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     ABSTRACTS 6 

 7 

The one-dimensional superlattice (SL) based on a monolayer graphene modulated by the Fermi velocity 8 

barriers is considered.  We assume that the rectangular barriers are arranged periodically along the SL 9 

chain.  The energy spectra of the Weyl-Dirac quasi-electrons for this SL are calculated with the help of 10 

the transfer matrix method in the continuum model. The Fibonacci quasi-periodic modulation in graphene 11 

superlattices with the velocity barriers can be effectively realized by virtue of a difference in the velocity 12 

barrier values (no additional factor is needed).  And this fact is true for a case of normal incidence of 13 

quasi-electrons on a lattice. In contrast to the case of other types of the graphene SL spectra studied 14 

reveal the periodic character over all the energy scale and the transmission coefficient doesn’t tend 15 

asymptotically to unity at rather large energies. The dependence of spectra on the Fermi velocity 16 

magnitude, on the external electrostatic potential as well as on the SL geometrical parameters (width of 17 

barriers and quantum wells) is analyzed. Results obtained can be used for applications in the graphene-18 

based electronics. 19 

 20 
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1. INTRODUCTION 24 

 25 

Graphene and the graphene-based structures draw the great attention of researchers in recent years. It is 26 

explained by the unique physical properties of graphene, and also by good prospects of its use in the 27 

nanoelectronics (see e.g. [1-4]). It is convenient to operate the behaviour of the Weyl-Dirac fermions in 28 

graphene by means of the external electric and magnetic fields, and a lot of publications are devoted to 29 

the corresponding problem for this reason. Recently one more way of controlling the electronic properties 30 

of the graphene structures, namely by means of the spatial change of the Fermi velocity was offered [5-31 

10]. Some ways of fabrication of structures in which the Fermi velocity of quasi-particles is spatially 32 

dependent value were approved [5, 6]. This achievement of technology opens new opportunities for 33 

receiving of the nanoelectronic devices with the desirable transport properties. 34 

It is known that the solution of this problem can be promoted in no small measure by use of the 35 

superlattices. This explains the emergence of a lot of publications in which the charge carriers behaviour 36 

in graphene superlattices of various types is investigated; these SL include the strictly periodic, the 37 

disordered ones, SL with barriers of various nature - electrostatic, magnetic, barriers of Fermi velocity. 38 

(As the last, we understand the areas of graphene where quasi-particles have different Fermi velocity, 39 

smaller or bigger than in the pristine graphene). Among the specified works, there are some devoted to 40 

the quasi-periodic graphene SL [11-15]. The quasi-periodic structures, as known, possess the unusual 41 

electronic properties of special interest (see e.g. [16]). 42 

Motivated by the circumstances stated above we formulate the purpose of this work as follows: to study 43 

the main features of the energy spectra of the quasi-periodical graphene-based Fibonacci superlattices 44 

with the velocity barriers. We choose the Fibonacci SL because they are considered as the classical 45 

quasi-periodic objects, and the majority of the works associated with research of the quasi-periodic 46 

systems deals merely with them.       47 

2. MODEL AND FORMULAE 48 

Consider the one-dimensional graphene superlattice in which regions with various values of the Fermi 49 

velocity are located along the 0x axis: elements a and b refer to �a and �b velocities respectively. 50 

Elements a and b are arranged along SL according to the Fibonacci rule so that, for example, we have for 51 

the fourth Fibonacci generation (sequence): s4=abaab. Generally, between the barriers corresponding to 52 

elements a and b, there is a quantum well for which the Fermi velocity is equal to unity as in a pristine 53 

graphene: �w=�0. 54 

As we consider graphene in which the Fermi velocity is dependent on the spatial coordinate �� i.e. 55 �� = ������ the quasi-particles submit to the massless Weyl-Dirac type equation: 56 

