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Abstract 

 This article solves the problem of variation of fundamental physical-mathematical 

constant (the fine-structure constant) in dependence of the age of the Universe. This 

problem has been named by as one of the MILLENNIUM PROBLEMS. The 

mathematical model of the evolution of the Universe (starting since the “Bing Bang”) 

called Fibonacci special theory of relativity, underlies this study. 

Key words: Einstein’s special theory of relativity, Einstein’s postulates, relativistic 

effects, Lorenz transformations, Fibonacci special theory of relativity, the main postulate 

of the Fibonacci special theory of relativity, Millennia Problems, fine-structure constant, 

Hyperbolic Fibonacci functions, the «golden” matrix, bifurcation points,  material 

universe, dark and light ages, black hole,   

 

Introduction 

 In 1900 the prominent mathematician David Hilbert presented twenty-three 

Mathematical Problems at the International Congress of Mathematicians in Paris [1] (see 

also [2],[3]). 

 Modern mathematicians decided to continue the great tradition of David Hilbert. 

In May 2000, by emulating to Hilbert, the Clay Mathematics Institute of Cambridge 

announced (in Paris, for full effect) the seven "Millennium Prize Problems," each with a 

bounty of $1 million [4]. 
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 Modern physicists have decided not lag from mathematicians. They have 

formulated 10 Physics Problems for the Next Millennium [5]. These physical Millennium 

Problems have been presented at the Strings 2000 Conference (July, 10-15, University 

Michigan, Ann Arbor). All participants of the Conference were invited to formulate the 

ten most important unsolved problems in fundamental physics. Each participant was 

allowed to submit one candidate problem for consideration. To qualify, the problem must 

not only have been important but also well-defined and stated in a clear way. 

 The best 10 problems were selected at the end of the conference by a selection 

panel consisting of: 

• Michael Duff (University of Michigan) 

• David Gross (Institute for Theoretical Physics, Santa Barbara) 

• Edward Witten (Caltech & Institute for Advanced Studies) 

 These physical problems are striking our imagination and therefore are called 

Millennium Madness [5].  

 The first physical MILLENNIUM PROBLEM, formulated by the prominent 

physicist, Nobel Prize Laureate in Physics-2004 David Gross (University of California, 

Santa Barbara), sounds as follows:   

 “Are all the (measurable) dimensionless parameters that characterize the 

physical universe calculable in principle or are some merely determined by historical or 

quantum mechanical accident and ncalculable?” 

 Let us analyze David Gross' formulation of the Physics MILLENNIUM 

PROBLEM: 

1) First question is the following: what are “(measurable) dimensionless parameters 

that characterize the physical universe”?   

2) The second question concerns the essence of this MILLENNIUM PROBLEM: are 

these “dimensionless parameters … calculable in principle” or are they incalculable (or 
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non calculable) and “are some merely determined by historical or quantum mechanical 

accident?”    

 By answering the first question, we immediately arrive at the main dimensionless 

constant, which is widely known in physics under the name of the fine-structure constant 

α.  

 As is highlighted in the Wikipedia article [6], “in physics, the fine-structure 

constant, also known as Sommerfeld's constant, commonly denoted α (the Greek letter α), 

is a fundamental physical constant characterizing the strength of the electromagnetic 

interaction between elementary charged particles. It is related to the elementary charge 

(the electromagnetic coupling constant) e, which characterizes the strength of the 

coupling of an elementary charged particle with the electromagnetic field, by the formula 

4πε0ħcα=e
2
. Being a dimensionless quantity, it has the same numerical value in all 

systems of units. Arnold Sommerfeld introduced the fine-structure constant in 1916.” 

 Note that the physical significances of all symbols appearing in the formula 

4πε0ħcα =e
2 are the following: ε0 is electric constant; ħ is Dirac’s constant; с =const 

[
sec

m
] is the speed of light in vacuum; e is elementary charge . 

 Thus, we can narrow down the problem, formulated by David Gross, as applied to 

the fine-structure constant, as following: 

 “Is the fine-structure constant, which characterizes the physical universe, 

calculable or non calculable?”  

 It should be noted that the essence of the MILLENNIIA PROBLEM, formulated 

by David Gross, in our definition does not changing. We just focus our attention on the 

main dimensionless constant of the physical world, the fine-structure constant. 

