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 A Hydrodynamic Model of Flow in a Bifurcating Stream, Part 1: Effects of        2 

                                                  Bifurcation Angle and Magnetic Field  3 

  4 
                                       5 

Abstract A hydrodynamic model of the flow in a bifurcating stream is presented. The problem is 6 
modeled using the Boussinesq approximations, and the governing nonlinear equations solved analytically 7 
by the methods of similarity transformation and regular perturbation series expansions. The similarity 8 
expressions for the temperature, concentration and velocity are obtained and analyzed graphically. The 9 
results show that bifurcation angle and Reynolds number increase the transport velocity. Furthermore, it 10 
is seen that the magnetic field parameter decreases the velocity in the upstream region, and makes it 11 
oscillatory in the downstream region.   12 
 13 
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1    INTRODUCTION 17 
The strength depends on its mass-volume and velocity, and its velocity, amongst others, depends on the 18 
difference in gradient between its source in the mountain and mouth in a standing water body ([1], [2]). 19 
Based on the slope differential, a stream can be divided into three regions: the erosion (upper or torrent) 20 
zone; the transfer (middle or valley) zone, and the depositional zone. In the erosion zone, the stream 21 
flows through a deep descent; therefore, its velocity is very high and the flow very erosive. It vertically 22 
down-cuts and removes the bed rocks from the valley floor and sides. In the mid-valley course, the 23 
gradient is lower than that of the upper course and so is the velocity but it is able to carry the eroded 24 
materials and rocks farther. In the depositional course, the gradient is very low and so is the flow such 25 
that the rate of deposition of materials on the stream bed, and on the flood plain during flood is very high.      26 
 27 
Several features like the braided streams (or rivers), anastomosing stream, meanders and the likes are 28 
formed in the depositional zone ([1], [2]). In particular, anastomosing rivers represent a type of rivers that 29 
are currently of interest in geomorphology and sedimentology. They have multiple inter-connected 30 
channels separated by areas of the flood plains. Usually, in the tropical region, the river banks are 31 
stabilized by vegetation and in the arid region by highly consolidated rocks. They help to inhibit lateral 32 
migration of channels. However, at points where the banks have loose structures, the stream may 33 
suddenly abandon its old course for a new course or part of its old course to form a by-pass. At the points 34 
of the by-pass, the river is said to divide or anastomose ([1], [2]). 35 
 36 
Many techniques have been employed for studying the flow dynamics of the stream. Some used the 37 
hydrologic model, which involves the use of spatial form of the continuity equation or water balance and 38 
flux relation expressing storage as a function of inflow and outflow (see [4]); some the hydraulic model, 39 
which is based on the use of St. Venant equations (see [5]), and others the stochastic probability model, 40 
which involves the use of Monte Carlo method (see [3], [6]). In very recent time, [7] presented a 2-D 41 
hydrodynamic model using TELEMAC-2D software for flood simulation in a river. From the available 42 
literatures, it is evident that there is very scanty number of hydrodynamic models on stream flow. 43 
Therefore, we are motivated to present a hydrodynamic model for flow in a bifurcating stream. 44 
 45 
Research workers have done some work on the flow in bifurcating systems. For example, [8], [9], [10], 46 
[11], [12], [13] and [14] examined numerically and experimentally the flow structure in bifurcating systems 47 
and observed that bifurcation angle increases the inlet pressure and subsequently increases the flow 48 
velocity of such systems. 49 
 50 
Apart from the gradient differential, dynamically, a number of factors affect the flow of the stream. Based 51 
on this, the purpose of this paper is to investigate the effects of bifurcation angles and the nature of the 52 
source rocks on the flow of a bifurcating stream.  53 
 54 
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This paper is organized in the following manner: section 2 is the methodology; section 3 holds the results; 55 
section 4 is the discussion of results, and section 5 holds the conclusions.  56 
 57 
2      METHODOLOGY 58 
 59 
 60 
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  Figure 1  A physical model of symmetrical bifurcating flowing stream.                  63 

