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 4 
Abstract: In this work the quantum gravitational equations are derived by using the quantum hydrodynamic 5 
description.  The outputs of the work show that the quantum dynamics of the mass distribution inside a black 6 
hole can hinder its formation if the mass is smaller than the Planck's one.   7 
The quantum-gravitational equations of motion show that the quantum potential generates a repulsive force 8 
that opposes itself to the gravitational collapse. The eigenstates in a central symmetric black hole realize 9 
themselves when the repulsive force of the quantum potential becomes equal to the gravitational one. The 10 
work shows that, in the case of maximum collapse, the mass of the black hole is concentrated inside a sphere 11 
whose radius is two times the Compton length of the black hole. The mass  minimum is determined requiring 12 
that the gravitational radius is bigger than or at least equal to the radius of the state of maximum collapse.   13 
 14 
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 16 

Keywords: quantum gravity, minimum black hole mass, Planck's mass,  quantum Kaluza Klein model  17 

1. Introduction 18 

One of the unsolved problems of the theoretical physics is that of unifying the general relativity with the 19 
quantum mechanics. The former theory concerns the gravitation dynamics on large cosmological scale in a 20 
fully classical ambit, the latter one concerns, mainly, the atomic or sub-atomic quantum phenomena and the 21 
fundamental interactions [1-9].  22 
The wide spread convincement among physicists that the general relativity and the quantum mechanics are 23 
incompatible each other derives by the complexity of harmonizing the two models.  24 
Actually, the incongruity between the two approaches comes from another big problem of the modern 25 
physics that is to unify the quantum mechanics [2] with the classical one in which the general relativity is 26 
built in.  27 
Although the quantum theory of gravity (QG) is needed in order to achieve a complete physical description 28 
of world, difficulties arise when one attempts to introduce the usual prescriptions of quantum field theories 29 
into the force of gravity [3]. The problem comes from the fact that the resulting theory is not renormalizable 30 
and therefore cannot be utilized to obtain meaningful physical predictions.  31 
As a result, more deep approaches have been proposed to solve the problem of QG such as the string theory 32 
the loop quantum gravity [10] and the theory of casual fermion system [11]. 33 
Strictly speaking, the QG aims only to describe the quantum behavior of the gravitation and does not mean 34 
the unification of the fundamental interactions into a single mathematical framework. Nevertheless, the 35 
extension of the theory to the fundamental forces would be a direct consequence once the quantum 36 
mechanics and the classical general relativity were made compatible. 37 
The objective of this work is to derive the quantum gravitational equation by using the quantum 38 
hydrodynamic approach and give a physical  result.  39 
The quantum hydrodynamic formulation describes, with the help of a self-interacting potential  (named 40 
quantum potential) [12-13] the evolution of the wave function of a particle through two real variables, the 41 

spatial particle density 
2||ψ  and its action S that gives rise to the momentum field of the particle  42 

)p,
c

E
(p

q

S
i−−=−=

∂
∂

µµ .  The biunique relation between the solution of the standard quantum 43 

mechanics and that one of the hydrodynamic model is completed by the quantization that is given by 44 

imposing the irrotational condition to the momentum field µp  [12].  45 
The quantum properties, stemming from the quantum potential, break the scale invariance of the space. This 46 
leads to the fact that the laws of physics depend by the size of the problem so that the classical behavior 47 
cannot be maintained at a very small scale [12-17] (see appendix A). The aversion of quantum mechanics to 48 
the concentration of a particle in a point is due, in the quantum hydrodynamic description, to the so called 49 
quantum potential that leads to a larger repulsive force higher is the concentration of the  wave packet. If this 50 
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quantum effect is considered for the BH collapse, it follows that it stops at a certain point. For the collapse of 51 
a very small mass this final point will not be beyond the horizon of the events and it will not generate a BH. 52 
Similarly to the classical mechanics, the quantum hydrodynamic equations of motion can be derived by a 53 
Lagrangian function, that obeys to the principle of minimum action, and that can be expressed as a function 54 
of the energy-impulse tensor.  55 
Thanks to this analogy, the derivation of the gravity equation for a spatial particle mass density that obeys to 56 
the quantum law of motion can be straightforwardly obtained . 57 
The paper is organized as follows: in the first section the Lagrangian formulation of the quantum 58 
hydrodynamic model  in the non-euclidean space is derived. In the second one, the energy-impulse tensor 59 
density of the quantum particle mass distribution is formulated  for the gravitational equation.   60 
In the last section the smallest mass value of a Schwarzchild BH is calculated. 61 
 62 
 63 
 64 
2. The quantum hydrodynamic equations of motion in non-euclidean 65 
space  66 
 67 