 57 

−	ℏ�� ∙ 
 �������������� ������� = ������,         (1) 58 
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 59 

where �� = ��� , ��� the Pauli two-dimensional matrix, ����� = �������, �������� two-component spinor, T 60 

transposing symbol. Introducing an auxiliary spinor Ф���� = ������������ one can rewrite equation (1) as 61 

follows: 62 

 63 

                                 −	ℏ�������� ∙ 
Ф���� = �Ф����.       (2) 64 

 65 

Assume that the external potential consists of the periodically repeating rectangular velocity barriers 66 

along the axis 0x and potential is constant in each j-th barrier. The external electrostatic potential U may 67 

also be present and inside each barrier Uj(x) = const (piece-wise constant potential). In this case, using 68 

the translational invariance of the solution over the 0y axis, it is possible to receive from the equation (2): 69 

 70 
��ФА,В

��� + �#$% − #�%�ФА,В = 0,                      (3) 71 

 72 

where indices A, B relate to the graphene sublattices A and B respectively,  #$ = '()*+���,
-+ , measurement 73 

units ℏ=�/=1 are accepted. If we represent the solution for eigenfunctions in the form of the plane waves 74 

moving in the direct and opposite direction along an axis Ox, we derive  75 

Ф�х� = 23$456+� 7 18$9: + ;$4)56+� 7 18$):<,     (4) 76 

 77 

where =$ = >#$% − #�%  for #$% > #�% and =$ = 	>#�% − #$% otherwise, 8$± = �±=$ + 	#� )vj/E, the top line in (4) 78 

pertains to the sublattice A, the lower one – to the sublattice B. 79 

The transfer matrix, which associates wave functions in points x and x+∆x reads  80 

 81 

A$ = B
CDE F+ Gcos�=$∆L − M$� 	 sin�=$∆L�

	 sin�=$∆L� cos�=$∆L + M$�P,     (5) 82 

where M$ = arc sin 7ST
S+ :. 83 

Meaning that the Fermi velocity depends only on coordinate x, i.e. ����� = ��L�, it is possible to receive 84 

the boundary matching condition from the continuity equation for the current density as follows:  85 

��Uϕ�LUV) � = ��Vϕ�LUV9 �,      (6) 86 

where indexes b and w relate to a barrier and a quantum well respectively, xbw the coordinate of the 87 

barrier-well interface. The coefficient of transmission of quasi-electrons through the superlattice T(E) is 88 

evaluated by means of a transfer matrix method. Energy ranges, for which the coefficient of electron 89 

transmission through  the lattice is close to unity, form the allowed bands, while the energy gaps 90 

correspond to values T<<1. Since the specified procedure of obtaining the value of T(E) was described in 91 

literature repeatedly (see e.g. [7-14] ) we have opportunity  to proceed with analyzing the results 92 

obtained. 93 

 94 

3. RESULTS AND DISCUSSION 95 

 96 

Unlike the energy spectra for the known quasi-periodic superlattices, including the graphene ones (see 97 

e.g. [7, 14, 15] ), the spectra of the graphene-based SL with the velocity barriers are periodic over all the 98 

energy scale, and the transmission rate T doesn’t tend asymptotically to unity at rather large energies. 99 

For comparison, dependences of log T(E) are given in Fig. 1(a) for the Fibonacci fourth generation for SL 100 

in which the quasi-periodic modulation is achieved due to different values of the Fermi velocity, and for SL 101 

on the basis of the gapped graphene in which the quasi-periodic modulation is due to different values of 102 

gaps (calculations are carried out on the basis of our previous work [14], (Fig. 1(b)). The values of the 103 

parameters are as follows: for the first case w=1, d=2, �a=1, �b=2, for the second case w=d=1, ∆a=1, ∆b=0, 104 

where ∆ denotes the gap’s width, d and w denotes the barrier and the quantum well width respectively. All 105 

calculations (for all figures of this paper) were carried out for the case of the normal incidence of electrons 106 

on the superlattice. (Note that in accordance with the known Landauer-Buttiker formula the electrons with 107 

ky = 0 make the main contribution to the conductance). 108 
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Fig. 1. Dependence of log(T) on energy E for the SL modulated by: (a) different values of the Fermi 114 

velocity and (b) different magnitudes of the energy gaps 115 

 116 

It is seen that a certain periodicity of spectra takes place in the second case (this fact hasn’t been noted 117 

in the literature as yet) but the amplitude of peaks (and the corresponding gap’s width) decreases with 118 

increasing in E, on average. The allowed band width increases on average with E increasing and the 119 

