-

18

19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41

42

43
44

45
46
47
48
49
50

The masslowest limit of a black hole: the hydrodynamic approach to

guantum gravity

Abstract: In this work the quantum gravitationabations are derived by using the quantum hydrodymiam
description. The outputs of the work show thatgbantum dynamics of the mass distribution insidéeak
hole can hinder its formation if the mass is smmahan the Planck's one.

The quantum-gravitational equations of motion shbat the quantum potential generates a repulsireefo
that opposes itself to the gravitational collapBee eigenstates in a central symmetric black he#dize
themselves when the repulsive force of the quarpotential becomes equal to the gravitational oree T
work shows that, in the case of maximum collapse mass of the black hole is concentrated insisighare
whose radius is two times the Compton length oftlaek hole. The mass minimum is determined réogir
that the gravitational radius is bigger than deast equal to the radius of the state of maximahapse.

PACS: 04.60.-m

Keywords: quantum gravity, minimum black hole mass, Plangiéss, quantum Kaluza Klein model

1. Introduction

One of the unsolved problems of the theoreticalspisyis that of unifying the general relativity withe
guantum mechanics. The former theory concerns tagtgtion dynamics on large cosmological scala in
fully classical ambit, the latter one concerns,nhaithe atomic or sub-atomic quantum phenomenatlaad
fundamental interactions [1-9].

The wide spread convincement among physiciststiigageneral relativity and the quantum mechanies ar
incompatible each other derives by the complexityasmonizing the two models.

Actually, the incongruity between the two approaclwemes from another big problem of the modern
physics that is to unify the quantum mechanicswWRh the classical one in which the general relgtiis
built in.

Although the quantum theory of gravity (QG) is neegdn order to achieve a complete physical desoript
of world, difficulties arise when one attempts ntréduce the usual prescriptions of quantum figkebties
into the force of gravity [3]. The problem comesrir the fact that the resulting theory is not reralipable
and therefore cannot be utilized to obtain meaningffiysical predictions.

As a result, more deep approaches have been ppmselve the problem of QG such as the stringrihe
the loop quantum gravity [10] and the theory ofuzd$ermion system [11].

Strictly speaking, the QG aims only to describe doantum behavior of the gravitation and does neam
the unification of the fundamental interactionsoirg single mathematical framework. Nevertheless, th
extension of the theory to the fundamental forcesuldr be a direct consequence once the quantum
mechanics and the classical general relativity weaee compatible.

The objective of this work is to derive the quantgravitational equation by using the quantum
hydrodynamic approach and give a physical result.

The quantum hydrodynamic formulation describeshwite help of a self-interacting potential (named
quantum potential) [12-13] the evolution of the w&unction of a particle through two real variabldse

spatial particle den3|t}|¢/| and its actionS that gives rise to the momentum field of the péetic

0S
Oq” =Py __(E’_ Bi ) The biunique relation between the solution o tstandard quantum

mechanics and that one of the hydrodynamic modeloispleted by the quantization that is given by

imposing the irrotational condition to the momentiietd Pu [12].

The quantum properties, stemming from the quantatargial, break the scale invariance of the spabés
leads to the fact that the laws of physics depenthb size of the problem so that the classicakiiem
cannot be maintained at a very small scale [12(46¢ appendix A). The aversion of quantum mechaaics
the concentration of a particle in a point is dimethe quantum hydrodynamic description, to thecalbed
guantum potential that leads to a larger repulivee higher is the concentration of the wave pack this
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quantum effect is considered for the BH collapstliows that it stops at a certain point. For tudlapse of
a very small mass this final point will not be bagiche horizon of the events and it will not geteei@BH.

Similarly to the classical mechanics, the quantymdrbddynamic equations of motion can be derived by a

Lagrangian function, that obeys to the principlarohimum action, and that can be expressed asaidmn
of the energy-impulse tensor.

Thanks to this analogy, the derivation of the gsaetuation for a spatial particle mass density theeys to
the quantum law of motion can be straightforwariyained .

The paper is organized as follows: in the firsttisec the Lagrangian formulation of the quantum

hydrodynamic model in the non-euclidean spaceersved. In the second one, the energy-impulse tenso

density of the quantum particle mass distributeformulated for the gravitational equation.
In the last section the smallest mass value ofrav8rzchild BH is calculated.

