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Numerical Modeling of Coupled Thermoelasticity with relaxation timesin Rotating
FGAPs Subjected to a Moving Heat Source

Abstract. The time-stepping DRBEM modeling was proposeduidysthe 2D dynamic

response of functionally graded anisotropic plate (FGAP)estdyl to a moving heat
source. The FGAP is assumed to be graded through th&dke The main aim of this
paper is to evaluate the difference between Green and Li@&4&y and Lord and

Shulman (L-S) theories of coupled thermo-elasticity otating FGAP subjected to a
moving heat source. The accuracy of the proposed methodxamasned and confirmed
by comparing the obtained results with those known prewousl

Keywords: Thermoelasticity; Functionally Graded Anisotropilates; Boundary Element Method.

1. Introduction

Biot [1] introduced the classical coupled theory of thernsiglidy (CCTE) to overcome
the paradox inherent in the classical uncoupled théwyelastic changes have no effect
on temperature. The heat equations for both theories aliffugion type predicting
infinite speeds of propagation for heat waves contraphigsical observations. Most of
the approaches that came out to overcome the unacceptabietion of the classical
theory are based on the general notion of relaxing theflueain the classical Fourier
heat conduction equation, thereby introducing a non-FouriectefA flux rate term into
Fourier law of heat conduction is incorporated by Lord &hdiman (L-S) [2], who
formulated an extended thermoelasticity theory (ETE) whiciso known as the theory
of generalized thermoelasticity with one relaxation tiraed the Fourier's heat
conduction equation is modified. Another thermoelasti¢igoty that admits the second
sound effect is reported by Green and Lindsay (G-L)J8lo developed a temperature-
rate-dependent thermoelasticity theory (TRDTE) which is alalted the theory of
generalized thermoelasticity with two relaxation times iblyoducing two relaxation
times that relate the stress and entropy to the tenoperat

Functionally graded Plates (FGPs) are a type of nonhomogeremmposites usually
made from a mixture of metals and ceramics. FGPs aredaweloped for general use as
structure components in ultrahigh temperature environmentexreinely large thermal
gradients such as aircraft, space vehicles, autoeotillstries, nuclear plants, and other
engineering applications. For a functionally graded plateP|FtBe material properties
are generally assumed to vary continuously in the thickdiesstion only. The response
of an FGP to mechanical and thermal loads may be computdgitically, numerically,
or experimentally. We are not aware of experimentalli®son FGPs subjected to
transient thermal, magnetic, and mechanical loads. Ieiskwown that the thermal stress
distributions in a transient state can show large valoegared with the one in a steady
state. Therefore, the transient thermoelastic problems ttffese nonhomogeneous
materials become important, and there are several statieserned with these problems,
such as Skouras et al. [4], Mojdehi et al. [5], Zhoale}6], Loghman et al. [7], Sun and
Luo [8] and Mirzaei and Dehghan [9] are examples invgvionctionally graded
materials.

In recent years, the dynamical problem of thermo-eifstfor functionally graded
anisotropic plates (FGAPs) becomes more important duéstmany applications in
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modern aeronautics, astronautics, earthquake engineering, swmitg, mining
engineering, plasma physics, nuclear reactors and higlgg particle accelerators, for
instance. Abd-Alla [10] obtained the relaxation effeots reflection of generalized
magneto-thermo-elastic waves. Abd-Alla and Al-Dawy [11}taoted the relaxation
effects on Rayleigh waves in generalized thermoelasticanédlibas and Abd-Alla [12,
13] studied generalized thermoelastic problems for anitaffibre-reinforced anisotropic
plate. Xia, et al. [14] used a time domain finite elemerthod to solve dynamic
response of two-dimensional generalized thermoelastiplmg problem subjected to a
moving heat source based on Lord and Shulman theory with emeahrelaxation time

It is hard to find the analytical solution of a probléma general case, therefore, an
important number of engineering and mathematical paperstetbvo the numerical
solution have studied the overall behavior of such mase(&de, e.g., EI-Naggar et al.
[15, 16], Abd-Alla et al. [17-19], Qin [20], Sladek et 1], Tian et al. [22], Fahmy
[23-28], Fahmy and El-Shahat [29], Othman and Song, [38¥j and Milazzo [31], Hou
et al. [32], [Abreu et al. [33], Espinosa and Mediavil&4][