coefficient of transmission T eventually approaches to unity. This "wavy damped oscillation" in Fig. 1(b) is 120 

associated with such property of the spectra as their self-similarity (e.g. [14]).  Note that the narrowing of 121 

gaps occurs very rapidly. Parameters for the spectra in Fig. 1 are chosen so as to show that their 122 

structure for the graphene SL of different nature may be similar. The difference of two spectra is 123 

explained by that the velocity barriers are dependent on energy [9]. If we make an analogy between 124 

tunneling of quasi-particles in graphene through a rectangular electrostatic barrier and tunneling through 125 

a velocity barrier, for the potential of the last it is necessary to write down  126 

 127 W��� = � − �/�Y,                 (7) 128 

 129 

in other words, expressions for the transmission coefficient T in the specified cases coincide if the 130 

condition (7)  is satisfied. This formula explains the fact that spectra of T(E) for SL with the velocity 131 

barriers are periodic over all the energy scale. It is quite naturally that the expression for the transmission 132 

rates comprises the term that directly determines the spectra periodicity (see e.g. the recent papers 133 

[7,18,19]).   134 

     Note further that the graphene superlattices with the velocity barriers are characterized by a rich 135 

variety of the energy spectra, and also by their high sensitivity to minor changes in geometrical 136 

parameters of a lattice. This statement is correct in relation not only to quasi-periodically modulated SL, 137 

but to strictly periodic lattices as well and it allows for controlling the energy spectra in a wide range. In 138 

the general case, i.e. for arbitrary values of the parameter values the energy spectra demonstrate a set of 139 

irregularly spaced of allowed and forbidden bands. However for some sets of the parameter values 140 

spectra are regular and it is natural to take them for analysis in the first place; examples of such spectra 141 
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are shown in figures of this paper.142 

velocity barriers was done in [18, 19]). 143 

Apparently, depending on the parameters of the problem considered spectra may differ from each other 144 

significantly; they can reveal the simple 145 

but also they can expose much more complicated pattern of bands with the minimal period of several tens 146 

of energy units. Each set of values of parameters provides the original specter with i147 

and substructure. In the minimal period of each specter, there is a point with respect to which the specter 148 

is symmetric and besides each specter exhibits a symmetric substructure (e.g. Fig. 1).   149 

Let us now consider some concrete en150 

velocity barriers. Fig. 2 shows the trace map for the initial Fibonacci generations of the SL in which the 151 

quasi-periodic modulation is created due to different values o152 

d=1, w=0.5, the energy range is selected to be the minimal period equal to 2153 

is characterized by the following features. For the taken set of parameters which corresponds to the trace 154 

map in Fig. 2, each Fibonacci generation forms spectra with a regular arrangement of the energy bands, 155 

and each of them exposes its own geometry. The higher generation is, the spectra of more complex 156 

pattern correspond to it. Note that spectra of higher generations are strong157 

don't represent them), and besides fragmentation degree increases significantly with increase in 158 

geometrical SL parameters d, w. 159 

With increasing the number of the Fibonacci sequence the number of gaps increases and their total w160 

becomes larger. The fragmentation of the allowed bands in all generations starting from the third one 161 

occurs in accordance with the property of the self162 

are gaps in every Fibonacci sequence. 163 

It should be noted further that in certain fixed energy areas, the Fibonacci inflation rule is satisfied: 164 

zn=zn-1+zn-2, where zn is number of bands in the n165 

range is shown in Fig. 2. The numbers of the allowed bands in the consequent Fibonacci generations for 166 

the parameters chosen are 5, 8, 13, 21 for the 2167 

The main conclusion from the spectra presented is as follows: Fibonacci quasi168 

graphene superlattices with the velocity barriers can be effectively realized by virtue of a difference in 169 

and �b values, i.e. in value of the velocity barriers (no additional factor is needed). And this fact is true for 170 

a case of normal incidence of quasi171 

in graphene-based SL (in contrast to other SL), the quasi172 

oblique incidence” of the Weyl-173 

demonstrate (and also results of previous works [12, 14, 15])  the implementation of the quasi174 

modulation depends on a quasi-175 

different  magnitude of the velocity barriers (as in this work), or by virtue of different values of gaps (as in 176 