2. The quantum hydrodynamic equations of motion in non-euclidean
space

In the first part of this section we will introdutiee quantum hydrodynamic equations (QHESs) whekeng

IS
the wave functior/ = ¢ | eXp[;] , the quantum dynamics are solved as a functicl & | anc S, where

0S
| |?is the particle spatial density anaq_/, =-p, = _(E ~Pi ) its momentum.
For the purpose of this work we derive the QHEsi&ing the Lagrangian approach. This will allow bdain the
impulse-energy tensor for the quantum gravitatiegahtion in a straightforward manner.

The quantum hydrodynamic equations corresponditigetlein-Gordon one read [18]

uas(q,t) aS(q,t) 26;16”"//' 2.2 _

g¥ -h -m°c =0 (1)

g”  0q ||

oS | 0

2o ]2
0, oq aqu
where

_h, Y

2 Y 3
and Where

L _‘/’ oy

(l// o0 4 5" ) @)

is the 4-current.
It is worth noting that equation (1) is the hydrodynic homologous of the classic Hamilton-Jacobia¢iqn
(HJE) and that is coupled to the current consematquation (2) through the quantum potential.

Moreover, being in the hydrodynamic analogy
0S

= == :—(E— )
6q” P c’ Pi (5)

it follows that



_ _ 2 Pu _
90 J,=(cp-J)=-|¢l P (6)
91 where

__lylPos
922 p T at @)
93
94  and where
95

_E.
96 p,u _C_Zq,u, 8
97

98  Moreover, by using (5), equation (1) leads to

99
S 0S u_[E®_ 2 _ 2 of,_ Vau
- = = — — =m°c|l1-——
ag* aa, PuP (cz P j mc?

100 ©)

V V
—m2v2 c2l 1- % |- m2p2 §2| 1- v
/ ( chJ ”( chJ
101

102 (wherey = /Wfl— ) from where it follows that

V,
103 E=+m ﬂ m2c + p2c? 10
}C\/ mc? \/ ( mczj P (10)

104 (where the minus sign considers the negative grgedes (i.e., antiparticles)) where the quanpatential
105 reads

106
29 a#

107 Vg, =- n” |‘//| (11)
m |yl

108

109 and, finally, by using (8) that

110

111 p, =+myq,.|1- Vay (12)

7T mé?

112

113 Thence, the quantum hydrodynamic Lagrangian equsti® motion read

114

115 P =L

116 Py = S

117  where

dS 68 68 02 f
L= —+— -p, ¥ =(x)-
118 Gt ot aqi p.a" =(%) (15)

119  where the lower minus sign still accounts for théarticles.
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The motion equation can be obtained by inset pﬂ( gqq) from (13) into (14). The so obtained equation is

coupled to the conservation equation (2) throughohantum potentiquu .

For i - O it follows thathu — Oand the classical equations of motion are recovered

Thence, the hydrodynamic motion equation deriviyg(b) (just for matter or antimatter without mixed
superposition of states) read

d V
ﬁ:ii mcu 1—& :—}_/a_L
ds “ds| “ mc? ¢ ag¥
(16)
= imci 1—&
ag* mc?

that leads to

V. du d Y/ 9 \Y/ yoT,”
£me1-— — £ =+ —mcu, | ,[1-—2- [+mc 1-—= £
mc® ds * ds mc? og* mc? 09" Al

C
where dS=—dt and where the guantum energy-impulse te T/,V reads
4

o |

mc? \Y
T,uV = (i)_T 1_ mc:; (UIUUV _JIUV). (18)

so that, finally, the motion equation reads

du d V, 0 V,
— A=y, — In1/1— T+ —|In 1-—
ds #ds mc® | ag¥ mc? (19)

_v.
whereU,, _Eq”'

It must be noted that the hydrodynamic solutionggiby (19) represent an ensemble wider than thidteo
standard quantum mechanics since not all the §ieldtions P, warrant the existence of the action integral

S so that the irrotational condition of the actioadgjent [12] (similar to the Bohr-Sommerfeld quaation)
has to be imposed in order to find the genuine tymarsolutions (see appendix B).