In the first part of this section we will introduce the quantum hydrodynamic equations (QHEs) where, given 68 

the wave function ]
iS

exp[||
h

ψψ = , the quantum dynamics are solved as a function of ||ψ andS , where 69 

2||ψ is the particle spatial density and   )p,
c

E
(p

q

S
i−−=−=

∂
∂

µµ its momentum. 70 

For the purpose of this work we derive the QHEs by using the Lagrangian approach. This will allow to obtain the 71 

impulse-energy tensor for the quantum gravitational equation in a straightforward manner.  72 

The quantum hydrodynamic equations corresponding to the Klein-Gordon one read [18]   73 
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is the 4-current.  83 

It is worth noting that equation (1) is the hydrodynamic homologous of the classic Hamilton-Jacobi equation 84 

(HJE)  and that is coupled to the current conservation equation (2) through the quantum potential. 85 

Moreover, being in the hydrodynamic analogy 86 
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  88 
it follows that 89 
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Moreover, by using (5), equation (1) leads to  98 
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 (where the minus sign considers the negative energy states (i.e., antiparticles))  where the quantum potential 104 

reads 105 
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and , finally, by using (8) that 109 
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Thence, the quantum hydrodynamic Lagrangian equations of motion read 113 
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where the lower minus sign still accounts for the antiparticles.  119 
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The motion equation can be obtained by inserting )q,q(
p

&
µ from  (13) into (14). The so obtained equation is 120 

coupled to the conservation equation (2) through the quantum potential  quV  .  121 

For 0→h  it follows that 0→quV and the classical equations of motion are recovered. 122 
Thence, the hydrodynamic motion equation deriving by (1) (just for matter or antimatter without mixed 123 
superposition of states) read 124 
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that  leads to 128 
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where dt
c
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γ

=  and where the quantum energy-impulse tensor 
ν

µT reads 131 
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so that, finally, the motion equation reads 133 
 134 














−

∂
∂+














−−=

22
11

mc

V
ln

qmc

V
ln

ds

d
u

ds

du ququ

µµ
µ

     (19) 135 

where µµ
γ

q
c

u &= .  136 

It must be noted that the hydrodynamic solutions given by (19) represent an ensemble wider than that of the 137 

standard quantum mechanics since not all the field solutions µp  warrant the existence of the action integral 138 

S  so that the irrotational condition of the action gradient [12] (similar to the Bohr-Sommerfeld quantization)  139 

has to be imposed in order to find the genuine quantum solutions  (see appendix B).  140 

Equation (16) (following the method described in appendix B) can be used to find the eigenstates of matter 141 

n+ψ , by considering the upper positive sign, and of antimatter n−ψ , by using the lower minus sign, that 142 

allow to obtain the generic wave function 
( )∑ −−++−+ +=+=

n
nnnn aa ψψψψψ

, where 143 

∑ +++ =
n

nna ψψ
 and ∑ −−− =

n
nna ψψ

.  144 

It must be noted that the equations (13-14) describe the quantum evolution of pure matter or antimatter states 145 

(as we need for the calculation in section 3.3). The more general treatment including the superposition of 146 

states of matter and antimatter is given elsewhere [19]. 147 

Finally, for the solution of the gravitational problem, equation (19) in non-euclidean space reads  148 