 From such modification of Gross’s MILLENNIIA PROBLEM the following 

question arises: is the problem of the fine-structure constant a purely physical (non 

calculable) or physical-mathematical (calculable) problem? 
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 In the present article, we attempt to consider the problem of the fine-structure 

constant as the physical-mathematical problem. This means that we consider fine-

structure constant first of all as the physical problem. However, we are solving this 

problem by using mathematical method. To model this problem, we use a special 

mathematical theory, the so-called Fibonacci special theory of relativity [7]. The 

Mathematics of Harmony [8] and the “golden” matrices [9], introduced by Alexey 

Stakhov, underlie the Fibonacci special theory of relativity.  

 This article solves the problem of variation of the fine-structure constant in 

dependence of the age of the Universe, starting since the Big Bang. We have derived the 

formula for the fine-structure constant, which makes it possible to calculate the values of 

this constant for all stages of evolution of the Universe starting since the Big Bang (the 

Dark Ages, the Light Ages (the positive arrow of time) and the Black Hole (the negative 

arrow of time)).  

 Comparison of theoretical calculations and experimental astronomical 

observations shows a very high accuracy of coincidence of theoretical calculations and 

experimental data.  

 These results give the authors the right to argue that they obtained the original 

solution of the Physics MILLENNIA PROBLEM, formulated by David Gross, in terms 

of the fine-structure constant as the most important dimensionless constant of physical 

world.   

 

1. Classical special theory of relativity 

1.1. Lorentz transformations and classical special theory of relativity      

 The model of four-dimensional space-time, based on the transformation by 

Hendrik Antoon Lorentz, was used by Albert Einstein in 1905 [10] for the creation of the 

special theory of relativity (STR). 

 The mathematical apparatus for transformations of coordinates and time between 

different frames of reference (for the purpose of conservation of the electromagnetic field 

equations) has been formulated previously by the French mathematician Henri Poincare. 
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He offered to call them Lorentz transformations, although Lorenz has presented before 

only approximate formulas [11]. 

 The main difference between Poincaré and Einstein’s approaches, disguised as 

resemblance of their mathematical models, is the fact that both scientists interpreted 

differently the deep physical (and not only mathematical) nature of these models. All new 

effects, interpreted by Poincare as dynamic properties of ether, are interpreted in 

Einstein's theory of relativity as objective properties of space and time, they have been 

moved by Einstein from dynamics to kinematics. For more detailed about this, see the 

articles [7,11-18], and the articles "The special theory of relativity" and "Poincare, 

Henri" in Wikipedia, the free encyclopedia ( https://ru.wikipedia.org ) 

 This theory meant a revision of all concepts of classical physics. In today's 

presentation, the classical special theory of relativity (STR), is given by the system of two 

matrix transformations [7, 10-13]: 
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  The first transformation in (1.1) is called the Lorentz transformation for the speed of 

the light source, the second transformation is called the Lorentz transformation to hyperbolic 

rotation angle θ . 

 Here the symbols have the following significances. 

1).  с =const [
sec

m
] is the speed of light in vacuum . 

2). [sec]t  is a time, ct [m] is time coordinate, [ ]x m  is a length, [ ]y m is width, [ ]z m  is a height. 

3). 
c

ν
ν =  is a normalized Lorentzian speed of the light source (dimensionless), 1<v <⇔ v c . 

4). [ ]
sec

m
v  is a Lorentzian speed of the light source (the speed of uniform motion of the 

light source along the axis x).   

5). θ ( +∞<<∞− θ ) is a hyperbolic rotation angle (dimensionless). 
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 6). ( )
2

e e
sh

θ −θ−
θ = is a hyperbolic sine, ( )
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 Because the conjugated matrices in (1.1) coincide, the following relationships 

follow from this fact: 
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 Einstein proposed two postulates as the starting points of the special theory of 

relativity. 

 

1.2. Einstein's postulates 

1. The principle of relativity indicates the invariance of the laws of nature and the 

equations, which describe them, at the transition from one inertial system to another. That 

is, all inertial reference systems (IRS) are indistinguishable in their properties, and 

therefore no one of them cannot be selected as the preferred. 

2. The principle of the independence of light speed from the light source claims that the 

light velocity c in vacuum is the same in all directions and is not dependent on the speed v 

of the movement of the light source. This implies that the light speed in vacuum must be 

limited and the same in all inertial reference systems.  