One of the most frequently used techniques for convertingltineain integral into a
boundary one is the so-called dual reciprocity boundaryesiemethod (DRBEM). This
method was initially developed by Nardini and BreblB&][in the context of two-
dimensional (2D) elastodynamics and has been extended towitbak variety of
problems wherein the domain integral may account for finealinear static-dynamic
effects. A more extensive historical review and appbeet of dual reciprocity boundary
element method may be found in [Brebbia et al. [36], Wrahel Brebbia [37], Partridge
and Brebbia [38], Partridge and Wrobel [39] and Fahmy [40-47]

The main objective of this paper is to study the model ofdimgensional equations of
coupled thermo-elasticity with one and two relaxatioresnn rotating FGAPs subjected
to a moving heat source. A predictor-corrector impligiplit time integration
algorithm was developed and implemented for use with thé rdagrocity boundary
element method (DRBEM) to obtain the solution for the temperaind displacement
fields. The accuracy of the proposed method was examined anchweshfdy comparing

the obtained results with those known before

2. Formulation of the problem

Consider a Cartesian coordinates systemz as shown in Fig. 1. We shall consider a
functionally graded anisotropic plate rotating about it witboastant angular velocity.

The plate occupies the regidd = {(x, ¥,2):0<x<y,0<y<p,0<z< g} with
graded material properties in the thickness direction.
In this chapter, the material is functionally graded along Othelirection. Thus, the

governing equations of generalized thermo-elasticity in thaext of the Green and
Lindsay theory can be written in the following form:

Oapp — P(X + D™w?x, = plx + )™l D
Oap = (¢ + D™[Caprotts.g — Ban(T — To + 7, T)], 2
kabT,ab = ﬁabTOua,b + PC(x + 1)m[T + TZT]- 3)

wheread,,, is the mechanical stress tenswy, is the displacement, is the temperature,
Cabrg and By, are respectively, the constant elastic moduli and steesgerature
coefficients of the anisotropic medium, is the uniform angular velocity,;, are the
thermal conductivity coefficients satisfying the synjerelation k,;, = k;,, and the
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strict inequality(k,,)? — ky,k,, < 0 holds at all points in the medium s the density¢
is the specific heat capacityjs the timeg, andr, are mechanical relaxation times.
3. Numerical implementation

Making use of (2), we can write (1) as follows

Lgpus = pilg — (DT + ADgypur — pw?x,) = fyp, 4)
where

Ly, =D Dapr = C, _0 A= m

gb = Vabr 9x,’ abf = Labfg€ € = axg' BT

) ] ] ..
Dy = —Ba (E + 8, A+1, (E + A) 5) fop = piiq — (DT + ADgypus — pa?x,).
The field equations can now be written in operator fosrfolows
LgpUs = fgb, 5)
LapT = fap, (6)
where the operatork,, andf,, are defined in equation (4), and the operatggsand
fap are defined as follows
o 0

Lop =kop =—=— 7

ab ab axa axb' ( )
fab = pc(x + 1)m[T + TZT] + ﬁabToua,b- (8)
Using the weighted residual method (WRM), the difféedrequation (5) is transformed
into an integral equation

j (Loptty — fyp)itia dR = 0. ©)

R

Now, we choose the fundamental solutigip as weighting function as follows

Lgbu;lf = _6ad6(x, f) (10)

The corresponding traction field can be written as

trga = abfgu:jif,gnb- (11)

The thermo-elastic traction vector can be written Hevic

t, = Eiam = (Capsgtis.g — Bap (T = To + 74 T) ) 1. (12)
x+1)

Applying integration by parts to (9) using the siftingerty of the Dirac distribution,
with (10) and (12), we can write the following elastitegral representation formula