 149 
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with the conservation equation 152 
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where νµg  is the metric tensor and where
21

J|g|
g

−== νµ , where J  is the jacobian of the transformation 158 

of the Galilean co-ordinates to non-euclidean ones. 159 
 160 
 161 
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3. The quantum energy-impulse tensor density  163 
 164 

Given the hydrodynamic Lagrangian function dVdVL||L
~

  ∫∫ == L2ψ , its spatial density L  reads 165 
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that, by using the variational calculus, leads to the quantum impulse energy tensor density (QEITD) [16] 168 
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that reads 172 
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where  176 
 177 

UNDER PEER REVIEW



 6 

2||m ±ψ   
 

        (26) 178 
 179 
are the mass densities of matter or antimatter where the minus sign refers to antimatter.  180 
In non-euclidean space the covariant QEITD reads 181 
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3.1 The quantum gravitational equation for spinless uncharged particles 185 
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it follows that the energy-impulse tensor leads to the same mass motion of the classical one that reads 193 
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µ γ
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require that the classical Einstein equation as well as the correct Galilean gravitational field must be 200 
recovered in the classical limit.  201 
By imposing this condition the explicit expression  202 
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Thence, the quantum gravitational equation for particles and antiparticles respectively reads [20] 207 
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 212 
In the classical limit, where particles are localized and distinguishable, we can approximate them by the 213 
point-like distribution 214 
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while in the quantum case they are defined by the solution of the quantum equation. 221 

Moreover, if in the classical gravity, the equation (32) defining the tensor νµg , has to be solved with the 222 

mass motion equation (19) (given that νµg  itself depends by the motion of the masses) in the quantum case 223 

the set up is a little bit more complicated since the motion equation (19) as well as the gravitational equations 224 

(32-33) are coupled to the mass conservation equations (21) through ||ψ  that is present into the quantum 225 

potential. 226 

Finally, noting that the quantum motion equation (19) is equivalent to the HJE equation (1) (see appendix C) 227 

and that, with the irrotational condition of the action gradient, equations (1,19)  lead to the same solutions of 228 

the Klein-Gordon  equation [18], we can write the equations of quantum gravity in the standard notations as 229 
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 237 
3.2 Quantum dynamics in a central symmetric gravitational field 238 
 239 
 240 
In the classical gravity, the dynamics in a central symmetric gravitational field is simplified if the symmetry 241 
is maintained along the evolution of the motion. For the quantum case, the condition of central symmetry has 242 
to be owned by the eigenfunctions. The same criterion applies to the hydrodynamic motion equations so that 243 
the stationary equilibrium condition, that characterizes the eigenstates, has  a central symmetric geometry.  244 
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Due to the quantum potential form that generates a repulsive force when the matter concentrates itself more 245 
and more, the point-like gravitational collapse in the center of such a black hole is  not possible in the 246 
quantum case. 247 
In order to investigate this aspect, it is useful to note that the quantum gravitational equations, without the 248 
quantum potential, perfectly realize the case of motion of incoherent matter [12]. In this case the solution 249 
depends by the mass distribution and by the radial velocity. In classical gravity, the solution can be expressed 250 
in a synchronous system in quiet with all masses [21] following the identity   251 
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that, considering the last infinitesimal shell of  matter that collapses in a central gravitational field, leads to 263 
[18] 264 
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 267 
with r that approaches to zero leading to a  point-like collapse in the center of the BH [21]. 268 
In the quantum case we can observe that the dynamics approach the classical output (41) for large masses 269 

since it holds 
m

Vqu
1→∝  .  270 

On the other hand, for mass concentration on very short distances when the quantum potential grows in a 271 
sensible manner and can be of order of 2mc , it can give an appreciable inertial contribution in the motion 272 
equation (20) through the term 273 
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 276 
so that the departure from the classical output is expected.  277 
Following the quantum hydrodynamic protocol [12] (see appendix C) the eigenstates are defined by their 278 
stationary “equilibrium” condition that reads 279 
 280 