 Figure 1.1 presents the graph of the function )(θth
c

v
v == .  
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Figure 1.1. The graph of the normalized speed of the light source )(
)(

)( θ
θ

θ th
c

v
v ==  

(the black curve), lim ( ) 1v
θ

θ
→±∞

= ± are the limit values of the normalized speed of the light 

source (the dashed lines). 

 Adding to the spatial coordinates (x, y, z) the time coordinate ct m   , we obtain 

the four-dimensional space-time ( )4 , , ,D ct x y z= . We supply the space ( )4 , , ,D ct x y z=  

with the alternating Minkowski metric, where dl  is the element of arc length.  

2 2 2 2 2

( ) [ ( )] ( ) ( ) ( )dl d ct dx dy dz= − − −    (1.3) 

 Minkowski metric (1.3) has the remarkable property of invariance relatively to the 

Lorentz transformation (1.1), that is   

2 2 2 2 2

( ) [ ( )] ( ) ( ) ( )dl d ct dx dy dz= − − − =
2 2 2 2

[ ( ')] ( ') ( ') ( ')d ct dx dy dz− − − . 

 A number of well-known consequences of special theory of relativity (STR), the 

STR relativistic effects for moving light sources, compared with a stationary observer 

[11] follows from the invariance of the Minkowski metric relatively Lorentz 

transformations. 

 

1.3. Relativistic effects of the classical special theory of relativity 

1). Time dilation of the moving light source (a time of the light source flows slowly 

compared to the stationary light source). 

2). Shortening the length of the moving light source (the length of a moving light source 

is less than the length of the fixed light source). 

3). Increasing the mass of the moving light source (the mass of the moving light source is 

greater than the mass of the fixed light source). 

4). Increasing the energy of the moving light source (the energy of the moving light 

source more than the energy of stationary light source) 

 

2. Fibonacci special theory of relativity 

2.1. Hyperbolic Fibonacci functions and the «golden” matrix     
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 In [7,12,13,17,18] we have replaced the classical Lorentz transformations (1.1) of 

special theory of relativity on the Fibonacci-Lorentz transformations, which led us to the 

Fibonacci special theory of relativity. 

 The concepts of the hyperbolic Fibonacci functions and the "golden” matrices, 

introduced by Alexey Stakhov and Boris Rozin [9,19,20], are the sources for the creation 

of the Fibonacci special theory of relativity (FSTR). Recall these concepts. 
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The basic relation: 
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2.2. Fibonacci-Lorenz transformations and Fibonacci special theory of relativity 

 Fibonacci special theory of relativity, set forth in [7,12,13,17,18] is based on the 

following Fibonacci-Lorentz transformations: 

 

00 2 2

2 2

1 1 0 0 '
( )

1 1

1( ) 0 0 '
1 1

'0 0 1 0
'0 0 0 1

( ) ( )

( ) ( )

v
c tc t

c

v
cx x

y y
z z

v v

v v

ψ

ψ

                                   
    
                      

− −

= •
− −

, 

0 0 '( 1) ( 2) 0 0

'( ) ( 1) 0 0

'0 0 1 0

'0 0 0 1

c t c tcF sF

x xsF cF

y y

z z

ψ ψ
ψ ψ

    
    
    
    
        

    

− −

−
= •  (2.3)   

 



 9 

2.3. The main postulate of the Fibonacci special theory of relativity  

 For the Fibonacci special theory of relativity, the velocity of light in vacuum is not 

constant, but is determined by the function 0( ) [ ]
sec

m
c c cψ= • . The postulate on variability of the 

light speed "c" in a vacuum is consistent with information, gathered by the astronomer John 

Webb (www.vokrugsveta.ru/telegraph/cosmos/1298).  

  He found that the light, which is coming to us from the observed Universe, obeys to the 

principle of non-decreasing of entropy; this means, that for this case the Second Law of 

Thermodynamics has been saved and therefore the light speed "c" should decrease with increasing 

of the Universe age. James Franson's article [21] supports this conclusion. 

 

2.4. The significances of symbols for the Fibonacci special theory of relativity 

 

1). The dimensionless parameter ψ  means the angle of the Fibonacci rotation (or 

according to another terminology [17], the parameter ψ  is called the parameter of self-

organization). We will use in our article both the first and second definitions. 