The stream is approximately rectangular in form and planar at the surface. We assume that the flow is 64 
axi-symmetrical about the z-axis; due to the nature of the source rock the fluid is magnetically 65 
susceptible, and incompressible and Newtonian; the fluid viscosity is a function of temperature and 66 
magnetic field; the fluid is chemically reacting, and of a homogeneous first order type (i.e. the reaction is 67 
proportional to the concentration); the porous medium is non-homogeneous, therefore, its permeability is 68 
anisotropic; the fluid have constant properties except that the density varies with the temperature and 69 

concentration which are considered only in the force term. If ( ',' vu ) are respectively the velocity 70 

components of the fluid in the mutually orthogonal ( ',' yx ) axes, the mathematical equations of mass 71 

balance/continuity, momentum, energy and diffusion governing the flow in the presence of bifurcation, 72 
and considering the Boussinesq and Swell’s free flow in vector form become: 73 
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 80 

where βt   and  βc  are  the volumetric expansion coefficient for temperature and concentration respectively; C∞  
81 

concentration at equilibrium; T∞   temperature at equilibrium;κ  is the permeability parameter of the porous 82 

medium; 
2

oB is the applied uniform magnetic field strength due the nature of the fluid; σe  is the electrical 83 

conductivity of the fluid; ok  the thermal conductivity; Cp the specific heat  capacity at constant pressure; Q is the 84 

heat absorption coefficient; D the diffusion coefficient; 
2

rk  
 is the rate of chemical reaction of the fluid, which is 85 

homogeneous and of order one; 'C  concentration (quantity of material being transported); D  diffusion 86 

coefficient; g gravitational field vector;  
,p  pressure; 'T   fluid temperature; ρ

 
 density of the fluid; µ   viscosity of 87 

y = + d 
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the fluid; mµ  magnetic permeability of the fluid;υ   kinematic viscosity; ok
 
 thermal conductivity of the medium;

 
88 

T∞   temperature at equilibrium; C∞ concentration at equilibrium.
 

89 

 90 

The problem examines the dynamics of a bifurcating stream flowing from a point −∞='x  towards a 91 

shore at oxx =' , as seen in Figure 1. The model shows that the channel is assumed to be symmetrical 92 

and divided into two regions: the upstream (or mother) region oxx <'  and downstream (or daughter) 93 

region oxx >' , where ox  is the bifurcation or the nodal point, which is assumed to be the origin such that 94 

the stream boundaries become dy ±='  for the upstream region and '' xy α=  for the downstream region. 95 

Due to geometrical transition between the mother and daughter channels, the problem of wall curvature 96 
effect is bound to occur. To fix up this, a very simple transition wherein the width of the daughter channel 97 

is made equal to half that of the mother channel i.e. d±  such that the variation of the bifurcation angle is 98 

straight-forwardly used (see [14]). Furthermore, if the width of the stream ( d2 ) is far less than its length 99 

( ol ) before the point of bifurcation such that the ratio of 1
2

<<ℜ=
ol

d
, (where ℜ is the aspect ratio), the 100 

flow is laminar and Poiseuille (see [15]). d  is assumed to be non-dimensionally equal to one (see [14]). 101 

Similarly, at the entry region of the mother channel, the flow velocity is given as ( )2'1' yUu o −= , where 102 

oU is the characteristic velocity, which is taken to be maximum at the centre and zero at the wall (see 103 

[14]). Based on the fore-going, the boundary conditions are: 104 

                                 u'=1, v'= 0, T'=1, C'=1       at   y' = 0 
                     

(5)
 

105 

                                 w wu'=0, v'= 0, T'=T , C'=C    at   y' =1           (6)                                                                                  106 

for the mother channel 107 

                                 u'=0,  v'= 0,  T'=0, C'=0     at   y' =0                      (7) 108 

                                 w w 1 2u'=0, v'=0, T'= T , C'= ,  < 1, < 1 at y' = 'C xγ γ γ γ α               (8) 109 

for the daughter channel 110 
 111 
Introducing the following non-dimensional variables: 112 
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where cl is the scale length, 
∞

p   is ambient/equilibrium pressure, Uo characteristic or reference velocity 117 

which is maximum at the centre and almost zero at the wall, 
w

C  constant wall temperature is maintained, 118 

w
T   constant wall concentration at which the  channel is maintained, ∞ρ  the ambient/equilibrium density, υ  119 

is the kinematic viscosity, Re is the Reynolds number, Gr is the Grashof number due to temperature difference, Gc 120 
is the Grashof number due to concentration difference, χ 2 

is the local Darcy number, M
2
 is the Hartmann’s number, 121 

Pr is the Prandtl number, Sc is the Schmidt number, and 
2

1δ  is the rate of chemical reaction, N
2
 is the temperature 122 

differential into equations (1) - (8),we have   123 
 124 
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                                        130 
with the boundary conditions 131 