1 (6) = f (Ulata — Chalta + UsaParTny) dC — f fpuladR. (13)

c R
The fundamental solutiofi* of the thermal operatdr,,, defined by
LapT" = —8(x,8). (14)
By implementing the WRM and integration by parts, the difféad equation (6) is
transformed into the thermal reciprocity equation

f(LabTT* — Ly, T*T)dR = f(q*T —qT*)dC, (15)

CVhere the heat fluxes arCe independent of the elastic fieldcandbe expressed as
follows:

q= _kabT,bnat (16)

q" = —kapTpng. (17)
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By the use of sifting property, we obtain from (16) therthal integral representation
formula

TE) = f (@'T — qT")dC — f fusT*dR. (18)

The |ntegral representatlon formulae of elastic and thefiglds (13) and (18) can be
combined to form a single equation as follows

1’1151(%)] J tda udaﬁabnb] [ua [uda _(;,*] [t;]}dC

—f[”% &b]dR. (19)
4 0 fab

It is convenient to use the contracted notation to intredyeneralized thermo elastic
vectors and tensors, which contain corresponding elasiic thermal variables as
follows:

U, a=A=1,23;
Ua = {T A=4, 20)
(ta a=A=123;
TA - {q A= : (21)
uy,, d=D=1,23;a=4=1,23;
; 0 d=D=123A=4
Upa = 0 D=4,a=4=1,2,3; @2
-T* D=4A=4,
th, d=D=123a=A4=1,273;
- —i; d=D=1,23;A=4
Toa = 0 D=4a=A4=1,23; (23)
—-q* D=4A=4,
ﬁz*i = u:iaﬁafnf- (24)
The thermo-elastic representation formula (19) can bigewrin contracted notation as:
lb@)=f@$ﬂ;—nﬂuﬁc—fU&$ﬂR (25)
c R
The vectorS, can be written in the split form as follows
Sy=S)+SI+S¢+SE+SI+Sk+SE (26)
where
pwix, a=A=123;
&_&) A=4, @7)
-D, A=1,2,3;F=4
T . —_ a )y &y Iy )
Si = wurUp With wup = {O otherwise, (28)
4 = —(Day + ADgy ) OU
. (1 a=A=123f=F=1,23;
With U= {O otherwise, (29)
; : 1 A=4F =4
T — __ m . — ’ ’
ST = —pc(x + 1)™8,:Up with Sup {0 S therwise (30)
SA = —pC(x + 1) TZ6AFUF' (31)

SA = TOA61]ﬁfg£UF! (32)
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_(p A=1,2,3F=1,23;

‘{0 A=tf=F=4 O
The thermo-elastic representation formula (19) can alseiiiten in matrix form as
follows:

s = [P [T [0 e

e+ DM [2] - pete + Dz, 2] - 7, [ ﬁab?'ta,b] + [pga]. (34

Our task now is to implement the DRBEM. To transform tbmalin integral in (25) to
the boundary, we approximate the source vegtdn the domain as usual by a series of
given tensor functiong,l, and unknown coefficients;

N
Sy~ ZquNaﬁ,. (35)
q=1

According to the DRBEM, the surface of the solid has taliseretized into boundary
elements. In order to make the implementation easy tgo@nwe useV, collocation
points on the boundarg and anothel; in the interior ofR so that the total number of
interpolation points isN = N, + N;.

Thus, the thermo-elastic representation formula (25) cavritten in the following form

N
0p(©) = [ UsaTa = Tsata)dc = ) | Upaffydr 36)
c q=1R
By applying the WRM to the following inhomogeneous elaatid thermal equations:
q _ £q
Loty = fan 37)
Lo T? = f3, (38)

where the weighting functions are chosen to be the elasticthermal fundamental
solutionsuy, andT*. Then the elastic and thermal representation formulasimitar to
those of Fahmy [42] within the context of the uncoupled thead are given as follows

uge(g) = f(ut*iatge - t;auge) ac - f uz*iafaqedRr (39)
c R

TI(§) = f (@'T9 - 'T") dC — f f9T*dR. 40)

C R
The dual representation formulae of elastic and thefiglds can be combined to form a
single equation as follows

Ul = J (UpaTL, — Ty UL )dC — j UpafildR, (41)