),,,(u 0001=µ            (44) 281 
 282 

0=
ds

duµ
          (45) 283 

 284 
The  condition of null total force (45) is achieved when the quantum force (i.e., minus the gradient of the 285 
quantum potential) is equal and contrary to the external ones (see example in appendix C).  286 
In the quantum case, the presence of quantum potential does not allow us to write the Einstein equation in a 287 
synchronous system. Therefore, we can only impose the central symmetry that reads [18,21] 288 
 289 
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that inserted into the gravity equation leads to [21] 295 
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where the apex and the dot over the letter mean derivation respect to r and ct, respectively. Moreover, the 303 

quantum potential in this case reads 304 
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It is worth noting that for ∞→m  the gravitational radius 2

2
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Rg =  goes to infinity while the radius 306 

0R , representing the sphere inside which the mass concentrate itself in the stationary equilibrium state, goes 307 

to zero since 0
1 →∝
m

Vqu  .  In this case, the point-like collapse up to (macroscopically speaking) 308 

00 =R  is possible.  309 

On the other hand, when 0→m  the gravitational radius gR  tends to zero, while both the quantum 310 

potential 
m

Vqu
1∝  and, hence,the radius 0R  may sensibly grow.  311 

Moreover, given that to have a BH, all the mass has to be contained inside the gravitational radius, it follows 312 

that the minimal allowable mass mmin for a BH is the smallest one for which it holds the condition 313 

gRR ≤0  . 314 

Being )m(R min0  the highest value of 0R  smaller than gR , thence, for gRrR ≅<0  (with 315 

gRR →0 )the quantum potential can approximately read (see appendix D) 316 

 317 

( ) 2
1

1
2 1

mc||eg
g||m

Vqu ≅∂−∂
−

−= − ψ
ψ

λh
     (52) 318 
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 319 

Assuming that in the stationary equilibrium distribution (eigenstate) the mass is concentrated in a sphere of 320 

radius 0R  for 0Rr >  we can  use the gravitational equation with the approximation of null mass that reads 321 

[21] 322 

0
11
22

≅+






 +− −

rrr

'
e

νλ
        (53) 323 

 324 

0
11
22

≅+






 +−− −

rr

'

r
e

λλ
        (54) 325 

 326 

0≅− −

r
e

λλ &

          (55) 327 

 328 
0=+νλ           (56) 329 

 330 
1

11 1
−

−










−−=−=−=

r

R
eeg

gνλ
       (57) 331 

ϑ24 sinrg −=          (58) 332 
 333 

from where, for 0Rr >  and  gRr ≅ , by (52) it follows that  334 
 335 

2

1
21

2
1

1







≈












∂








−∂

h

mc
||

r

R
r

r||

g ψ
ψ

      (59) 336 

 337 
and hence that 338 
 339 











−>>























−∂ 11 221

r

R
r

r

R
r

gg
,       (60) 340 

 341 
leading to approximated equation 342 
 343 

2

1
21

21
21

2
1

1
1

1







≅∂






















−∂≅













∂








−∂

h

mc
||ln

r

R
r

r
||

r

R
r

r||

gg ψψ
ψ gRrR ≅<0 .(61) 344 

 345 

Moreover, by setting ε+= gRr  with gR<<ε  , (61) reads 346 
 347 














+







−≅∂
gR

r
mc

||ln
εψ 1

2

1
h

       (62) 348 

 349 
leading to the zero-order approximated solution  350 
 351 

          ] 
a

r
[exp||||

2

2

0 −≅ ψψ        (63) 352 

 353 
where  354 
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 355 

mc
a

h=           (64) 356 

 357 
equals the Compton length of the BH.  358 
Moreover, since in order to have a BH, all the mass must be inside the gravitational radius, by posing 359 

