SCIENCEDOMAIN international

www.sciencedomain.org

SDI FINAL EVALUATION FORM 1.1

PART 1:

Journal Name:	Physical Science International Journal
Manuscript Number:	Ms_PSIJ_25796
Title of the Manuscript:	Composition dependent structural and optical properties of nanocrystallites ZnxCd1-xS
Type of Article	Original Research Article

PART 2.

PARI Z:	
FINAL EVALUATOR'S comments on revised paper (if any)	Authors' response to final evaluator's comments
The authors adjusted Band gap of CdS, but I also believe that they have to adjust the	As Pointed out by the reviewer Band gap are adjusted to lower value. Supporting references
band gap of ZnS, Zn-CdS mixtures. It is un realistic this very high value (4.67 eV) for ZnS	are included in ref. no. [30],[31]. Previous reference [31] is deleted.
and greater than 3.5 eV for mixtures. The absorbance below 300 is somewhat contain	
some interference from the substrate, and it will be safe if the authors consider the	
tangent that leads to low band gap. Otherwise how they justify the absorbance in the	
range 300-400 nm?. Their value are not closer to that mentioned in ref 31 (4.2 eV), and	
this is not a n evidence that is true even in nanoparticles size closer to Boher radius.	
I suggest that they put realistic band gaps for ZnS and its mixture with CdS, after which	
this article can be accepted.	
L	

Created by: EA Checked by: ME Approved by: CEO Version: 1.5 (4th August, 2012)