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Short communications

PROBABILITY DENSITY FUNCTION OF SCALAR LENGTH

SCALESIN TURBULENT FLOW

ABSTRACT

In this Brief Communication scalar length-scale &inte-scale distributions are
determined by considering the statistics of thdasdeeld and its gradient. For
this purpose, a relationship between the scalaytihescale probability density
function and the joint probability density functidor the scalar field and its

gradient in the form of the integral relation isadsished.

Keywords: turbulent flow; scalar; dissipation rate; length scale; probability

density function

Statistical approaches, among which is the metlasedb on probability density
functions (PDFs), find wide use for solving a varief problems on complex
turbulent flows [1]. It is known that as compareddther methods, the PDF
method allows one to describe the influence of ulelt fluctuations on the
mixing intensity of scalar fields of temperatureconcentration and then to take
into account more accurately this influence on dbehyprocesses in reacting

flows [2].
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The study of turbulent mixing of reacting flows the PDF method is based on
three major approaches. First, mixing is represeméerms of the decay rate of
the scalar variance — the scalar dissipation rteharacterizes mixing of
reagents and chemical reaction rate. Second, doallds are being investigated
with regard to the dynamics and topology of iscmcaurfaces. Third, statistical
properties of scalar fields are analyzed by catmgacorrelation quantities [3].

In the existing mixing models using the above-nmmd approaches, the
problem on accounting of the spatial structureuobwlent flows still remains a
stumbling block. The existence of different values scalar length scale
provides a basis for different manifestations abtillent transfer. Evolution of
length scales makes the boundary conditions foreoubdr diffusion vary
constantly and affects a decay rate of the scadaiance. In this case, the
structure of the scalar fluctuation field dependsat greater extent on small
scales that immediately influence the scalar dasp rate, but not on large
scales.

Usually, the equation or the presumed form of ooetpscalar PDF is adopted
to describe turbulent mixing [1-3]. Unfortunatelhe one-point statistics of
scalar fields does not supply information on a wileht scale spectrum. In the
one-point models, this information is taken inte@mt empirically or ignored.
The models operating with multipoint statistics riut face this task, but as for

their realization, they are much more complex agnick are in less use [4].
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The key problem of the PDF method is the necessityodel a contribution of
fine-grained mixing (micromixing) of a scalar fietd the general structure of
mixing. Micromixing proceeds by the mechanism oteraction between
turbulent fluctuation transfer and molecular diftus due to small-scale flow
motions.

A subsequent approach to solving this problem tisegoint statistics of the
scalar field and its gradient that carries infororaton the microstructure of the
scalar field itself [1-2]. Turbulent length and @&nscales, as a rule, can be
obtained from the statistics of fluctuations of thedocity and its gradient. This
IS not always adequate for a scalar fluctuatiofdfisince relevant Schmidt
numbers can differ essentially from unity where 8sdmidt number is defined
as the ratio of viscosity to scalar diffusivity. time case of the one-point models,
joint statistics of the scalar field and its gradipermits a direct determination
of distributions of length and time scales of scdlactuations. The scalar
gradients are responsible for the diffusion effeantd define scalar dissipation
rates in turbulent mixing [1-2]. In turn, in theorgf combustion, such
characteristics of a turbulent flame as flame pgapan velocity and
combustion completeness depend on the scalar dissipate [3, 5].

The problem of determining the typical length amudet scales at turbulent
mixing still remains necessary, but unsolved up nww [2]. The Direct
Numerical Simulation (DNS) shows an essentially -@aussian two-mode

form of the one-point scalar PDF at intermediatgimg stages [6]. That is why,
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the structure of the one-point scalar PDF shouldgdeeified through all details
of the scalar field, but not only through its axgad characteristics: averaged
scalar, dispersion, averaged time scale or aversgmdr dissipation rate.
Sosinovichet al. [7] obtained the expression for the length scald- Rvith
regard to the fractal character of surfaces subdiiby different-concentration
regions in the turbulent flow. It has also beenoked to derive analytical
relations for conditional scalar dissipation rated asurface density function
using the hypothesis of typical implementation ofaalar turbulent field at
different mixing stages [7-8].

The multi-scale character of turbulent mixing i®sgly connected with time
scale distributions in turbulent flows. Dopagtcal. [9] studied the distributions
of typical time scales by the DNS for scalar mixihgstudying diffusion flames
with kinetic effects it was shown that the regasdtitne scale distributions is
important and the model for an averaged reactits uiaes the presumed time
scale PDF [10].

The objective of this Brief Communication is to e®bine length-scale and
time-scale distributions considering the statistidsthe scalar field and its
gradient and to establish a relationship betweerstalar length-scale PDF and
the joint PDF for the scalar field and its gradiamtthe form of the integral
relation.

For this objective to be achieved, let's considarbulent mixing of a

dynamically passive scalar field [11]. For modelmgposes, common practice
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Is based on the statistics of two quantities: aseored scala€ representing a

mixture fraction, or inert impurity concentraticand a norm of its gradieffic]

related to the dissipation rate of scalar fluctwagic =C — C in the turbulent
flow where the overbar indicates the Reynolds ayiagpoperator [1, 2, 3, 5]. In
this case, the scalar field behavior is governedhieywell-known convection-
diffusion equation [2-3]. Let’s consider statistigghomogeneous velocity and
scalar fields. The disappearance of heterogenaitighe turbulent flow then
follows from the dynamics of velocity and scalauchuationsu, and c
(henceforthc is referred to as the scalar). For this case tladasdransport

equation in non-dimensional form is valid:

. 2
g, 9uc) _ 1 9% (1)
ot  ox  Peax?