aR 20 ≈ ,  from (64) it follows that gR
mc

R <= h2
0 leading to the condition  360 

2

1

22 2

2

2
<==

m

m

Gm

c

mcR
p

g

hh
        (65) 361 

 362 
and, hence, to 363 
 364 

pmm >           (66) 365 
 366 

where 
G

c
mp

h= . 367 

 368 
4. Comments 369 

Even if the hydrodynamic description was formulated contemporaneously to the Schrödinger equation [19], 370 
due to the low mathematical manageability, it is much less popular that the latter.  371 
Nevertheless, the interest in the quantum hydrodynamic model has been never interrupted since its 372 
formulation by Madelung [22-25]. This because it has proven to be very effective in describing systems 373 
larger than a single atom where fluctuations and quantum decoherence become important in defining their 374 
evolution [26].  375 
Moreover, due to the classical-like form, the hydrodynamic description is suitable for the connection between 376 
quantum concepts (probabilities) and classical ones such as trajectories [27-29].  377 
The property of the hydrodynamic quantum description of being a bridge between the quantum mechanics 378 
and the classical one, allows a straightforward generalization of the Einstein gravity (a pure classical theory) 379 
to the quantum case, leading to a model with clear mathematical statements. 380 
Furthermore, since the hydrodynamic approach, once the irrotational condition of the action gradient is 381 
applied, becomes equivalent to the quantum one  [12,25], the results can be expressed in the standard 382 
quantum formalism with a set of equations that are independent by the hydrodynamic approach and that 383 
appear well defined. 384 
The hydrodynamic quantum gravity has shown to succeed to determine the minimal mass of a black hole.  385 
The model  depicts the quantum gravitational behavior in a classical-like way generalizing it with the help of 386 
the self-interaction given by the quantum potential. 387 
 388 
 389 

5. Conclusions 390 

In this work the quantum gravitational equations are derived by using the quantum hydrodynamic 391 

description. The work shows that, in the case of maximum gravitational compression (when the repulsive 392 

force of the quantum potential is equal to the gravitational one) the BH mass is practically concentrated 393 

inside a sphere whose radius 
mc

R
h2

0 =  is two times the Compton length of the black hole. The minimum 394 
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BH mass, equal to the Planck mass 
G

c
mp

h=  , follows by requiring that the gravitational radius 395 

2

2

c

Gm
Rg =  must be bigger than 0R .   396 

 397 
 398 
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 449 

Appendix A 450 

The quantum potential and the breaking of the scale invariance of space 451 

In this section we illustrate how the vacuum properties on small scale are affected by the quantum potential. 452 

One of the physical quantities that clearly show breaking of scale invariance of vacuum is the spectrum of the 453 

vacuum fluctuations.  454 

The quantum potential finds its definition in the frame of the quantum hydrodynamic representation.  For 455 

sake of simplicity, we analyze here the hydrodynamic motion equations in the low velocity limit.  456 

The generalization to the  relativistic limit is straightforward since the expression of the quantum potential 457 

remains unaltered.  458 

In the quantum hydrodynamic approach, the motion of the particle density (q,t)(q,t) || 2n ψ= , with velocity 459 

m

S
q

)t,q(∇
=

•
, is equivalent to the quantum problem (Schrödinger equation)  applied to a wave function 460 

]S
i

[exp|| (q,t)(q,t)(q,t)
h

ψψ = , and  is defined by the equations [12]  461 

0nn =∇+∂
•

• )q( (q,t)(q,t)t ,
       

(A.1) 462 

m

S

m

p

p

H
q

)t,q(∇
==

∂
∂=

•

,
       

(A.2) 463 

)VH(p qu+−∇=
•

,        (A.3) 464 

∫ −−= •
t

t
)(qu)q( )VV

m

pp
(dtS

0

n2       (A.4) 465 

where the Hamiltonian of the system is )q(V
m

pp
H += •

2
 and where quV  is the quantum potential that 466 

reads 467 
 468 

2121
2

nn
2

//
qu )

m
(V ∇∇−= •

−h
.       (A.5) 469 

For  macroscopic objects (when the ratio 
m2

2
h

  is very small) the limit of 0→h  can be applied and 470 

equations (A.1-A.4) lead to the classical equation of motion. Even, such simplification tout court is not 471 

mathematically correct, the stochasticity must be introduced to justify it  [14,16].  472 