2). 0

*c
c =

Φ sec

m 
 
 

=const means the normalized Lorentzian speed of light in vacuum. Here  

*c
sec

m 
 
 

=const is the speed of light in vacuum for the case of the classical special theory 

of relativity. For the modern period it is accepted the following value for *c :  

*c ≈2.99 792 458• 108

sec

m 
 
 

. 

The value of 
0

c  does not depend on the speed movement of the light source or the 

observer, and is the same for all inertial reference systems. For the modern period we 

have:  

0

*c
c =

Φ
≈1.85 281 990 • 108 

sec

m 
 
 

. 
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3). The dimensionless parameter )(ψc =
( )
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what it is required to prove. 

 

2.5. Properties of the normalized Fibonacci light speed 

 For the normalized Fibonacci speed of light in vacuum )(ψc =
( )
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ψ −

 the following 

properties are fulfilled:  

1). For the values }0{ <<−∞ ψ we have ( ) 0, ( 2) 0,sF sFψ ψ< − <  but for the values 

}2{ +∞<<ψ  we have .( ) 0, ( 2) 0sF sFψ ψ> − >  Therefore, when 

}2{}0{ +∞<<<<−∞ ψψ ∪  we get, that 
( )

0
( 2)

sF

sF

ψ

ψ
>

−
, and, therefore, ( )

( 2)
( ) 0

sF

sF
c

ψ

ψ
ψ

−
= > .  

 For such values ψ  the following limit values are fulfilled:      
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Φ
=−∞=

1
)(ψc , )00( −=ψc =0 , +∞=+= )02(ψc , Φ=+∞= )(ψc .  (2.4) 

Hence, we obtain the following limit values for the Fibonacci light speed in vacuum: 
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 2). For the values }20{ <<ψ  we have: ( ) 0, ( 2) 0.sF sFψ ψ> − <  Therefore for the case 

}20{ <<ψ  we have: 
( )

0
( 2)
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. But then )(ψc = ψ(ci • , where the absolute value  
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 For such values of ψ  for the case of the absolute values )(ψc  the following limit 

values are fulfilled: 

+∞=−==+= )02(,0)00( ψψ cc .  (2.6) 

3). The values 0=ψ  and 2=ψ  correspond bifurcation points (see Fig. 2.1). 

4 2 2 4

0.5

1.0

1.5

2.0

2.5

3.0

3.5

 

Figure 2.1. The graph 0)( >ψc  for the case }2{}0{ +∞<<<<−∞ ψψ ∪   

(the black curve). 

 

2.6. Identical types of symbols for Fibonacci special theory of relativity 

1). The normalized Fibonacci light speed in vacuum 
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−
 are derived 

directly from the equality of the conjugating matrices in (2.3). 

 Then we get: 
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  From here, we get for )(ψc  the following identical form: 

)(ψc =
2

1( 1)

( 2)

[ ]cF

sF

ψ

ψ

−−

−
.    (2.8) 

3). From the relations  

( )
2

( 1),
1

1

cF

v

ψ= −

− ( )
2

1
( ) ( 2) ( )

( )
1

c sF sF
c

v

v

ψ ψ ψ
ψ

= • − = •

−

, )(ψc =
( )

( 2)

sF

sF

ψ
ψ −

 

we get the identical form for )(ψv  as follows: 

 3.1) .

( )

2

2

( 2)

( )

( 2) [ ]1
( ) ( )

( )( )
1

sF

sF

sF sF
sF sF

sFc

v

v

ψ

ψ

ψψ ψ
ψ ψ

ψ ψψ

−
•

−
= • = • =

−

 = 

  =
ψ

ψ
( 2) ( )sF sFψ ψ− • =

ψ

ψ
•

2

1( 1)[ ]cF ψ −− . 

 3.2). 

( )
2

( )
( ) ( 2) ( 2)

( 2)
1

sFv
c sF sF

sF
v

ψ
ψ ψ ψ

ψ
= • − = • − =

−
−

ψ

ψ 2
( ) ( 2)

( 2)

sF sF

sF

ψ ψ

ψ

 
 −

=
−
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                    =
ψ

ψ
( ) ( 2)sF sFψ ψ• − =

ψ

ψ
•  

2
1( 1)[ ]cF ψ −− . 