C R
With the substitution of (41) into (36), the dual reciprodigpresentation formula of
coupled thermo elasticity can be expressed as follows

N
Up(§) = j (UpaTy — TpaU,)dC + z ULy (@ + f (TaULy — UpaT)dC | afl. (42)
c q=1 c

To calculate interior stresses, (42) is differentiatétti respect t@; as follows
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au g
o) == j (U[*)AZTA - TD*AZUA)dC
afl J y y

N q
+Z a[]gigl@)_ f(TD*A,lU/;IN - UBA,zTA%v)dC ay. (43)
q=1 C

According to the steps described in Fahmy [43], the duabnegity boundary integral
equation (42) can be written in the following system ofatigns

$u—nt = (U -np)a. (44)

It is important to note the difference between the iceg and(: whereag contains the
fundamental solutioffy;, the matrix( contains the modified fundamental ten§grwith
the coupling term.

The technique was proposed by Partridge et al. [48] can badexteto treat the
convective terms, then the generalized displaceméhtsand velocities Up are
approximated by a series of tensor functiq‘i‘asand unknown coefficientﬁ% and VqD

N
Up = ) fio (O3, 5)
q=1
Up = YN_1 frn COT, (46)

The gradients of the generalized displacement and veloaity be approximated as
follows

N

Ung = D fs G, (47)
q=1
N

Ung = Y fi g COTE. (48)
q=1

These approximations are substituted into equations (28)(22) to approximate the
corresponding source terms as follows

N
T
Si = Z S, 2vp, (49)
q=1
N
St = —Toﬁfgez sy, (50)
q=1

where

T
Syp = Sarfrn.gr (51)

un
S,y =Spa quD'g. (52)

The same point collocation procedure described in Gaal, gt9] can be applied to (35),
(45) and (46). This leads to the following system of equations

S=]a, u=J, u=Jy. (53)
Similarly, the application of the point collocation progeslto the source terms equations
(29), (30), (31), (33), (49) and (50) leads to the followingesysdf equations

S% = —(Dgas + ADyy5)VUg With
(1 a=A=123f=F=1,2,3;
U= {0 otherwise, (4)

ST = pe(x + 1)™8,: U, (55)
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ST = —cp(x + 1)™ 1,840, (56)

St = AU, (57)
ST =BTy, (58)
St = —T,BryeB Y. (59)
Solving the system (53) fary andy yields

a=J71S,  y=y7'u, 7=J)70 (60)

Now, the coefficientsx can be expressed in terms of nodal values of the unknown

displacementy, velocitiesU and accelerations as follows:

a=]"S°+[B7) " = (Das + ADa1f)UJU + [pc(x + 1) 8y — ToBrgeBY' U
+[A = pc(x + 1)™1,6,¢]0), (61)

WhereA andBT are assembled using the sub matricdsandwr respectively.

Substituting from Eq. (61) into Eq. (44), we obtain

MU +TU+ KU = Q, (62)

In whichM, T, K andQ are independent of time and are defined by

V=mp-CU)", M=V[A—-cplx+1D™1,84¢)

I'=V[pclx + )84 — TofrgeBY' ',

K=0+V[BT)™" + (Das + ADy1)U], Q =0T +V5°, (63)

Where V, M,I' and K represent the volume, mass, damping and stiffness cemtri

respectively; U,U,U and Q represent the acceleration, velocity, displacement and

external force vectors, respectively. The initial vapreblem consists of finding the
function U = U(t) satisfying equation (62) and the initial conditiob0) = U,,
U(0) =V, wherel,,V, are given vectors of initial data. Then, from Eq. (62), cae
compute the initial acceleration vecl as follows

MW, = Q, — I'Vy — KU,. (64)
An implicit-explicit time integration algorithm of Hughes al. [50, 51], was developed
and implemented for use with the DRBEM. This algoritbonsists of satisfying the
following equations

Mﬁn+1 trlUn+1 + F.).EUn+1 + KIUn+1 + KEiin+1 = Qu+1, (65)
Uns1 = gn+1 + )/A‘EZUn+1, (66)
Unt1 = Unyq + aBtUpyq, (67)
where

- ) AT?

