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INFLUENCE OF TOPOGRAPHY ON SURFACE RADIO REFRACTIVITY PATTERNS
OVER NORTH CENTRAL, NIGERIA

Abstract

This paper investigates the interaction between terrain features and surface refractivity during
the past decades k North Central, Nigeria. Some issues were addressed in the study: seasonal variation
of surface refractivity over a period of 25 years (1983 — 2007), spatial distribution of surface refractivity
covering 287 stations spreading across the Nigerian middle belt and relationship between terrain
features and spatial variation of surface refractivity. Satellite-measured meteorological parameters
comprising air temperature, relative humidity and pressure at 2 m height (relative to the surface) were
obtained from National Aeronautic Space Administration (NASA) and used to compute annual, January
and July averages of surface refractivity over the period. The results of surface refractivity were
interpolated and compared with North Central terrain features to establish a correlation. Surface
refractivity reduced with increasing altitude across the North Central, Nigeria; the reduction at interval
of 100 m height was at an average of 1.27 N-Units. On the average, refractivity gradient varied at the
rate of 7.87 N-Units/km. The least altitudinal variation occurred at the boundary layer while the highest
variation occurred at 800 m and above. Surface refractivity and refractivity gradients at North Central,
Nigeria were influenced by topographical features and the prevailing atmospheric conditions which are
dependent on the seasonal rainfall regimes.

Keywords: Topography, Surface refractivity, propagation mode, climate, refractivity contour

1.0 Introduction
Radio propagation in a terrestrial environment is an enigmatic phenomenon whose properties

are difficult to predict. This is particularly true at very high frequency (VHF), ultra high frequency (UHF),
and super high frequency (SHF) where the clutter of hills, trees, and houses and the ever-changing
atmosphere provide scattering obstacles with sizes of the same order of magnitude as the wavelength
(Hagn, 1980). The engineer who is called upon to design radio equipment and radio systems does not
have available any precise way of knowing what the characteristics of the propagation channel will be
nor, therefore, how it will affect operations. Instead, the engineer must be content with one or more
models of radio propagation with techniques that attempt to describe how the physical world affects
the flow of electromagnetic energy.

Line - of - sight (LOS) microwave links are prone to severe fading due to refraction of the
transmitted waves along the propagation path. Hence, refractive fading can significantly impair service
on terrestrial LOS microwave transmission. Microwave propagation through the troposphere is affected
by varieties of natural phenomena caused by some meteorological parameters, such as pressure,
temperature and relative humidity at UHF and microwave frequencies (Adeyemi and Emmanuel,
2011).These effects are analyzed from the study of radio refractive index derived from these
parameters. These parameters vary considerably diurnally and seasonally in the tropics. Therefore, the
knowledge of the refractivity is essential in order to design reliable and efficient radio communication
(terrestrial and satellite) systems. Thus, the refractive index of the troposphere is very important for
estimating the performance of terrestrial radio links.
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Profiles of refractivity gradients within 1 km of the atmosphere are important for the estimation
of some propagation parameters, such as super refraction and ducting phenomena, and their effects on
radar observations and VHF field strength at points beyond the horizon (Yongkang et al., 2013).
Multipath effects also arise due to large scale variations in atmospheric radio refractive index, such as
horizontal layers with very different refractivity (Willoughby et al.,, 2002). This effect becomes
noticeable, when the same signal takes different paths to its target and the rays arriving at different
times thereby interfering with each other during propagation through the troposphere. The
consequence of this large scale variation in the atmospheric refractive index is that radio waves
propagating through the atmosphere become progressively curved towards the earth. Thus, the range
of the radio waves is determined by the height dependence of the refractivity. Therefore, the refractivity
of the atmosphere will not only affect the curvature of the ray path but will also provide some insight
into the fading of radio waves through the troposphere (Grabner and Kvicera, 2008).