 3.3) . ( )

( )

2

2

1

1

1

v

v

v

−

−

= =v

2
1

( 1)

( 1)[ ]
cF

cFψ

ψ ψ

ψ −
•

−

−
. 

 Hence, we get the following formula for the normalized Fibonacci speed of the 

source of light in vacuum: 

)(ψv =

2
1

( 1)

( 1)[ ]
cF

cFψ

ψ ψ

ψ −
•

−

−
    (2.9) 

 Using (2.3), we rewrite (2.9) as follows: 

( )
2

1
( 1),

1

cF

v

ψ= −

− ( )
2

( ) ( )

1

v
c sF

v

ψ ψ=

−

,  

( )
2

( ) ( )

1

sF
v

c

v

ψ ψ= =

−

)(ψc v • ( 1)cF ψ − . 

 Hence, for the Fibonacci normalized speed of the light source in vacuum we get 

the following formula:  

)(ψv = ( )1

( 1)( )

sF

cFc

ψ
ψψ

•
−

.    (2.10) 

3). Then the formula v = )(ψc 0c v•  is transformed as follows. Since     

v (ψ )= )(ψc 0c v• (ψ ) and 
( )1

( )
( 1)( )

sF
v

cFc

ψ
ψ

ψψ
= •

−
,   (2.10-a) 

then we have: 

v (ψ )= )(ψc 0c v• (ψ )= )(ψc 0c •  ( )1

( 1)( )

sF

cFc

ψ
ψψ

•
−

=
0

( )

( 1)

sF
c

cF

ψ
ψ

•
−

.  (2.10-b) 

 Hence, for the Fibonacci speed of light source in vacuum )(ψv , we get the 

following formula: 

v (ψ )= •с0 ( ) 0

( )

( 1)

sF
c

cF

ψ
ν ψ

ψ
= •

−
 .  (2.11) 

 Fig. 2.2 shows the graphs )(ψc  and )(ψv . 
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Figure 2.2 . The graph )(ψc (the black curves) and the graph )(ψv  (the dashed 

curves),where the parameter ψ  is in limits }2{}0{ +∞<<<<−∞ ψψ ∪ . The symbols      

and       correspond to the bifurcation points 0=ψ  and .2=ψ  

 

2.7. The physical interpretation of the mathematical model of the Fibonacci special 

theory of relativity 

 In this section, the authors used the works [7,12,13,17,18].  

2.7.1. Bifurcation Points,  Material Universe, Dark and Light Ages, Black Hole and 

Anti-matter. Let us interpret Fig.2.2 from physical point of view:  

 1). The point 0=ψ  is the first point of bifurcation and corresponds to the point of 

singularity, the "Big Bang." 

 2). The domain }0{ +∞<<ψ  (the right half of the graph in Fig. 5.2) corresponds 

to the Material Universe”; this domain is divided by the second bifurcation point ψ = 2   

into two sub-domains:  

  a1) the sub-domain }20{ <<ψ   or the Dark Ages, when there was nobody to 

illuminate the Universe.. In the sub-domain }20{ <<ψ  the normalized Fibonacci 

velocity of light in vacuum )(ψc  is an imaginary magnitude, although the Material 

Universe became to evolve and elementary particles began to be formed; 

 a2) the second point of bifurcation ψ =2 corresponds to the beginning of the 

transition from the Dark Ages to the Light Ages;  
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 а3) the sub-domain     }2{ +∞<<ψ  means Light Ages, when the first proto-stars 

lighted up and the Light Universe began to evolve up to the present day;  

 3).The domain   }0{ <<−∞ ψ    (the left half of the graph in Fig. 2.2) corresponds 

to the Black Hole, which consists from Anti-matter.  

2.7.2. Fibonacci-Lorentz transformations for the Dark Ages }20{ <<ψ . For this 

case we get, that 1=
ψ

ψ
 and 

2
1 0( 1)[ ]cF ψ − <− . Because for all values }20{ <<ψ   

the following non-equality is fulfilled: 
2

1 0( 1)[ ]cF ψ − <− , then for the Dark Ages the 

following properties are fulfilled: 

1). The normalized Fibonacci speed of light in vacuum 
2

( )
( 2)

1 [ ( 1)]
c i

sF

cF
ψ

ψ

ψ
= •

−

− −  is an 

 imaginary number, the normalized Fibonacci speed of light in vacuum   

0

2

( 2) sec

1 [ ( 1)]
( )

m

sF

cF
c i cψ

ψ
ψ

−  
• •  −  

−
=   

is an imaginary  number. 