Equation (16) (following the method described ipeapdix B) can be used to find the eigenstates dfema

Y, by considering the upper positive sign, and dfnaatter v_,, by using the lower minus sign, that

. . . = + = +
allow to obtain the generic wave funct|0|l// vy Z(a“nw*“ a‘nw‘”), where
n

Yo =28 Wen gng¥- =280y

It must be noted that the equations (13-14) desdtib quantum evolution of pure matter or antimattates
(as we need for the calculation in section 3.3)e Tiore general treatment including the superpositio
states of matter and antimatter is given elsewfi&e

Finally, for the solution of the gravitational ptelm, equation (19) in non-euclidean space reads
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du, 14g,, u u”
ds 2 og”

(20)
d / Vq 0 L Vau
_U,U d_S{In 1 mCZJ-'_E[In 1 m‘lz]

with the conservation equation

1 0 0S
—,—_g aq_” ‘g(gw aqvj=0 (21)
where
n? U v
Vou = —————=0"4~ ( 2, ly I) 22)

m|w|J_

1 2
where 9y, is the metric tensor and wh 5 =| Quu |=-J , where J is the jacobian of the transformation

of the Galilean co-ordinates to non-euclidean ones.

3. The quantum energy-impulsetensor densty
- 2 —
Given the hydrodynamic Lagrangian funct L= J| g|I"Ldv = j L dV , its spatial densit L reads

L=—49y¢y)L (23)

&Py

that, by using the variational calculus, lead®quantum impulse energy tensor density (QEITB) [1

oL oL
T, =4 —.—L5”=|w|2(q : —Ld”]
H l/aqv H ﬂaqv H
cu,, \Y mc2
w2 {-q,p" -L5,) |= —H med au q”d"
Wiz a,p" -1, )Hu P : s M-,
(24)
y mc2
{ V, mc?
Sy ? [ , —“ med mq:Zi v 1- C2 9y ]—lt/ll T
that reads
_.mS |y,
T =% y m02 (u uv —5y") (25)
where



178  m|y, |? (26)
179

180 are the mass densities of matter or antimatter evtier minus sign refers to antimatter.
181 In non-euclidean space the covariant QEITD reads

182

mcz |[/li |2 1_ un

183 T, :Ty”gm, =+ y 7 (uﬂu,/ —gw)

184

185 3.1 Thequantum gravitational equation for spinlessuncharged particles
186

187  Equation (19) in the classical limit (.2 = OVg, - 0) gives

du, _ dp, :_aT g

188 mc K 27
ds ds aq” @0
189 with
. ¢
190 lim, T, = J_rmT(uﬂu“ —5/,") , (28)
191 Moreover, since
o™ 5
192 y -0 (29)
aq”

193 it follows that the energy-impulse tensor leadsttie same mass motion of the classical one thatsread

mc?
194 THV = TUHUV (given that the PD behaves like dust matter [12]).

195  Just from the mechanical point of view, thence,ithpulse energy tensor has a freedom of choic@aioal

196 tensors TV'U = T./ﬂ + L(q,t)d./ﬂ lead to the same motion of matter (in a space fix#d geometry) .

197  On the other hand, from gravitaional point of viglag curvature of space associated to the QEIT Dgpef
H=—TH H
198 T, =T,7+A, 1o (30)

199 would be different as a function ‘/\(q t)- Therefore to end with the correct form /\(q t) we must

200 require that the classical Einstein equation asl waslthe correct Galilean gravitational field mumst
201  recovered in the classical limit.
202 By imposing this condition the explicit expression

203
2 .2
204 A=-SEMALC
¢ty
205  (31)

206 s obtained.
207  Thence, the quantum gravitational equation forigiag and antiparticles respectively reads [20]
208

1 815G m|y, > c?
209 Rv,u - E v Raa - ?(Tv,u _T O (32)
210
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1 . 815G m|y_ | c?
Rv,u _E v Ra - o4 (Tv,u - y O |- (33)
In the classical limit, where particles are locatlzand distinguishable, we can approximate thetindy
point-like distribution

|, |2:az+:5(r_ra+), (34)
or
poF=Xar-n), o5

while in the quantum case they are defined by thetisn of the quantum equation.

Moreover, if in the classical gravity, the equat{82) defining the tensc 9y, , has to be solved with the

mass motion equation (19) (given tl 9y itself depends by the motion of the masses) irgtl@tum case
the set up is a little bit more complicated sirue motion equation (19) as well as the gravitafiegaations

(32-33) are coupled to the mass conservation eapsaf21) througl|1//| that is present into the quantum
potential.