Some of radio refractivity models which depend on radiosonde measurements treat very
specialized subjects such as micro-wave mobile data transfer in high-rise urban areas; others try to be as
generally applicable as Maxwell's equations and to represent, if not all, at least most, aspects of physical
reality. Although, results from radiosonde measurements lack the required resolution and coverage
which is necessary for the investigations of spatial and temporal variations of surface refractivity
particularly in the lower atmosphere and therefore were unable to resolve the spatial and temporal
patterns emerging in the light of climate variations (Li et al., 2007). Moreover, data gaps also exit while
some of the stations have become defunct. In this research we shall investigate the influence of
topography on surface refractivity over North Central, Nigeria using 25-year averaged satellite-based
meteorological data. This is with the aim of generating refractivity and refractivity gradient contour
maps for terrestrial communication planning in highly undulating characteristic nature of North Central,
Nigeria.

2.0 Theoretical Background

Saturation vapour pressure (SVP) is the maximum possible vapor pressure at a given
temperature. Saturation vapour pressure increases as air temperature increases. The condensation of
water vapor begins after the saturation vapor pressure is reached. Therefore, SVP is given in terms of
temperature as:

17.67(T —To)

SVP = 6.116( T-29.65 1.0

T is surface air temperature in Kelvin while Ty is absolute temperature equal to 276.16 Kelvin.

Mixing ratio (ws) is the amount of water vapor that is in the air. It is the grams of vapor per kg of dry air.
W; is an absolute measure of the amount of water vapor in the air. It can be expressed in terms of SVP
and air pressure as:

w, = 0.622 X =& 2.0
P

w; is the boundary layer mixing ratio (dimensionless) and P is surface air pressure
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Relative humidity can therefore be expressed as the ratio of water vapor mixing ratio to saturation
water vapor mixing ratio. It is given as:

RH = M 3.0

Wg
where Q is specific humidity
The relationship between water vapour pressure e and relative humidity (RH) is given by

_ RHxSVP oo 20
e = 100 d .

The dry term, Ng,y of radio refractivity is given by
p
Ndry =77.6 T 5.0
The wet term, Ny, Of radio refractivity Index is given by
s €
Nwet = 3.732 X 10 TZ 6.0

The radio refractivity of air for frequencies up to 30 MHz is given by (ITU-R, 2003)

N =77.60 4+ 373 x 1055 7.0
_— . T . Tz .

where P is the total atmospheric pressure in millibars (mb), T is the absolute temperature in degrees
Kelvin (K), and e is the partial pressure of water vapour in millibars.

The surface refractivity parameter referenced to sea level which is necessary to calculate refractivity at
any altitude, z, in kilometers, (N;) is given by tropospheric equation:

Nz = Ngpy X e(_%) + Nyet X e(_%) 8.0

Hp and Hy are dry term and wet term tropospheric scale height (in kilometers) respectively; Z is the
altitude above the sea level. The equation is valid for Z < Z, where Z; is the mean density tropopause
altitude in km. it is dependent on seasonal changes in a climatic zone (Bean et al., 1966).

3.0 Materials and Method
3.1 Study Area

North Central, Nigeria comprises of six administrative states namely Benue, Kogi, Kwara,
Nassarawa, Niger, Plateau and Federal Capital Territory, Abuja spreading over 269,147 square
kilometers with a population of over 27 million people. The geopolitical zone is situated between
latitude 7°N and 11°N; it has climatic characteristic of tropical rain forest towards the southern part and
Guinea savannah towards the northern part. Some significant remote sensing ground receiving stations
belonging to National Centre for Remote Sensing, Jos; National Space Research and Development

3
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Agency, Abuja, etc. are domiciled in the zone. The zone has uniqueness of highly undulating terrain
ranging between 26 m at Lokoja in Kogi State and 1205 m at Jos in Plateau State. The zone has
prevalence of Guinea savannah climate; rainfall is not uniformly distributed, location beyond 13°N have
monomodal regime while locations below 10°N have bimodal regime (Hayward and Oguntoyinbo,
1987). The rainy period on the average comprises of 7 months (April — October) and it ranges between
500 mm and 1, 500 mm per year. Temperature varies in the zone with daily average maximum of 32°C
except in Jos where temperature ranges between 18°C and 22°C. The map of the study area is shown in
figure 1.