2). The normalized Fibonacci speed of the light source in vacuum 

2

( )
( 1)

[1 ( 1)]
v i

cF

cF
ψ

ψ

ψ
= •

−

− −
 is an imaginary number, the Fibonacci speed of the light source 

in vacuum  v (ψ )=
0

( )

( 1) sec

sF m
c

cF

ψ
ψ

 
 
 

•
−

 is a real number. 

Table 2.1. Numerical characteristics )(ψc  and )(ψv  in dependence from the parameter of 

self-organization  ψ  for the range   }{ +∞<<−∞ ψ  

The 

dimensionless 

magnitudes 

The Black Hole (the negative 

arrow of time) 

}0{ <<−∞ ψ  

The Dark Ages }20{ <<ψ  
The Light Ages (the 

positive arrow of time) 

}2{ +∞<<ψ  

Parameter of 

self-

organization 

ψ  

∞−  -5 -1 0 0 0.5 1 1.5 2-0 2+0 3 ∞+  

The 

Normalized 

Fibonacci 

0.618 0.615 0.5 0 0 0.555 i•  1 i•  1.798 i•  i•∞  ∞+
 

2 1.618 
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speed of light 

vacuum        

)(ψc  

 The 

normalized 

Fibonacci 

speed of the  

light  source in 

vacuum )(ψv

-1 -0.992 -0.666 0 0 0.424 i•  0.5 i•  0.424 i•  0 0 0.666 1 

 

 Previously we have presented in Fig. 2.1 and 2.2 the graphs of the real 

dimensionless functions )(),( ψψ vc  as for the Black Hole { ∞− <ψ <0} and for the Light 

Ages {2<ψ < ∞+ }.  

 For the Dark Ages {0<ψ <2}, the functions )(),( ψψ vc  are imaginary and  has the 

following form  icc •= )()( ψψ , ivv •= )()( ψψ . That is why, the Fig, 2.3 and 2.4  

represent for the Dark Ages the graphs of the modules  ψ(c  and ψ(v , which are 

positive  dimensionless real functions. 

0.5 1.0 1.5 2.0

2

4

6
8

10

12

 

 Figure 2.3. The graph of the module ψ(c  in the range {0<ψ <2}. 
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0.5 1.0 1.5 2.0

0.1

0.2

0.3

0.4

0.5

 

Figure 2.4. The graph of the module )(ψv  on the interval {0<ψ <2}. 

 The further strategy of this article consists in the following. By using the 

mathematical model of the Fibonacci special theory of relativity, we will try to establish 

the interconnection between the dimensionless parameter of self-organization and the age 

of the Universe at any given time T  [ ]yearsmlrd.   starting since the Big Bang. 

 This will allow to interpret fully the above mathematical model of the evolution of 

the Universe  not only qualitatively  but also quantitatively as both for the positive arrow 

of time (T> 0), and for the negative arrow of time (T <0). 

 To solve this problem, we need to study the problem of dependence of the 

dimensionless constant (the fine structure constant) from the Universe age, starting since 

the Big Bang. 

 For example, for the present time, according to studies of the CMB, the Universe 

age is 13.81presentT billion years 
 =  (the data of WMAP for 2012 [22]) or more accurate 

value 13.81 0.06presentT billion years 
 = ±  (the data of PLANCK for 2013 [23]), and the 

value of the fine structure constant is equal to 0.0072973525376α = . 
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3. The fine-structure constant αααα and its relationship with the evolution 

of the Universe 

3.1. The fine-structure constant  

 The problem of the fine-structure constant is one of the 10 most important 

physical- mathematical problems, which are called Millennium Problems [5, 6, 24-29]. 

 According to astronomical observations, the constant α  for the Universe remains 

almost unchanged for many milliards of years after the Big Bang and ensures 

sustainable functioning of the Universe, and therefore this constant is named the genetic 

code of the Universe. 

 The numerical value of this dimensionless constant α is: 

2

02 с h

eα =
ε •

×== 2973525376.7
035999679.137

1
10-3 ,  (3.1) 

where ε0 is electric constant ; ħ is Dirac’s constant; с =const [
sec

m
] is the speed of light in  

vacuum;  e is elementary charge .  