                                         u = 1, v = 0, Θ =1, Φ = 1  at y = 0                                              (15)                       132 

                                             u = 0, v = 0, Θ = Θ w, Φ = Φ w    at y = 1                    (16)                                                                          133 

for the upstream channel 134 

                                         u=0, v= 0, Θ = 0, Φ = 0   at   y =  0                      (17)                                                                                         135 

                    u = 0, v = 0, Θ = γ 1 Θ w, Φ = γ 2 Φw, γ 1 < 1, γ 2 < 1  at  y= xα                 (18)                            136 

for the downstream channel 137 
 138 
Introducing the similarity solution: 139 
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with the velocity components represented as 141 
 142 
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into equations (10) - (18),  we have the following equivalent equations 144 

                                                                      
'' 0f =                                                           (21)                                                                                                                        145 

                           
''' '' 2 ' ' '' ''

1 Re( )f f M f f f ff Gr Gc+ − + + = − Θ − Φ                                     (22)                                                   146 

                
'' ' ' ' ' 2Re Pr( ) 0f f NΘ + Θ + − Θ + Θ + Θ =

               
(23)                                                                                                                147 

                
'' ' ' ' ' 2

1( ) 0R eSc f f δΦ + Φ + − Φ + Φ + Φ =
                 

(24)
 

148 

  
2 2 2

1 ( )where M Mχ= +  149 

with the boundary indications: 150 

                           
'1, 0, 1, 1f f= = Θ = Φ =    at 0=η                      (25) 151 

                    
' 0, 0,  = , =    at     = 1w wf f η= = Θ Θ Φ Φ

              
(26)  152 

for the upstream channel  153 

                              0,0,0,0 ' =Φ=Θ== ff     at  η
 
= 0                            (27)                                                154 

         
'

1 20, 0, , ,w wf f γ γ= = Θ = Θ Φ = Φ  1 21, 1γ γ< <
   

at  ax=η                               (28)  155 

 for the downstream channel     156 
 157 

UNDER PEER REVIEW



Equations (21) - (28) show that the similarity equations are coupled and highly non-linear. Therefore, to 158 
minimize the effect of non-linearity on the flow variables we introduce a perturbation series solution of the 159 
form 160 

                                    
( ) 1, ) ( , ) ( , ) ...oh x y h x y h x yξ= + +

                   
(29) 161 

where 1
Re

1
<<=ξ  as the perturbing parameter. We choose this parameter because, almost at the point 162 

of bifurcation, due to a change in the geometrical configuration, the inertial force rises and the momentum 163 
increases. The increase in the momentum is associated with a drastic increase in the Reynolds number, 164 
indicating a sort of turbulent flow at such a point . In this regard, equations (21) - (28) become: 165 
for the zeroth order: 166 
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 181 

The zeroth order equations describe the flow in the upstream channel, while the first order equations    182 
describe the flow in the downstream channels. The zeroth order terms in the first order equations indicate 183 
the influence of the upstream on the downstream flow. 184 
 185 
The solutions to equations (30) - (35) and (36) - (41) are:  186 
for the upstream region 187 
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and for the downstream region 193 
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3     RESULTS 205 
 206 
 Using the following realistic and constant values of γ1 = 0.6, γ2 =0.6, Φw = 2.0, Θw =2.0,  Peh =0.07, Pem 207 

=0.07,Re= 400, Gr = 0.1, Gc = 0.1, 2.02

1 =δ , N
2
 =0.2, 2.02 =χ  and varied values of  α, Re and M

2
, we 208 

have the follow results:  209 
   210 

 211 
 Fig .2 Velocity profiles for various bifurcation angles (α) in the downstream region 212 
 213 
 214 
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 215 
 Fig. 3 Velocity -bifurcation angle (α) profiles at various distances (η) in the downstream region.    216 
 217 

