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ABSTRACT 5 

In this Brief Communication scalar length-scale and time-scale distributions are 6 

determined by considering the statistics of the scalar field and its gradient. For 7 

this purpose, a relationship between the scalar length-scale probability density 8 

function and the joint probability density function for the scalar field and its 9 

gradient in the form of the integral relation is established. 10 
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Statistical approaches, among which is the method based on probability density 15 

functions (PDFs), find wide use for solving a variety of problems on complex 16 

turbulent flows [1]. It is known that as compared to other methods, the PDF 17 

method allows one to describe the influence of turbulent fluctuations on the 18 

mixing intensity of scalar fields of temperature or concentration and then to take 19 

into account more accurately this influence on chemical processes in reacting 20 

flows [2]. 21 



The study of turbulent mixing of reacting flows by the PDF method is based on 22 

three major approaches. First, mixing is represented in terms of the decay rate of 23 

the scalar variance – the scalar dissipation rate. It characterizes mixing of 24 

reagents and chemical reaction rate. Second, scalar fields are being investigated 25 

with regard to the dynamics and topology of isoscalar surfaces. Third, statistical 26 

properties of scalar fields are analyzed by calculating correlation quantities [3]. 27 

In the existing mixing models using the above-mentioned approaches, the 28 

problem on accounting of the spatial structure of turbulent flows still remains a 29 

stumbling block. The existence of different values of scalar length scale 30 

provides a basis for different manifestations of turbulent transfer. Evolution of 31 

length scales makes the boundary conditions for molecular diffusion vary 32 

constantly and affects a decay rate of the scalar variance. In this case, the 33 

structure of the scalar fluctuation field depends to a greater extent on small 34 

scales that immediately influence the scalar dissipation rate, but not on large 35 

scales. 36 

Usually, the equation or the presumed form of one-point scalar PDF is adopted 37 

to describe turbulent mixing [1-3]. Unfortunately, the one-point statistics of 38 

scalar fields does not supply information on a turbulent scale spectrum. In the 39 

one-point models, this information is taken into account empirically or ignored. 40 

The models operating with multipoint statistics do not face this task, but as for 41 

their realization, they are much more complex and hence are in less use [4]. 42 



The key problem of the PDF method is the necessity to model a contribution of 43 

fine-grained mixing (micromixing) of a scalar field to the general structure of 44 

mixing. Micromixing proceeds by the mechanism of interaction between 45 

turbulent fluctuation transfer and molecular diffusion due to small-scale flow 46 

motions. 47 

A subsequent approach to solving this problem uses the joint statistics of the 48 

scalar field and its gradient that carries information on the microstructure of the 49 

scalar field itself [1-2]. Turbulent length and time scales, as a rule, can be 50 

obtained from the statistics of fluctuations of the velocity and its gradient. This 51 

is not always adequate for a scalar fluctuation field, since relevant Schmidt 52 

numbers can differ essentially from unity where the Schmidt number is defined 53 

as the ratio of viscosity to scalar diffusivity. In the case of the one-point models, 54 

joint statistics of the scalar field and its gradient permits a direct determination 55 

of distributions of length and time scales of scalar fluctuations. The scalar 56 

gradients are responsible for the diffusion effects and define scalar dissipation 57 

rates in turbulent mixing [1-2]. In turn, in theory of combustion, such 58 

characteristics of a turbulent flame as flame propagation velocity and 59 

combustion completeness depend on the scalar dissipation rate [3, 5]. 60 

The problem of determining the typical length and time scales at turbulent 61 

mixing still remains necessary, but unsolved up to now [2]. The Direct 62 

Numerical Simulation (DNS) shows an essentially non-Gaussian two-mode 63 

form of the one-point scalar PDF at intermediate mixing stages [6]. That is why, 64 



the structure of the one-point scalar PDF should be specified through all details 65 

of the scalar field, but not only through its averaged characteristics: averaged 66 

scalar, dispersion, averaged time scale or averaged scalar dissipation rate. 67 

Sosinovich et al. [7] obtained the expression for the length scale PDF with 68 

regard to the fractal character of surfaces subdivided by different-concentration 69 

regions in the turbulent flow. It has also been invoked to derive analytical 70 

relations for conditional scalar dissipation rate and surface density function 71 

using the hypothesis of typical implementation of a scalar turbulent field at 72 

different mixing stages [7-8]. 73 

The multi-scale character of turbulent mixing is closely connected with time 74 

scale distributions in turbulent flows. Dopazo et al. [9] studied the distributions 75 

of typical time scales by the DNS for scalar mixing. In studying diffusion flames 76 

with kinetic effects it was shown that the regard to time scale distributions is 77 

important and the model for an averaged reaction rate uses the presumed time 78 

scale PDF [10]. 79 

The objective of this Brief Communication is to determine length-scale and 80 

time-scale distributions considering the statistics of the scalar field and its 81 