Actually, since the non local characteristics of quantum mechanics can be generated also by an infinitesimal 473 

quantum potential, it can be disregarded when random fluctuations overcame it and produce quantum 474 

decoherence [14,16,30].   475 

UNDER PEER REVIEW



 14 

If we consider the fluctuations of the variable (q,t)(q,t) || 2n ψ=  in the vacuum, as shown in ref.[14-16] 476 
equation (1) can be derived as the deterministic limit of the stochastic equation   477 

)T,t,q((q,t)(q,t)t )q( η+−∇=∂
•

• nn       (A.6) 478 

For the sufficiently general case, to be of practical interest, )T,t,q(η  can be assumed Gaussian with null 479 
correlation time and independent noises on different co-ordinates. In this case, the stochastic partial 480 
differential equation (A.6) is supplemented by the relation [16] 481 
 482 

αβτλ δτδληηηη βαβα )()(G,, )q()q()t,q()t,q(  >>=<< ++    (A.7) 483 

where kT, )q()q( >∝< βα ηη  [16] where T is the amplitude parameter of the noise (e.g., the temperature 484 

of an ideal gas thermostat in equilibrium with the vacuum [14,16]) and )(G λ is the shape of the spatial 485 
correlation function of the noise η .  486 

In order that the energy fluctuations of the quantum potential do not diverge, the shape of the spatial 487 
correlation function cannot be a delta-function (so that the spectrum of the spatial noise cannot be white) but 488 
owns the the correlation function  489 

])(exp[)(G
cT

lim
2

0
      

λ
λλ −=

→
.       (A.8)  490 

The noise spatial correlation function (A.8) is a direct consequence of the PD derivatives of the quantum potential  that 491 

give rise to an elastic-like contribution to the system energy that reads  492 

∫∫
∞

∞−

∞

∞−
∇∇−== • dq)

m
(dqVH //

)t,q()t,q()t,q(qu)t,q(qu
2121 n

2
n n 

2
h

,  (A.9) 493 

where large derivatives of t)(q,n  generate high quantum potential energy. This can be verified by calculating the 494 

quantum potential values due to the sinusoidal fluctuation of the wave function in the vacuum (i.e., 0=)q(V  ) (e.g., 495 

mono-dimensional case) 496 

qcos
λ
πψψ 2

0=          (A.10) 497 

that leads to  498 

22
22

2 2

2

22

2

2121








=






∇∇






−= •

−

λ
π

λ
π

λ
π

m
qcosqcos)

m
(V

//

qu
hh

   (A.11) 499 

 500 

showing that the energy of the quantum potential grows as the inverse squared of the the wave length of 501 

fluctuation.  502 

Therefore, the presence of components with near zero wave length λ  into the spectrum of fluctuations can  lead to  503 

fluctuations of  quantum potential with finite amplitude even in the case of null noise amplitude  (i.e., 0→T ).   504 

In this case the deterministic limit (A.1-A.3) contains additional solutions to the standard quantum mechanics (since 505 

fluctuations of the quantum potential would not be suppressed).  506 
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Thence, from the mathematical inspection of stochastic equation (A.6-A.7) it comes out that in order to obtain the 507 

quantum mechanics on microscopic scale, the additional conditions (A.8) must be included to the set of the  stochastic 508 

equations of the hydrodynamic quantum mechanics [14-16].  509 

A simple derivation  of the correlation function (A.8) can come by considering the spectrum of the PD fluctuations of 510 

the vacuum. Since each component of spatial  frequency λ
π2=k  brings the energy contribution of quantum 511 

potential (A.11), the probability that it happens  is 512 








 >+<
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


−=
kT

VV
exp

kT

E
expp

qu)q(
       (A.12) 513 

that, for the empty vacuum (i.e., 0=)q(V  ), leads to the expression: 514 
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    (A.13)  515 

