous plate. 200 

6. The concentration profile decreases with the increase of Chemical reaction parameter. 201 
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7. The angular velocity profile increases with the increase of Micro-rotational number and the 202 

concentration profile decreases with the increase of Micro-rotational number. 203 

8. The angular velocity profile decreases with the increase of Spin gradient viscosity number. 204 

9. The angular velocity profile decreases with the increase of Vortex viscosity. 205 

 206 
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