Finally, noting that the quantum motion equatiof)(it equivalent to the HJE equation (1) (see agipe)
and that, with the irrotational condition of theian gradient, equations (1,19) lead to the saphgisns of

the Klein-Gordon equation [18], we can write tiggi&tions of quantum gravity in the standard notetias

1 815 m|y, |* c?
Rv,u _Egv,uRaa _i?(Tv,u _T O (36)
QX 1 aﬂF( 7 )—_mzc2
l//;y _E g\g ul// - h2 Y (37)
with ) )
V,
1_%gyv
S Lo % o
w y —1, o[ Y om ¥ 9
+.1-— ( f J v ¢ g
Ve ame) et 0a, O

3.2 Quantum dynamicsin a central symmetric gravitational field

In the classical gravity, the dynamics in a censsgahmetric gravitational field is simplified if treymmetry
is maintained along the evolution of the motiont #e& quantum case, the condition of central symyrtes
to be owned by the eigenfunctions. The same asitegipplies to the hydrodynamic motion equationthab
the stationary equilibrium condition, that charaietes the eigenstates, has a central symmetrimgeyp.



245  Due to the quantum potential form that generate=palsive force when the matter concentrates itselfe
246 and more, the point-like gravitational collapsetie center of such a black hole is not possibl¢his
247  quantum case.

248 In order to investigate this aspect, it is usefuhbte that the quantum gravitational equationshauit the
249  quantum potential, perfectly realize the case ofionoof incoherent matter [12]. In this case théugon
250 depends by the mass distribution and by the raiakity. In classical gravity, the solution canédsgressed
251 ina synchronous system in quiet with all massé} fi@lowing the identity

252

Du,
253 = (39)

ds

254
255 thatis
256

Du du, 1099

H _ H Ak (ALK —
= —— u'u® =0

27 T4s " ds 2 ag” (40)
258
259  so that, for inward radial velocity (i.¢U; < OwhereUy, =(y,r‘,0,0)), it follows that
260

du, 1a4g

H _ Ak A K

——=——""u"u
261 o T g (41)
262
263 that, considering the last infinitesimal shell ofatter that collapses in a central gravitationeldfi leads to
264 [18]
265

du; _ 10940, 00,1001 11 C 2 1 2

——=———uUu +-——uu ==y +—F——-ou) - -
266 dS 2 aql 2 aql r2 y 2(r + C)Z ( 1) (42)
267

268  with r that approaches to zero leading to a pliketcollapse in the center of the BH [21].
269 In the quantum case we can observe that the dysaapiproach the classical output (41) for large emss

1
270 sinceit hoIdsVOIu -0—.
m

271 On the other hand, for mass concentration on veoytgistances when the quantum potential growa in

272  sensible manner and can be of orde mc?, it can give an appreciable inertial contributianthe motion
273  equation (20) through the term

274
6 un
275 —|In1-—5 | 43
ag- mc? 43)
276

277  so that the departure from the classical outpekjgcted.
278  Following the quantum hydrodynamic protocol [12¢dsappendix C) the eigenstates are defined by their
279  stationary “equilibrium” condition that reads

280
281 u,=(1000) (44)
282

duﬂ
283 ™ =0 (45)
284

285 The condition of null total force (45) is achievedien the quantum force (i.e., minus the gradidrthe
286  quantum potential) is equal and contrary to themmel ones (see example in appendix C).

287 In the quantum case, the presence of quantum jaiteloes not allow us to write the Einstein equaiio a
288  synchronous system. Therefore, we can only imguseéntral symmetry that reads [18,21]

289
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ds? = e’c?dt? —rz(déf2 +sin? 6tj¢2)—e”dr2 (46)

whered, = (ct,r,60,8) and

A+v

oo =€ ;011 = €105, = 17,055 =—1%sin° 6, |-g =le 2 r?sin’ | ™" (47)
that inserted into the gravity equation leads t [2

876G 1 m|¢’+ |2 Cz AV 1 1

T+ =N+ = |+

c? [ 1 y roor2 r2 (48)
876G (o My °c®)_ (1 _A 1

o4 (To T =-€ r_z_T+ +r_2 (49)
876G A
—aTo =" (50)

C r

where the apex and the dot over the letter meanali®n respect to r and ct, respectively. Moregike

guantum potential in this case reads

__h? 1 >
Vou == meIJ_ o'y-gle”a, 1y (51)

It is worth noting that foiM — ® the gravitational radiu Rg =

2Gm

goes to infinity while the radius
Ro, representing the sphere inside which the masserrate itself in the stationary equilibrium stajees

1
to zero sincquu H E - 0 . In this case, the point-like collapse up to ¢moacopically speaking)
Ro =0 is possible.
On the other hand, wheM — O the gravitational radiu: Rg tends to zero, while both the quantum

1
potential Vg, U - and, hence,the radil Ry may sensibly grow.