 218 
Fig 4 Velocity-Reynolds number (Re) profiles at various distances (η) in the downstream region. 219 
 220 
 221 

 222 
Fig 5 Velocity-magnetic field parameter (M

2
) profiles at various distances (η) in the upstream    223 

          region 224 
 225 
 226 
 227 

UNDER PEER REVIEW



 228 
Fig 6 Velocity profiles for various magnetic field parameter (M

2
) in the downstream region 229 

 230 
 231 

 232 
 Fig 7 Velocity-magnetic field parameter (M

2
) profiles at various distances (η) in the downstream region 233 

 
234 

 235 

4    DISCUSSION 236 
 237 
The purpose of this present paper is to investigate the effects of bifurcation angle and magnetic field on 238 
the flow. To this end, Fig.2 – Fig.7 illustrate the effects of bifurcation angle, Reynolds number and 239 
magnetic field on the transport of water in a stream. The results obtained, show that, for varied values of 240 
α, Re and M

2
 the transport velocity increases as α and Re increase (Fig.2, Fig.3 and Fig.4) but decreases 241 

in the upstream region as M
2
 increases (Fig.5). Furthermore so, the velocity oscillates and fluctuates in 242 

the downstream region as M
2
 increases (Fig. 6 and Fig.7). 243 

 244 
An increase in the angle of bifurcation narrows the width of the stream, which in turn increases the inlet 245 
pressure in the downstream region with consequent increase in the velocity flow structure as seen in 246 
Fig.2 and Fig.3. This agrees with [8], [9], [10], [11], [12], [13], [14]. 247 
 248 
More so, the flow in the upstream region is laminar and Poiseuille; therefore, its Re is moderate. But, 249 
almost at the point of bifurcation or the entry point of the downstream region, the flow exhibits some 250 
oscillatory behaviour in the upstream due to a change in geometrical configuration. At this point, the 251 
inertial force rises, leading to a drastic increase in the Re, indicating a sort of turbulent flow. This accounts 252 
for what is seen in Fig.4. As the Re increases the velocity increases and the water rushes into the 253 
downstream region with a great force. The flow regains its laminar nature some distance away from the 254 
entry region. 255 
 256 
Similarly, the source rocks in the mountain may be made of metallic oxides and salts which dissolve in the 257 
water to make it alkaline or saline. Then, the water becomes electrolytic, and therefore, exists as charges. 258 
The action of the earth magnetic field on the charges produces a mechanical force, the Lorentz force, 259 
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which gives the flow new orientations. In particular, the Lorentz force has a freezing impact on the velocity 260 
flow structure, thus accounting for what is seen in Fig.5. 261 
 262 
Also, the oscillatory and fluctuating motion, manifested in the form of back- and-forth movement of the 263 
water, as seen in Figure 6 and Figure 7, possibly, in addition, may be due to the internal waves 264 
developed in the water in the flow process, or may be caused by the interaction between the pressure 265 
forces and the gravity forces.  266 
 267 
The increase and decrease in velocity, coupled with the oscillatory motion in the downstream have 268 
tremendous implications. The drastic increase in velocity at the inlet of the downstream channel leads to 269 
lateral washing away of the embankment, and makes for navigation risky; the increase in the velocity 270 
enhances the transfer of sediments towards the standing water body ahead of it. On the other hand, the 271 
decrease in velocity gives room for early deposition of sediments on its bed, and this tends to shallow-up 272 
the stream earlier; the oscillatory motion of the fluid at the early stage leads to loss of energy for the flow, 273 
and also makes navigation risky.   274 
 275 

5    CONCLUSION 276 
 277 
The analyses of the flow model show that the velocity increases with bifurcation angle and Reynolds 278 
number, while magnetic field freezes the motion in the upstream region, and makes it oscillatory in the 279 
downstream region. The increase in the velocity enhances the transport of its bed loads farther towards 280 
the mouth of the standing water body and saves it from early deposition and shallow-up. The effects of 281 
bifurcation angle and Reynolds number tends to cushion the adverse effects of magnetic field on the flow.  282 
 283 
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