gradient and to establish a relationship between the scalar length-scale PDF and 82 

the joint PDF for the scalar field and its gradient in the form of the integral 83 

relation. 84 

For this objective to be achieved, let’s consider turbulent mixing of a 85 

dynamically passive scalar field [11]. For modeling purposes, common practice 86 



is based on the statistics of two quantities: a conserved scalar C representing a 87 

mixture fraction, or inert impurity concentration, and a norm of its gradient C∇  88 

related to the dissipation rate of scalar fluctuations c = C – C  in the turbulent 89 

flow where the overbar indicates the Reynolds averaging operator [1, 2, 3, 5]. In 90 

this case, the scalar field behavior is governed by the well-known convection-91 

diffusion equation [2-3]. Let’s consider statistically homogeneous velocity and 92 

scalar fields. The disappearance of heterogeneities in the turbulent flow then 93 

follows from the dynamics of velocity and scalar fluctuations ui and c 94 

(henceforth c is referred to as the scalar). For this case the scalar transport 95 

equation in non-dimensional form is valid: 96 
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 is the instantaneous scalar dissipation rate. The use of 106 

the Reynolds averaging for equation (2) yields an equation for the scalar 107 

dispersion 2c (t). In the case of homogeneous turbulence, the relation for 2c  and 108 

the averaged scalar dissipation rate χ  is represented as 2 / 2 ( )c t t∂ ∂ = − χ . 109 

The averaged time tC (t) and length lC (t) scales of the scalar are the integral 110 

characteristics of spectral state of mixing and are related as 
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number, urms is the root-mean-square velocity fluctuation, ε is the turbulence 114 

dissipation rate. 115 

Let’s introduce a similar definition for a local time scale of scalar dissipation 116 

due to molecular diffusion on a local scalar length scale λC: 117 
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where the scalar length scale, on which the scalar fluctuation is realized, is 119 

defined as: 120 
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Physically, this scalar length scale is characteristic of heterogeneity in a 122 

turbulent scalar field (thickness of diffusion layers which separate different 123 

concentration regions), and the corresponding PDF shows the existence 124 

probability of such scales in the flow [3]. 125 

Relation (3) is indicative of the fact that λC is determined as a quotient of 126 

absolute values of the scalar and its gradient, i.e., it is found from the statistics 127 

of c and c∇  which can be expressed in terms of the joint PDF P(Γ,W) where Γ 128 

and W are the probabilistic variables for c and c∇  with the domain for these 129 

variables Γmin ≤ Γ ≤ Γmax and 0 ≤ W ≤ +∞ and also Γmin < 0, where Γmax, Γmin are 130 

the maximum and minimum scalar values. 131 

In order to derive a relation for the scalar length scale PDF Pλ(ϕ), the 132 

fundamental approaches of probability theory are used [12]. Consider some joint 133 

PDF P(ψ1, ψ2) of two random variables φ1 and φ2 with probabilistic variables ψ1 134 

and ψ2, respectively. Assume that the domain for these variables is 135 

φmin ≤φ1 ≤ φmax and 0 ≤ φ2 ≤ +∞ and also φmin < 0. The quotient is marked as 136 

λ = |φ1|/φ2. The cumulative distribution function of a random variable λ is 137 

F(ϕ)=Prob{|ψ1|/ψ2≤ ϕ} by definition where ϕ is the probabilistic variable for λ. 138 

The desired probability then equals that of a composition space point (φ1, φ2) to 139 

obey the inequality –ϕφ2 ≤φ1 ≤ ϕφ2, i. e.: 140 
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As the first integral with the PDF normalization is equal to unity, relation (4) 142 

yields: 143 
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The last equality is differentiated over the variable ϕ to obtain the PDF of the 146 

quotient λ = |φ1|/φ2. Use the below formula for differentiating the integral 147 

dependent on some parameter: 148 
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Formula (5) is applied to get integrals in these relations: 153 
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Hence it follows that the desired PDF of the quotient λ is equal to: 156 
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The correspondence of the variable φ1 to the scalar c and of φ2 to its gradient 158 

norm c∇  consistent with the joint PDF P(Γ,W) is now introduced in formula (6) 159 

to have the following expression for the scalar length scale PDF: 160 
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where ϕ is the probabilistic variable for the scale λC. 162 

Thus, if the joint PDF of the scalar and its gradient norm or the closed equation 163 

for this PDF [13-14] is known, then the scalar length scale PDF is found by 164 

relation (7) or by deriving and solving the relevant transfer equation for the 165 

desired function. 166 

Knowledge of this function also allows the typical averaged scalar length and 167 

time scales to be determined by these relations: 168 
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It is worth noting that formula (7) is valid for an arbitrary scalar that not 170 

necessarily possesses the property of considered conserved scalar. For further 171 

studies, in the premixed reacting flows, a progress variable can be chosen as a 172 

scalar, and its equation contains chemical terms [3]. 173 

 174 
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