Moreover, given that to have a BH, all the masstbdse contained inside the gravitational raditfliows

that the minimal allowable mas¥min for a BH is the smallest one for which it holds thondition
RosRy .
Being Ro(Myin) the highest value olRy smaller than Ry, thence, fo Ro <T URy (with

Ry - Rg )the quantum potential can approximately read é&eendix D)

__h? 1 »
Vg =- mll/II\/_ \/_( a|z//|)Dmc2 (52)



319

320 Assuming that in the stationary equilibrium distiilon (eigenstate) the mass is concentrated irharepof

321  radius Ry for I > Ry we can use the gravitational equation with thereximation of null mass that reads
322 21

(v 1 1
323 —e”(—+—2j+—2 0o (53)
rr r
324
a1 A 1
325 _ea(r_z_T-l-j-l_r_z 0o (54)
326
A
327 -e ?DO (55)
328
3290 A+v=0 (56)
330
R, -1
331 g,=-¢"=-e"= —[1—TJ (57)
332 g=-r*sin’g (58)
333
334  fromwhere, forf > Ry and I URy, by (52) it follows that
335
——0r°||—-1/0 =|—
336 VikE [[ - | 5 (59)
337
338 and hence that
339
R R
340 al(rz(—g—ljj >> rz(—g—l) (60)
r r
341
342  leading to approximated equation
343
1 1o Ry 1{ .12 Ry (mCJZ
——0r || —-1/0 O—=|0re|—-1|0,In|g|0] — <rOR
344 I Hr a4 2 - nfy| - Ro g.(61)
345
346  Moreover, by settin’ = Ry + & with& << Ry | (61) reads
347
mcC 2 £
o In|g |0 —| r| 1+ —
348 0,In|y| (hj [ RQJ (62)
349
350 leading to the zero-order approximated solution
351
r2
352 |¢|0l¢ )y expl —gl (63)
353
354  where
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a=i 64
me (64)

equals the Compton length of the BH.
Moreover, since in order to have a BH, all the mamsst be inside the gravitational radius, by posing

2h
Ro =24, from (64) it follows tha Ry = me < Ry leading to the condition

o e _m?® 1
- 2~ <5 (65)
mcR, 2m°G 2m° 2

and, hence, to

m=m, (66)
fic

where mp = —.

4. Comments

Even if the hydrodynamic description was formulatetitemporaneously to the Schrédinger equation, [19]
due to the low mathematical manageability, it ichnless popular that the latter.

Nevertheless, the interest in the quantum hydrosynamodel has been never interrupted since its
formulation by Madelung [22-25]. This because it loven to be very effective in describing systems
larger than a single atom where fluctuations anantum decoherence become important in defining thei
evolution [26].

Moreover, due to the classical-like form, the hytimeamic description is suitable for the connecbetween
guantum concepts (probabilities) and classical snel as trajectories [27-29].

The property of the hydrodynamic quantum descniptid being a bridge between the quantum mechanics
and the classical one, allows a straightforwardegaization of the Einstein gravity (a pure claakiheory)

to the quantum case, leading to a model with alegthematical statements.

Furthermore, since the hydrodynamic approach, dheeirrotational condition of the action gradiest i
applied, becomes equivalent to the quantum one,2%]2the results can be expressed in the standard
guantum formalism with a set of equations that iadependent by the hydrodynamic approach and that
appear well defined.

The hydrodynamic quantum gravity has shown to sat¢e determine the minimal mass of a black hole.

The model depicts the quantum gravitational bedrawi a classical-like way generalizing it with thelp of

the self-interaction given by the quantum potential

5. Conclusions

In this work the quantum gravitational equation® aterived by using the quantum hydrodynamic
description. The work shows that, in the case okimam gravitational compression (when the repulsive

force of the quantum potential is equal to the gational one) the BH mass is practically conceetla

inside a sphere whose radi R, = Hc is two times the Compton length of the black hdlke minimum

11
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/hc
BH mass, equal to the Planck mem, = E , follows by requiring that the gravitational rasi

2Gm
Rg = o2 must be bigger tha Ry .
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Appendix A

The guantum potential and the breaking of the scale invariance of space
In this section we illustrate how the vacuum prépsron small scale are affected by the quanturarpiad.
One of the physical quantities that clearly shoealiing of scale invariance of vacuum is the spectfithe
vacuum fluctuations.
The quantum potential finds its definition in tharhe of the quantum hydrodynamic representatioar F
sake of simplicity, we analyze here the hydrodymamotion equations in the low velocity limit.
The generalization to the relativistic limit igaghtforward since the expression of the quantutential

remains unaltered.