[14, 15]), the quasi-periodic modulation takes place not only at inclined incidence of quasi177 

lattice  but also at their normal incidence178 

 179 

180 
Fig. 2. Trace map for the initial Fibonacci generations, values of the parameters are as follows: 181 

d=1, w=0.5, �a=1, �b=2 182 

 183 

We have shown above that the Fibonacci quasi184 

due to different Fermi velocity values in the SL barriers. There is another way to 185 

periodic modulation in the SL considered and it is186 

different elements of the array, while maintaining the velocity the same along the lattice chain. The 187 

external electrostatic potential U 188 

to tune the transmission spectra with the help of this potential. Let us first consider 189 

external potential U on the strictly periodic SL with the velocity190 

a and b as Ua and Ub respectively; 191 

to be the piece wise constant, they are located along the SL chain (0x axis). The changes in the 192 

transmission spectra caused by the electrostatic potential are illustrated in Fig. 3 and are as follows: 1) a 193 

are shown in figures of this paper. (The same conclusion in relation to the strictly periodic SL with the 
velocity barriers was done in [18, 19]).  
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new (additional) gap appears between the two adjacent gaps which exist in the case of U=0; 2) a shift of 194 

all gaps is observed and it depends on the value of U; 3) the gap width depends on U also. 195 
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 204 

Fig. 3. Transmission spectra for the various values of the electrostatic potential U: U=0, U=2, 205 

U=4.5 for Fig. 3, a,b,c respectively, the other parameters: �a=�b=2, d=1, w=0.5 206 

 207 

These changes are governed by the important property of the spectra – they are periodic with the 208 

potential U. For example for the parameters of Fig. 3 spectra return to their initial state at intervals 209 ZW=2πn, n – integer, i.e. the additional gap due to the external potential U doesn’t appear. This means 210 

that for certain values of U the electrostatic barriers are perfectly transparent for the Dirac-Weyl quasi-211 

electrons and thus there is a kind of the Klein paradox manifestation in the SL considered. (If �a= �b=1 we 212 
have T(E)=1 for all energies and values of U due to the Klein tunneling).The widening of gaps is 213 

accompanied by the narrowing of those gaps which relate to the SL with the velocity barriers for U=0.  214 

The magnitude of the period oscillations ZW can be found from the following considerations. According to 215 

the Bloch theorem we can write   216 

 217 cos�[�\ + ]�� = 1 2⁄ Tr�AVAa�,     (8) 218 

 219 

d+w is the lattice period. Calculation of the right side of this equation for the case of normal incidence of 220 

electrons yields the expression 221 

 222 cos�[�\ + ]�� = cos��� − W�\/� ± �]�,    (9) 223 

 224 �=�a=�b. 225 

 226 

The last formula yields a value for the period of oscillations in the transmission spectra  227 

 228 ZW = bc�/\.     (10) 229 

 230 

5 10 15 20

10−

8−

6−

4−

2−

logT( )

E

UNDER PEER REVIEW



This expression determines the dependence of the period ZW on the SL geometric parameters (it is 231 

inversely proportional to the barrier width and holds for each value of the quantum well width) and on the 232 

Fermi velocity. Note that formula (10) holds well even for a small number of the SL periods. 233 

 234 

 235 

 236 

 237 

 238 

 239 

 240 

 241 

 242 

 243 

 244 

 245 

 246 

 247 

 248 

 249 

Fig. 4. Trace map for the initial Fibonacci generations of the SL with the parameters: Ua=0, Ub=ππππ, 250 �a= �b=2, d=1, w=0.5 251 

 252 

Fig. 4 shows a trace map for the SL under consideration for the difference ∆U=Ua-Ub=π, other parameters 253 

as in Fig. 3, the energy interval is chosen to be equal to the minimal period in Fig. 3. In general, its 254 

character is similar to that plotted in Fig. 2 but some of its features must be noted here. This trace map is 255 

regular and gaps are wider than for other values of ∆U even if they are larger than π that is if the 256 

quasiperiodic factor is stronger. This is due to the fact that the spectra for the Fibonacci SL considered 257 

preserve the property of the periodicity in the case of Ua≠Ub and the factor of the quasi-periodicity is the 258 

secondary to the main property of periodicity.  For values of ∆U=2πn the quasi-periodicity doesn’t 259 

manifest itself at all and spectra repeat the initial state i.e. the one for U=0. The greatest splitting of the 260 

allowed bands is observed for values of ∆U slightly higher than πn. The trace map is not regular and 261 

symmetric for the arbitrary parameter values (for the general case when U≠πn).  262 