Ups1 = Upyr + 070, + (1 — ZV)TUn; (68)
Uper = Uy + (1 — @)Azl, (69)

In which the implicit and explicit parts are respectivégnoted by the superscrigtand

E. Also, we used the quantitié,,, andU,,, to denote the predictor values, aliig, ;
andU,,, to denote the corrector values. It is easy to recoghiethe equations (66)-
(69) correspond to the Newmark formulas [52].

At each time-step, equations (65)-(69), constitute an algeprablem in terms of the
unknownU,,,,. The first step in the code starts by forming and facgotite effective
mass

M* =M + yAtC' + yAr2K'. (70)
The time stepAt must be constant to run this step. As the time-Atefs changed, the
first step should be repeated at each new step. Thadstep is to form residual force

Qrs1 = Quyr — CIUn+1 - CEUn+1 - Klﬁn+1 - KEUn+1- 71)
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Note that in the implicit partM* is always non symmetric. HoweveM," still possesses
the usual "band-profile" structure associated with theneotivity of the DRBEM mesh,
and has a symmetric profile. So the third step ioteesM*U,,,, = Q. using a Crout
elimination algorithm [53] which fully exploits that structuin that zeroes outside the
profile are neither stored nor operated upon. The fourfhist® use predictor-corrector
equations (66) and (67) to obtain the corrector displacempdt velocity vectors,
respectively.

The stability analysis of the algorithm under consideratienbieen discussed in detail in
Hughes and Liu [51] and the stability conditions have alsnhdgerived in the same
reference, therefore does not strictly apply to the consigeadem.

4. Numerical results and discussion

The heat source is assumed to be

Q = Qo8(x — VD)§()H (1) (72)
whereQ, is a prescribed value of the non-dimensional heat soéifcg,and H(.) are
Dirac and Heaviside unit step function

Following Rasolofosaon and Zinszner [54] monoclinic Nortla Sandstone reservoir
rock was chosen as an anisotropic material and physieahdais follows:

Elasticity tensor

17.77 3.78 3.76 0.24 -0.28 0.03
| 3.78 1945 4.13 0 0 1.13]
Cavy =| 3.7(? 4.18 21.39 820 0.26 0(.)38 GPa (73)
0 0 0 0.66 7.62 0
l 0.03 1.13 0.38 0 0 7.77J
Mechanical temperature coefficient
0.001 0.02 0
Bap = [0.02 0.006 0 ] -10° N /Km? (74)
0 0 0.05
Tensor of thermal conductivity is
1 01 02
kap = [0.1 1.1 0.15|W/Km (75)
0.2 015 09

Mass density = 2216 kg/m? and heat capacity= 0.1 J/(kg K). The numerical values
of the temperature and displacement are obtained by tiltsogethe boundary into 120
elements(N, = 120) and choosing 60 well-spaced out collocation pofpts= 60) in
the interior of the solution domain, refer to the resemitk of Fahmy [55].

The initial and boundary conditions considered in the calculations

at=0,u1=u2=111=112=0,T=0 (76)
duq duq aT

atr=0  5r=5r=05= 77

atx =y e (78)
5} 0 oT

aty=0 %;zaiylzo'az (79)
G} G} oT
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The present work should be applicable to coupled theoriethesfmoelasticity. The

results are plotted in figures 2-4 for the Green and Lin¢&al) theory and plotted in

figures 5-7 for the Lord and Shulman (L-S) theory to shbes tariation of the

temperaturel and the displacements andu, with x coordinate. We can conclude
from these figures that the temperatfeand the displacement,; decrease with

increasinge and the displacement, increases with increasingfor the two theories. It

has been found that the comparison between these thealaates the effect of second
thermal relaxation time taken by Green and Lindsay. Theselts obtained with the
DRBEM have been compared graphically with those obtaingd) uke finite element

method (FEM) method of Xia et al. [14]. It can be seemfrtbese figures that the
DRBEM results are in excellent agreement with the tesobtained by FEM, thus
confirming the accuracy of the DRBEM.

A

27 41'
- -
B

Fig. 1. The coordinate system of the FGAP.
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