-1, 12
In the quantum hydrodynamic approach, the motiothefparticle densit Mgt Hy| (a.t), with velocity

" Uq)

q= T is equivalent to the quantum problem (Schrédiregpration) applied to a wave function

i
Yiqy AW gy XA %S(q,t)] , and is defined by the equations [12]

0tN(g,y + U+ (N@gpa)=0. (A1)
_oH _p_OSan
a op m m (A.2)
p=-0(H +Vqu). (A.3)
t p-p
S= tj di( m _V(Q) _un(n) ) (A.4)
0

where the Hamiltonian of the system H= p2mp

+V(q) and wherquu is the quantum potential that

reads

TP 1/2
un = _(%)n . 0On . (A.5)
2
For macroscopic objects (when the rc% is very small) the limit ot > 0 can be applied and

equations (A.1-A.4) lead to the classical equatidmmotion. Even, such simplificatiotout courtis not
mathematically correct, the stochasticity mustriieoduced to justify it [14,16].

Actually, since the non local characteristics chgiwm mechanics can be generated also by an edimial
qguantum potential, it can be disregarded when nandlactuations overcame it and produce quantum
decoherence [14,16,30].
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-1, 12
If we consider the fluctuations of the variat Mg, ¢ 7@y in the vacuum, as shown in ref.[14-16]
equation (1) can be derived as the determinigtit lbf the stochastic equation

0tN(g,n = U+ (Ngnd) +7(qtT) (A-6)

For the sufficiently general case, to be of pratttioterest,”( g.t,T) can be assumed Gaussian with null
correlation time and independent noises on differemordinates. In this case, the stochastic partia
differential equation (A.6) is supplemented by takation [16]

<N(qy t) N ap+At+r) >=<M(q,) () > C(A)(T)0gp (A7)

where </ aa) 'l ag) >0 kT [16] whereT is the amplitude parameter of the noise (e.g.te¢hgperature

of an ideal gas thermostat in equilibrium with trecuum [14,16]) anG(4)is the shape of the spatial
correlation function of the nois/7 .

In order that the energy fluctuations of the quemtpotential do not diverge, the shape of the spatia
correlation function cannot be a delta-function t{sa@t the spectrum of the spatial noise cannot higejvbut
owns the the correlation function

A
_Il_injo G(A)= exp[—(z)‘?] , (A.8)

The noise spatial correlation function (A.8) israat consequence of the PD derivatives of thetguapotential that

give rise to an elastic-like contribution to theteyn energy that reads

— — / /
Hau= [ n(grVauqnda=-[ n(gp’ 2(%)5' On(qq)" “da, (A.9)

where large derivatives 1"(q,t) generate high quantum potential energy. This eavebified by calculating the

guantum potential values due to the sinusoidaifaton of the wave function in the vacuum (iV( q) = 0 ) (e.g.,

mono-dimensional case)

2n
Y=y, cos—=-q (A.10)
that leads to
72 o \ V2 o W2 n2(2m)?
Vqy,, = —(— cosz— a.d cosz— =—| — )
qu (Zm)( ¥ qJ ( ¥ qJ Zm( /‘J (A.11)

showing that the energy of the quantum potentialvgras the inverse squared of the the wave lerfgth o

fluctuation.
Therefore, the presence of components with nearnzave Iengtr/] into the spectrum of fluctuations can lead to

fluctuations of quantum potential with finite aifyade even in the case of null noise amplitude,T -0 ).
In this case the deterministic limit (A.1-A.3) cainis additional solutions to the standard quantwohemics (since

fluctuations of the quantum potential would nosbppressed).
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Thence, from the mathematical inspection of stdithagquation (A.6-A.7) it comes out that in orderabtain the
guantum mechanics on microscopic scale, the adlittwnditions (A.8) must be included to the sehef stochastic
equations of the hydrodynamic quantum mechanic4 §]14

A simple derivation of the correlation function.8\can come by considering the spectrum of thélrRuations of

2n
the vacuum. Since each component of spatial frmytk = 7 brings the energy contribution of quantum

potential (A.11), the probability that it happeiss

E <V(0I) +un >
—exp——|=exp——m———
p Xﬁ{ kT} XF{ KT (A.12)

that, for the empty vacuum (i.1V(q) =0 ), leads to the expression:

n? (2m\?
< —|— | >
pDexr{——<VqU>}:ex _—Zm( A j
KT

KT
(A.13)
h? (2;1}2 .\ h hc}
=exp - = |=exp- —exp-————
2mkT{ A A 2mc AKT
where
_ /)
AC_ZW (A.14)

2n
From (A.13) it follows that the spatial frequen@estrum S(k) O p(7) of the vacuum fluctuations is not

white.
Fluctuations with smaller wave length have laeggergy (and lower probability of happening) so thiaén Ais
smaller thar /10 their amplitude goes quickly to zero.