where 516 

212
2

/c
)mkT(

h=λ          (A.14) 517 

From (A.13) it follows that the spatial frequency spectrum  )()(
λ
π2

pkS ∝  of the vacuum fluctuations is not 518 

white.  519 

Fluctuations with  smaller wave length have larger energy (and lower probability of happening) so that when λ  is 520 

smaller than cλ  their amplitude goes quickly to zero. 521 

Given the spatial frequency spectrum )(p)k(S
λ
π2∝ , the spatial correlation function of the vacuum  522 

fluctuation reads 523 

 524 
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   (A.15)  525 

that gives (A.8). 526 

The fact that the vacuum fluctuations do not have a white spectrum but have a length “built in”  (i.e., the De Broglie 527 

thermal wavelength cλ  )  shows the breaking of the its scale invariance: The properties of the space on a small scale 528 
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are very different from those ones we know on macroscopic scale. When the physical length of  a system is smaller 529 

than cλ  , the deterministic limit of (A.6) (i.e., the quantum mechanics) applies [31] and we have the emerging of the 530 

quantum behavior [16]. 531 

 532 

Appendix B 533 

Analysis of the quantization condition in the quantum hydrodynamic description 534 
 535 
 536 
If we look at the mathematical manageability of QHEs of quantum mechanics (A.1-A.5) no one would 537 

consider  them.  538 

Nevertheless, the QHEs attract much attention by researchers. The motivation resides in the formal analogy 539 

with the classical mechanics that is appropriate to study those phenomena connecting the quantum behavior 540 

and the classical one.  541 

In order to establish the hydrodynamic analogy, the gradient of action (A.4) has to be considered as the 542 

momentum of the particle.  When we do that, we broaden the solutions so that not all solutions of the 543 

hydrodynamic equations can be solutions of the Schrödinger problem.  544 

As well described in ref.[12], the state of a particle in the QHEs is defined by the real functions 545 

(q, t)
n2|| =ψ   and   )t,q(Sp ∇= . 546 

The restriction of the solutions of the QHEs to those ones of the standard quantum problem comes from 547 

additional conditions that must be imposed  in order to obtain the quantization of the action.  548 

The integrability of the action gradient, in order to have the scalar action function S, is warranted if the 549 

probability fluid is irrotational, that being 550 

 551 

∫∫ •• =∇=
q

q

q

q
)t,q( pdlSdlS

00

           (B.1) 552 

is warranted by the condition 553 
 554 

0  =×∇ p          (B.2) 555 
 556 
so  that it holds 557 

0      ==Γ ∫
•

• qmdlc         (B.3) 558 

 559 
Moreover, since the action is contained in the exponential argument of the  wave function, all the multiples of  560 

hπ2 , with 561 

                     00 ...,,,,nnpdlSnSS
q

q
)t,q()t,q()t,q(n 321022

0
0

=++=+= ∫ • hh ππ  (B.4) 562 

are accepted.  563 
 564 
 565 
 566 

Solving the quantum eigenstates in the hydrodynamic description 567 
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 568 
In this section we will show how the problem of finding the quantum eigenstates can be carried out in the 569 

hydrodynamic description. Since the method does not change either in classic approach or in the relativistic 570 

one, we give here an example in the simple classical case of an harmonic oscillator. 571 

In the hydrodynamic description, the eigenstates are identified by their property of stationarity that is given 572 

by the “equilibrium” condition  573 

 574 

 0 =
•
p            (B.5.a) 575 

 576 
(that happens when the force generated by the quantum potential exactly counterbalances that one stemming 577 

from the Hamiltonian potential) with the initial “stationary” condition 578 

 579 

 0  =
•
q .           (B.5.b) 580 

  .  581 

The initial condition (B.5.b) united to the equilibrium condition leads to the stationarity 0  =
•
q  along all 582 

times and, therefore, by (B.5.a) the eigenstates are irrotational.  583 

Since the quantum potential changes itself with the state of the system, more than one stationary state (each 584 

one with its own  nquV ) is possible and more than one quantized eigenvalues of the energy may exist.  585 