We see that the trace map in Fig. 4 is divided into two parts by the gap for energy equal to a little more 263 

than 8 (for ∆U chosen). The number of bands is subjected to the Fibonacci inflation rule in every part: for 264 

the initial Fibonacci generations we have the sequence of numbers 3, 4, 7, 11… and 1, 2, 3, 5… in the left 265 

and right parts respectively, and totally 4, 6, 10, 16… which differs from the case of Fig. 2. 266 

Pay particular attention to the broad (lower energy) bands in each Fibonacci generation in Fig. 4. They 267 

correspond to the so called additional or superlattice Dirac bands in a periodic lattice [21]. It plays an 268 

important role in the controlling of the SL energy spectra since it is robust against the structural disorder. 269 

The location of the middle of such a band (mid-gap) ED is determined by the condition [21] 270 =�\ + =V] = 0      (11) 271 

      272 

which yields  273 

ED=Ud/(d + υ w).     (12) 274 

 275 

This equation for the position of the Dirac superlattice gap is well satisfied for a wide range of the  276 

parameters involved even for a small number of the SL periods. The Dirac band width depends on the 277 

problem parameters and may be less than the width of the other (Bragg) bands (see e.g. [14, 15,17]).  278 

Similar Dirac superlattice gaps exist also in the case of the quasi-periodic Fibonacci SL investigated. The 279 

mid-gap position of such a gap may be approximately found by equation (13) (for not a large difference 280 

between Ua and Ub). Note further that a characteristic feature of the SL Dirac band is that it doesn’t 281 

depend on the lattice period d+w, but it is sensitive to the ratio w/d. This is illustrated in Fig. 5 where log 282 

T(E) is plotted for the fourth Fibonacci generation with the parameters: �=2, Ua=4, Ub=3.5, the dashed line 283 

in Fig. 5a corresponds to values d=0.8, w=0.6, for the solid line d=0.96, w=0.72; for the solid line in Fig. 5b  284 

d=0.6, w=0.8, for the dashed line d=0.8, w=0.6. 285 

 286 

 287 

 288 

 289 

2 

6 8 10 Е 

3 

4 

5 

4 

n 

UNDER PEER REVIEW



 290 
(a) 291 

 292 

 293 
 294 

(b) 295 

Fig. 5. Dependence of log (T) on energy E for the fourth Fibonacci generation, values of the 296 

parameters: �=2, Ua=4, Ub=3.5, the solid line in Fig. 5a corresponds to values d=0.96, w=0.72, for 297 

the dashed line d=0.8, w=0.6, for the solid line in Fig. 5b d=0.6, w=0.8, for the dashed line d=0.8, 298 

w=0.6 299 

 300 

4. CONCLUSION 301 

 302 

We analyze the energy spectra of the Fibonacci superlattice based on graphene modulated by the Fermi 303 

velocity barriers. The quasi-periodic modulation can be realized due to different values of the velocity 304 

barriers or due to different values of the external potential in the SL elements a and b. In contrast to the 305 

case of other types of the graphene SL spectra studied reveal the periodic character over all the energy 306 

scale and the transmission coefficient doesn’t tend asymptotically to unity at rather large energies. The 307 

periodic dependence of the spectra considered on the magnitude of the external electrostatic potential is 308 

observed. Spectra demonstrate the rich variety of configurations (patterns) of the allowed and forbidden 309 

bands location dependent on one hand on the Fermi velocity magnitude and on the other hand  on the SL 310 

geometry; for some special parameter values, they expose the regular character, symmetrical with 311 

respect to a certain point. The SL Dirac gaps are present in the spectra and their location depends on the 312 

velocity barriers value, on the value of the external potential as well as on the SL geometrical parameters. 313 

Results of our work can be applied for controlling the energy spectra of the graphene-based devices. 314 

  315 
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