2n
A

Given the spatial frequency spectrt S(k) O p( ), the spatial correlation function of the vacuum

fluctuation reads

+00 +0o 2
Giyy O jexp[ik/\ 1S(iydk O jexp[ik/\]ex —(k7j dk

2
O '’ ex —(ij
A

(A.15)

A

C C

that gives (A.8).

The fact that the vacuum fluctuations do not hawgiée spectrum but have a length “built in” (iae De Broglie

thermal wavelengt /1(: ) shows the breaking of the its scale invariafbe: properties of the space on a small scale
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are very different from those ones we know on neampic scale. When the physical length of a sysesmaller

than Ac , the deterministic limit of (A.6) (i.e., the quam mechanics) applies [31] and we have the engedjithe

guantum behavior [16].

Appendix B

Analysis of the quantization condition in the quantum hydr odynamic description

If we look at the mathematical manageability of GH& quantum mechanics (A.1-A.5) no one would
consider them.

Nevertheless, the QHESs attract much attention bgarchers. The motivation resides in the formalogya
with the classical mechanics that is appropriatsttioly those phenomena connecting the quantum imehav
and the classical one.

In order to establish the hydrodynamic analogy, dhedient of action (A.4) has to be consideredhas t
momentum of the particle. When we do that, we themathe solutions so that not all solutions of the
hydrodynamic equations can be solutions of the @&tihger problem.

As well described in ref.[12], the state of a pdetiin the QHEs is defined by the real functions

|l//|2=n(q’ ) and P=0qyt).

The restriction of the solutions of the QHEs tosthmnes of the standard quantum problem comes from

additional conditions that must be imposed in ptdeobtain the quantization of the action.
The integrability of the action gradient, in order have the scalar action functi& is warranted if the

probability fluid is irrotational, that being

q q
S = jdl [S= jdl. p B.1)

0] do
is warranted by the condition

Oxp=0 (B.2)
so that it holds
Fc=§d|-m£1= 0 (B.3)

Moreover, since the action is contained in the egpdial argument of the wave function, all the tiplés of
27, with

q
Sa(an = Soan) + 27 = Sy *+ [ dl- p+2n7a n=0123,.. (B.4)
do0

are accepted.

Solving the quantum eigenstates in the hydr odynamic description
16



568
569

570
571
572
573
574

575

576
577

578
579

580
581

582

583
584

585

586

587
588

589

590

591
592

593

594
595
596

597

598

599
600
601
602
603

In this section we will show how the problem ofding the quantum eigenstates can be carried othtein
hydrodynamic description. Since the method doeschahge either in classic approach or in the retic
one, we give here an example in the simple clalssise of an harmonic oscillator.

In the hydrodynamic description, the eigenstatesidentified by their property of stationarity thatgiven

by the “equilibrium” condition

;:) =0 (B.5.a)

(that happens when the force generated by the guapotential exactly counterbalances that one siagm

from the Hamiltonian potential) with the initialt&ionary” condition
q=0- (B.5.b)

The initial condition (B.5.b) united to the equiiilbm condition leads to the stationar\(.q = @ along all

times and, therefore, by (B.5.a) the eigenstatesreotational.

Since the quantum potential changes itself withsttage of the system, more than one stationarg $éaich

one with its Oanqun) is possible and more than one quantized eigeasafithe energy may exist.

2
For a time independent HamiltoniarH :Zp—+V(q), whose hydrodynamic energy reads
m

2

[B11E = 2p— +V(q) +V_,,, with eigenstate®/n(d) (for which it holds p= mé = () it follows that
m

qu’

t t
(g PP _ _
S, = jdt(% ~Vig) ~Vauy ) = ~(Vq) +Vau, ) dt = ~Eq(t=15) (8.6)

to to
wherquun :un(‘//n ), and that

where (B.7) is the differential equation, thathe guantum hydrodynamic description, allows towdeto the
eigenstates.
2