For a time independent Hamiltonian )q(V
m

p
H +=

2

2

, whose hydrodynamic energy reads 586 

[31] qu)q( VV
m

p
E ++=

2

2

, with eigenstates )q(nψ (for which it holds 0  ==
•
qmp ) it follows that 587 
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  (B.6) 589 

 590 

where )(VV nqunqu ψ= , and that 591 
 592 

)q(nnqu VEV −=          (B.7) 593 
 594 
where (B.7) is the differential equation, that in the quantum hydrodynamic description, allows to derive to the 595 
eigenstates.  596 

For instance, for a harmonic oscillator (i.e., 2
2

2
q

m
V )q(

ω= ) (B.7) reads 597 

22

22
1

2 qm
E||||)

m
(V nnnqu

ωψψ −=∇∇−= •
−h

.     (B.8) 598 

 599 
 If for (B.8)  we search a solution of type  600 
 601 

( )2aqexp| qn(q, t)
−= )( A| ψ ,        (B.9) 602 

 603 
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we obtain that 
h2

ωm
a =  and )()( H  A q

mnqn
h2

ω=
 (where (x)Hn represents the n-th Hermite polynomial). 604 

Therefore, the generic n-th eigenstate reads 605 
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 608 
From (B.10) it follows that the quantum potential of the n-th eigenstate reads 609 
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 612 
where it has been used the recurrence formula of the Hermite polynomials  613 

 614 
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 616 

that by (B.7) leads to 617 
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 619 

The same result comes by the calculation of the eigenvalues that read  620 
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where )q(
op V

qm
H +

∂
∂−=

2

22

2

h
 and where (q, t)(q, t)

*
(q, t)

ψψ=n . Moreover, by applying (B.14) to 624 

(A.2-A.3) it follows that 625 
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(B.16)  628 

Confirming the stationary equilibrium condition of the eigenstates. 629 

 630 

Finally, it must be noted that since all the quantum states are given by the generic linear superposition of the 631 

eigenstates (owing the irrotational momentum field 0=
•
qm ) it follows that all quantum states are 632 

irrotational. Moreover, since the Schrödinger description is complete, do not exist others quantum irrotational 633 

states in the hydrodynamic description. 634 

In the relativistic case, the hydrodynamic solutions are determined by the eigenstates 635 

nn
−+ ψψ  ,   derived by the irrotational stationary equilibrium condition applied to the 636 

momentum fields of matter and antimatter of equation (23), respectively . 637 
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 641 
Appendix C  642 

The hydrodynamic HJE from the Lagrangian equation of motion  643 
 644 
The identity 645 
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 648 
that stems from the equations (13-14), with the help of  (10,12) leads to 649 
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that is the hydrodynamic HJE (1) 652 
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 654 
 655 
 656 

Appendix D 657 

The quantum potential in the region of space gRrR ≅<0  with gRR →0  658 
 659 
The balance between the quantum force and the gravitational one reads 660 
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 663 
that by inserting  the stationary condition (44) leads to 664 
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that in the vacuum space, for 0Rr >  , leads to 668 
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and to 671 
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 674 
that gives 675 
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Since gRR ≤0  and since that for the minimum allowable mass we have that 677 
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gRR →0 ,          (D.6) 679 
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for gRrR <≈<0 ,  it follows that 681 
 682 

[ ] [ ]( )nqu
g

n CexpmcV]
R

R
exp[Cexpmc −≤<























−−− 111 2

0

2
   (D.7.a) 683 

[ ] [ ]( )nqu
g

n CexpmcV
R

RR
Cexpmc −≤<





































 −
+− 111 2

0

02
   (D.7.b) 684 

 685 
Moreover, since we are searching for the state with maximum mass concentration and hence with maximum 686 

quantum potential) from (D.7.b) it follows that this condition is achieved for [ ] 0=nCexp  and, hence, for 687 
−∞=nC , that leads to 688 

 689 
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Moreover, for ε+= gRr  with gR<<ε  it follows that 692 
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