Here the dimensional variables are non-dimensisedlasc=¢/co, ui =Gi/uo,

xi =% /lo, t=tup/lo Where lo,up,co are the dimensional reference quantities of
length, velocity and scalar. The hat denotes thweedsional term for the
variables. The Péclet number Pe is defined asdtiie of the advective transport

rate to the diffusive transport ratl-:*e(zu%IO whereD is the diffusivity).

Having multiplied equation (1) byand having taken into account the continuity

equation?zo, the following equation can be obtained

Xi

6_(:2+6(uic2) _10%?_

2x . 2
ot 0%; Pe ox? X (2)
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Here Xziﬁﬁzégqu Is the instantaneous scalar dissipation rate. Fleeoll

Peodx; 0x;
the Reynolds averaging for equation (2) yields a@uasion for the scalar
dispersionc? (t). In the case of homogeneous turbulence, theioelér ¢> and
the averaged scalar dissipation rgtés represented a&? /ot =2y ().
The averaged timé&: () and lengthlc (t) scales of the scalar are the integral

2 2
characteristics of spectral state of mixing and eelated astc :;—)_(:'C;e

[2, 3, 5]. The physical meaning of the scalar largtalelc = 3¢ Is identical
Pe

2
to that of Taylor's velocity microscalg = s

number,us IS the root-mean-square velocity fluctuatienis the turbulence
dissipation rate.
Let’s introduce a similar definition for a locahte scale of scalar dissipation

due to molecular diffusion on a local scalar lerggthlelc:

¢z _A¢Pe
Tc=—=
2x 6

where the scalar length scale, on which the sdélatuation is realized, is

defined as:

_ 8¢ _ mld
Ac = Pe _\/§|Dc|' (3)
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Physically, this scalar length scale is charadierisf heterogeneity in a
turbulent scalar field (thickness of diffusion layewhich separate different
concentration regions), and the corresponding PDBws the existence
probability of such scales in the flow [3].

Relation (3) is indicative of the fact that is determined as a quotient of

absolute values of the scalar and its gradient,it.es found from the statistics
of c and|oc| which can be expressed in terms of the joint FIDEW) where/
and W are the probabilistic variables forand |o¢ with the domain for these
variables/ min < < [maxand 0< W< +oo and also/ min < 0, where/ may, Mmin are
the maximum and minimum scalar values.

In order to derive a relation for the scalar lengitale PDFP(¢), the
fundamental approaches of probability theory aexlj$2]. Consider some joint
PDFP(¢4, ¢p) of two random variableg and g with probabilistic variablegx
and ¢, respectively. Assume that the domain for theseiabkes is
@hin <A < @hax and 0< @ < +o and also@,in < 0. The quotient is marked as
. =|al/@. The cumulative distribution function of a randorariable 4 is
F(@)=Prob{|yx|/¢r< @} by definition whereg is the probabilistic variable for.
The desired probability then equals that of a cositjmm space pointg, @) to

obey the inequality¢@ <@ < ¢@, i. e.:
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+oo Pnax
F(g)= | dlﬂz[ | P(wl,wz)dm]—
0 Bnin

Phnax| @ Prax —~Gin | § A (4)
= [ dge| [ P@rwdys|- | dgo | Py ddy |

0 Py 0 @i

As the first integral with the PDF normalizationagual to unity, relation (4)

yields:
Brax | § ~@in | ¢
F@)=1- [ @@ )dpo- [ @@ 29)dp,=1-F. -F,
0 0
Pnax 2
whereay.,¢)= | Py 2)dy: and ey g)= | PELw2)dy:.
Py @nin

The last equality is differentiated over the valeal to obtain the PDF of the
quotient 1 = |g|/@. Use the below formula for differentiating the dgtal

dependent on some parameter:

ﬂ(Y) ﬂ(Y)
5 | roeae [ 2o i) L - tempn @l ()
Y o) ay dy

Then

OF, _ 9 [#/¢ w92, 9)
= d —=22 22 dy ,,
7 M{jq(wmw} £ 0p W2

oF_ _ d ~hin | ¢ __Wnin/¢a%(w2’¢)
w—%{ { ¢2(l//2,¢)d1//2}— J(.) lel/z-

Formula (5) is applied to get integrals in thedatiens:
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0@(‘/’2,@__ p d OPWy2) ., Omax .
o a¢¢£ (Y1 2)dys = ¢L—0¢ =3, (@rmaxt D=
a(g’;’” P2 2) =W PG 20 2)
02W28) . 0 N by = P<w1w2> L 20Cow) o _
I ¢j (W) W{ 2 TCPY2UD
am;;n P(hin,2) =~ 2P(—@W 2,40 2).

Hence it follows that the desired PDF of the quutieis equal to:

Wnax/¢ _an/¢
PU@)= | woP@wao)dypa+ [ @ Py ) - (6)
0 0

The correspondence of the varialgleto the scalac and of g to its gradient
norm|O¢ consistent with the joint PDP(/,W) is now introduced in formula (6)

to have the following expression for the scalagtarscale PDF:

NI Y 3 i 19
PU#)= | WP@WI/NBWXW+ [ WP(-pwW /3w W, (7)

0 0

whereg is the probabilistic variable for the scale

Thus, if the joint PDF of the scalar and its gratlieorm or the closed equation
for this PDH13-14] is known, then the scalar length scale R®Found by
relation (7) or by deriving and solving the relevaransfer equation for the
desired function.

Knowledge of this function also allows the typiealeraged scalar length and

time scales to be determined by these relations:
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P’ (¢)dp, re="2[ 9% ()dg .
0

It is worth noting that formula (7) is valid for aarbitrary scalar that not
necessarily possesses the property of considemesened scalar. For further
studies, in the premixed reacting flows, a progressable can be chosen as a

scalar, and its equation contains chemical teras [3
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