For instance, for a harmonic oscillator (i V(q) = % q2) (B.7) reads
n? i} maw?q?
Vou =<1, 10 D1y, [F B, =00 (®.5)
If for (B.8) we search a solution of type
_ a2
1¥1q o= An@ eXF( aq ) (B.9)
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ma -
604  we obtain tha@ :E anc A”(Q) - Hn(%)q) (where Hn(x) represents the-th Hermite polynomial).
605 Therefore, the generieth eigenstate reads
606
_ [ _IEt
607 Wnq =¥ I(q, ) exp[ Es(q,t)] =H,mo, ex _q , (B.10)
608
609  From (B.10) it follows that the quantum potentifittte n-th eigenstate reads
610
n__ B
\% u :_(%)lemq'mq |l//|
mow
M —H, 4 -2(n-1)H,_, 1
611 =- 2 L += [hw (B.12)
2 H, 2 '
. ma?
2
612
613 where it has been used the recurrence formulaeofifrmite polynomials
614
ma
615  Hnsy == —dHn =2nHp g, (B.13)
616

617 that by (B.7) leads to

1
618 By =Vou, *Vigy =(N+ 5@
619
620 The same result comes by the calculation of thersiglues that read

En =<t IH 1, 2= [0 1MW oo

jwl [ @y’ }dq

.2 2
n

ST my me? o2
621 = Jng o) 39 5 @D vy, o (©.14

2

2 W _ 2 n
+——(q-q) +un :ldq

- 1
=, t){% )

- | me? 2 _mw? 2 1 !
__‘!;n(q’t){ 2 (a-q) —T(q—g) +(n+5)ha)dq—(n+z)hw

622
623
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h% 92

624 where H" = _%W *+V(q) and where"(q, 1) :w*(q, t) w(q, t). Moreover, by applying (B.14) to
625 (A.2-A.3) it follows that
626
: 1
627 p=-0(H +un):—D((n+§)ha)):0, (B.15)
- U
628 q= % =0, (B.16)

629 Confirming the stationary equilibrium conditionthie eigenstates.
630
631 Finally, it must be noted that since all the guamitates are given by the generic linear supeiposif the

632 eigenstates (owing the irrotational momentum fi1mq:o) it follows that all quantum states are

633 irrotational. Moreover, since the Schrédinger digsian is complete, do not exist others quanturatational

634 states in the hydrodynamic description

635 In the relativistic case, the hydrodynamic solusiane determined by the eigenstates

636 ¢ n,¢¥ n derived by the irrotational stationary equilibritcondition applied to the

637 momentum fields of matter and antimatter of eque(®8), respectively .
638
639

640
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Appendix C
The hydrodynamic HJE from the Lagrangian equation of motion
The identity
oL : 0S
— = —dt——— Ldt=————
09" I i 00" 09" i 0" -

that stems from the equations (13-14), with the loél (10,12) leads to

dg” dq, \c
(C.2)
=m22 c?|1 qu m212 a2l 1 qu m2c2| 1 qu
’ ( &J V"( &J ( m&J

that is the hydrodynamic HJE (1)

2 9 9H
0S 0S _ o 7‘122 et c3
aq” aq# m°c ||

Appendix D
The quantum potential in the region of space Ro <T URy with Ry —» Ry

The balance between the quantum force and thetgtiavial one reads

Vau 0 Vau | _
" | o |V e ) O ©1

that by inserting the stationary condition (44ds to

_EM :i In 1—Vﬂ
209" og* mc? (D.2)

that in the vacuum space, ir= Ro , leads to

R
A n }1 Vo |__1 r (D.3)
aq* mc2 2 og

and to

Vv
1- m(tz = exl{‘ [1‘$J +Cn:| r>Ry (D.4)

uu U—

dizlagﬁl( A K d
ds 2 gg” “ds
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696

that gives

Vg = mcz(l—exp{—(l—%}cnﬂ r>R,.

since Ry < Rg and since that for the minimum allowable mass aselthat
R, - Rg ,

for Ry <7 <= Ry it follows that
mcz(l—exdcn]exp[—(l—%j] J <V, < m(L-exdC,])

mczil_exdcn][l{ﬁﬁjj}<vqu < m(1-exc, )

(D.5)

(D.6)

(D.7.a)

(D.7.b)

Moreover, since we are searching for the state mkimum mass concentration and hence with maximum

guantum potential) from (D.7.b) it follows thatghgondition is achieved f eX[{Cn] =0 and, hence, for

C, =-% thatleads to

Vg, Omc

Moreover, forT = Ry + & with € << Ry it follows that

my, R ?
T o1 a2l D0l D(@)
hT gl ¥ h

(D.8)

(D.9)
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