North Central, Nigeria
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Figure 1: Thematic Map of North Central, Nigeria

3.2 Data Structure

National Aeronautics and Space Administration (NASA) through its’ Earth science research
program has long supported satellite systems and research providing data important to the study of
climate and climate processes (Yongkang et al., 2013). These data include long-term estimates of
meteorological quantities and surface solar energy fluxes. These satellite and modeled based
products have also been shown to be accurate enough to provide reliable solar and meteorological
resource data over regions where surface measurements are sparse or nonexistent, and offer two
unique features — the data is global and, in general, contiguous in time (Briggs et al., 2003). The
dataset used in this study were extracted from Goddard Earth Observing System Model, version 5,

4
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(GEOS-5) covering the area between 3.75°N to 20.93°N and 1.16°E to 17.50°W, from 1983 through 2007
with resolution and 3-hourly output, and currently represent the best consistent estimate of the land
surface processes over West Africa (Okamoto and Derber, 2006).

Satellite meteorological point data from Goddard Earth Observing Satellite Model, version 5,
(GEOS-5) comprising air temperature, specific humidity and atmospheric pressure averaged monthly
within 2 m height for a period of 25 years 1983 - 2007 were obtained from NASA databank as shown in
Table A.1 (see Appendix 1 for sample data). Elevation values for 287 locations across North Central,
Nigeria were randomly picked from Google Earth Satellite image. Also, a shape file showing the map of
the study area was also obtained.

3.3 Data Analysis and Map Generation

Annual mean values of the meteorological parameters were obtained by averaging the monthly
recorded data. Relative humidity was calculated from specific humidity using equations 1.0 — 3.0. Dry
term and wet term of surface refractivity were estimated using equations 5.0 and 6.0 respectively.
Surface refractivity was obtained from the results of dry and wet terms using equation 7.0. Hy and Hy,
are dry term and wet term tropospheric scale height (in kilometers); they are latitudinal and seasonal
dependent, the values for the months of January and July were obtained from Bean et al., (1966) to
calculate N; values at a referenced height of 2 km across North Central, Nigeria. Gradients of surface
refractivity were estimated within a height of 2 km above the sea level.

Elevation values comprising 287 point values were interpolated and rasterized using Geographic
Information System (GIS) with a view to generate 2-dimensional elevation model. The overall mean
values of surface refractivity for a period of 1983 — 2007 for 287 gridded points were obtained by
averaging the monthly data, which were in turn averaged to get the mean annual values of the data.
Microsoft ECXEL was used to carry out all the calculations. Surface refractivity contours were prepared
and overlaid on the elevation model map to deduce its correlation with elevation patterns across the
study area. The flowchart showing the procedure for data analysis is shown in Figure A.1 in the
Appendix. Gradients of surface refractivity for the months of January and July were interpolated and
rasterized to generate propagation characteristic map over North Central, Nigeria.

4.0 Data Result and Discussion
4.1 Spatial Patterns of Surface Refractivity over North Central, Nigeria

Figures 2, 3 and 4 showed the maps of surface refractivity contours averaged for annual, January
and July respectively. The averaged values covered a period of 1983 — 2007. The refractivity contours
were overlaid on elevation model represented by graduating colours in 10 classes showing highly
undulating feature of topography at North Central, Nigeria. The contour lines were generated from
surface refractivity calculated for 287 geographic points by Geographic Information System (GIS)
software while the elevation values (z values) were interpolated and rasterised to determine elevation
model at North Central, Nigeria.

Figure 2 compared elevation model with annual average of surface refractivity (1983 — 2007). It
was observed that surface refractivity reduced with increasing altitude. Reduction in surface refractivity
at intervals of 100 m altitude was at an average of 1.26 N-Units at North Central, Nigeria. Altitude within
0 — 99 m had average surface refractivity of 267.32 N-Units; 100 — 199 m had 265.47 N-Units; 200 — 299
m had 264.57 N-Units; 300 — 399 m had 262.69 N-units; 400 — 499 m had 261.11 N-Units; 500 — 599 m
had 260.57 N-Units; 600 — 699 m had 259.65 N-Units; 700 — 799 m had 255.72 N-Units; 800 — 899 m had
255.44 N-Units; 900 — 999 m had 254.27 N-Units; 1000 — 1099 m had 253.52 N-Units and 1100 — 1200
had 253.44 N-Units.

In figure 3, averaged value of surface refractivity in January (1983 — 2007) was compared with
altitude features. The values of surface refractivity in January were typical of the peak of dry season
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(Harmattan) when the dry dust-laden north-easterly air mass is prevalent over the North Central,
Nigeria.

Surface refractivity also reduced with increasing altitude across the North Central, Nigeria; the
reduction at interval of 100 m was at an average of 1.27 N-Units. Altitude within 0 — 99 m had average
surface refractivity of 258.70 N-Units; 100 — 199 m had 256.30 N-Units; 200 — 299 m had 255.47 N-Units;
300 — 399 m had 253.68 N-units; 400 — 499 m had 251.99 N-Units; 500 — 599 m had 251.46 N-Units; 600
— 699 m had 250.26 N-Units; 700 — 799 m had 246.93 N-Units; 800 — 899 m had 246.62 N-Units; 900 —
999 m had 245.50 N-Units; 1000 — 1099 m had 245.27 N-Units and 1100 — 1200 had 244.74 N-Units. The
highest altitudinal variations were observed at 0 — 99 m (2.53 N-units) and 600 — 699 m (3.92 N-Units).
Lowest altitudinal variations were observed at 900 — 999 m (0.23 N-Units) and 700 — 799 m (0.31 N-
Units).

In figure 4, the values of surface refractivity were typical of the peak of rainy season when the
warm, moist south-westerly air mass is prevalent over the entire North Central, Nigeria. Surface
refractivity reduced in altitude intervals of 100 m at 1.11 N-Units. Surface refractivity variation with
respect to topographic altitude in July was not as high as that of January because the surface was more
saturated with moisture in the rainy season thereby making water vapour in the air to be relatively high
and stable.

ANNUAL MEAN OF SURFACE REFRACTIVITY CONTOUR MAP FOR NORTH CENTRAL, NIGERIA
(1983 - 2007)
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Figure 2: Spatial Patterns of Annual Surface Refractivity with Elevation (1983-2007) at North Central,
Nigeria
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Altitude within 0 — 99 m had average surface refractivity of 271.54 N-Units; 100 — 199 m had
270.01 N-Units; 200 — 299 m had 269.33 N-Units; 300 — 399 m had 268.26 N-units; 400 — 499 m had
266.62 N-Units; 500 — 599 m had 266.19 N-Units; 600 — 699 m had 265.15 N-Units; 700 — 799 m had
261.98 N-Units; 800 — 899 m had 260.87 N-Units; 900 — 999 m had 260.21 N-Units; 1000 — 1099 m had
230.41 N-Units and 1100 — 1200 had 259.28 N-Units. The highest altitudinal variation was observed at
600 — 699 m (3.16 N-Units) while the lowest altitudinal variation was at 400 — 499 m (0.42 N-Units).

4.2 Surface Refractivity Gradient Patterns over North Central, Nigeria

Figures 5, 6, and 7 showed the maps of surface refractivity gradient classified into different
propagation characteristics such as sub-refraction, normal refraction, super-refraction and ducting.
Twenty-five years results from 287 stations were selected for use in the preparation of these maps
because large number of stations is desirable for mapping purposes (better coverage), while longer
periods of record yield more stable (accurate) estimates of long-term means (of climatic variables).

Specific information on the gradient of the surface refractivity, most especially at North Central,
Nigeria, has not been available previously on such a large scale basis, especially for the very important
layers of the atmosphere at or near the surface where the presence of super-refractive or ducting
gradients can produce anomalous propagation of microwaves. The values in figures 5, 6 and 7 were
refractivity gradients at altitude 2 km and referenced to sea-level over the area. It was observed that the
propagation mode at a desired altitude was influenced by topographic features in the boundary layer.

In figure 5, it was observed that altitude within 0 — 99 m had sub-refractivity propagation mode;
100 — 199 m had normal refractivity propagation; 200 — 999 m had super-refractivity mode while
ducting was observed at altitude beyond 1000 m at North Central, Nigeria. In general, surface
refractivity gradient was influenced by topographic features. On the average, refractivity gradient varied
at the rate of 7.87 N-Units/km. The least altitudinal variation occurred at the boundary layer while the
highest variation occurred at 800 m and above.

Figure 6 showed the averaged surface refractivity gradient patterns in January (1983 — 2007). It
was observed that altitude within 0 — 299 m had prevalence of sub-refractivity propagation mode; 300 —
1099 m had super-refractivity propagation while ducting was observed at altitude beyond 1100 m. On
the average, refractivity gradient varied at the rate of 6.86 N-Units/km. The least altitudinal variation
occurred at the boundary layer while the highest variation occurred at altitude beyond 800 m.

Figure 7 showed the averaged surface refractivity gradient patterns in July (1983 — 2007). It was
observed that altitude within 0 — 99 m had prevalence of sub-refractivity propagation mode; 100 — 1099
m had super-refractivity propagation while ducting was observed at altitude beyond 1100 m. On the
average, refractivity gradient varied at the rate of 8.47 N-Units/km. The least altitudinal variation
occurred at altitude within 900 - 999 while the highest variation occurred at altitude beyond 1100 m.

5.0 Conclusion

Surface refractivity and refractivity gradients at North Central, Nigeria were influenced by
topographical features and the prevailing atmospheric conditions which are dependent on the seasonal
rainfall regimes. The dry Harmattan season has been found to favour sub-refraction at lower altitude but
significantly reduced in the rainy month of July thereby leading to prevalence of super-refraction
propagation mode. It is not only the evaporation gradient and surface moisture that highly correlated
with surface radio refractivity, but a combination of vegetation properties and topography. Therefore, it
is the very particular combination of moisture gradients, vegetation distribution and topography that
produces spatial variability of surface refractivity and refractivity gradients patterns.
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APPENDIX
Table A.1: Sample of Surface Meteorological Data obtained from NASA Databank

States Latitude | Longitude | Elevation (m) | Pressure (hPa) | Temp (Deg C) | Specific Humidity
Niger 11.10 3.74 248 981.6 28.01 0.012120
Niger 10.80 4.00 228 980.1 26.83 0.013333
Niger 10.42 3.70 345 978.6 26.94 0.013165
Niger 9.73 4.38 224 980.7 26.21 0.014400
Kwara 8.84 2.87 326 082.2 25.63 0.015454
Kwara 9.13 3.29 401 976.5 25.95 0.014329
Kwara 8.89 4.98 239 979.9 25.44 0.015394
Kwara 9.15 5.03 84 9817 26.29 0.014370
Kogi 8.26 5.94 320 981.8 25.71 0.015213
Kogi 8.34 6.28 236 9817 25.78 0.014986
Kogi 7.65 7.28 350 986.2 25.53 0.015530
Kogi 7.63 6.85 134 986.4 25.52 0.015758
Abuja 9.19 6.77 251 974.7 25.86 0.014136
Abuja 8.99 6.76 186 9817 25.78 0.014986
Abuja 8.89 7.24 312 974.2 25.27 0.014587
Abuja 9.08 7-39 474 956.6 24.75 0.013537
Nassarawa 7.79 8.40 79 982.7 26.36 0.015180
Nassarawa 8.08 8.35 124 968.7 25.08 0.014124
Nassarawa 9.00 9.04 855 954.2 24.96 0.012687
Nassarawa 8.91 9.03 587 970.5 25.31 0.013810
Benue 6.72 7.97 133 990.3 25.28 0.016302
Benue 6.82 8.22 14 979.8 24.77 0.015817
Benue 6.44 9.67 301 950.4 23.71 0.014705
Benue 6.37 9.54 333 950.4 23.71 0.014705
Plateau 9.48 10.54 214 963.2 25.67 0.012625
Plateau 8.01 10.63 135 967.1 25.41 0.013420
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