 According to СODATA-2014 (http://www.codata.org), the recommended value 

of the fine-structure constant is equal:  

=α ×= 2973525664.7
035999139.137

1
10-3 . 

 Among these problems, the problem of the fine-structure constant is included by 

David Gross into his formulation of the First Physics MILLENNIA PROBLEM [5,6, 24-

29]. 

3.2. The significances of symbols for the fine-structure constant α  

 1). Electric constant (or in other terminology dielectric permeability of vacuum) 

0ε = 8.854187817620 ×10-12   
42

3
Kg

cA

m

 
 
 
 

•

•
,    (3.2) 

where А (amper) is an unit amperage (SI),   с=2.99 792 458 • 108

sec

m 
 
 

is an velocity of 

the light in vacuum.  

 2). Dirac’s constant (or in other terms, the reduced Planck's constant)  
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π2

h
h = =1.05 457 1628×10-34  [J • sec] ,     (3.3) 

where h=6.626068959046 ×10-34  [J • sec] is Planck's constant (or in other terms, the 

quantum of action),  J (Joule) is a unit of work, power and heat quantity (SI).  

 3). Elementary charge e. In quantum mechanics, the elementary charge is 

considered as a minimal portion (quantum) of electrical charge  

 е=1.6022176487×10-19  [Cal],    (3.4) 

where Cal is the off-system unit of heat amount in the system SI, 1 Cal = 4,1868 J  

    

3.3. Patrimony into discovery of the fine-structure constant 

 The fine-structure constant α is a fundamental physical constant, which 

characterizes the power of the electromagnetic interaction. It characterizes not separate 

physical bodies, but the physical properties of our world in the whole. 

 For the first time, the constant α has been described in 1916 by the German 

physicist Arnold Sommerfeld as a measure of the relativistic corrections in the 

description of atomic spectral lines of atoms in the model of the Danish physicist Niels 

Bohr. In other words, the fine-structure constant α describes the splitting of atomic levels 

on a few close sublevels (multiplets) due to the effects of special relativity. A similar 

statement about the constant α also belongs to the American physicist Richard Feynman. 

The more detailed information for the physical comprehension of α can be found in 

James Carter’s book [27]. 

   

 3.4. The hypotheses and experiments about variability of the fine structure 

constant, depending on the Universe age 

 Studying the question of whether is the fine structure constant really fundamental 

physical constant, that is, it always was unchanged or it possibly changed during the 

existence of the Universe, has a long history.  

 In 1995, the prominent Russian physicist Lev Landau predicted that this constant 

can vary depending on the time. However, such changes can not be very large, 

"otherwise they would have already "emerged "in relatively simple experiments." 

 In the late 1990s, new data from astronomical observations appeared. Astronomer 

John Webb and his colleagues  
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 http://www.phys.unsw.edu.au/~jkw/alpha/Welcome.html) found a tiny change in the 

wavelength of the light from the distant quasars. Simulation of quasars light showed that 

10 to 12 billion years ago, the value of the constant α  was greater than the current value.   

 More detailed observations of quasars, made in April 2004 by using the 8.2-meter 

telescope in Paranal Observatory in Chile, showed that over 10 billion years ago, the 

possible value of the constant α  could not be more than 76 10−×  of the present value of 

α . 

3.5. Sixth Hilbert’s Problem and recommendations to solving physical problems by 

means of harmony between the experience and thinking  

 It should be noted that already in 1900, David Hilbert in the speech 

"Mathematical problems" [1-3], made at the Second International Congress of 

Mathematicians in Paris  (August 8, 1900), has formulated the Sixth Problem  

“Mathematical treatment of the axioms of physics”. 

 In the Sixth Problem he drew attention not only on the study of the physical 

phenomena and constants by using experiments, but also on the creation of rigorous 

mathematical theories, which are directed on solving of physical problems, by using the 

"realm of pure thought." 

 In the Sixth Problem, David Hilbert put forward for mathematicians the following 

problem:  

 «The investigations on the foundations of geometry suggest the problem: To treat 

in the same manner, by means of axioms, those physical sciences in which mathematics 

plays an important part»  

  In the Sixth Problem Hilbert says:  

 « Further, the mathematician has the duty to test exactly in each instance whether 

the new axioms are compatible with the previous ones. The physicist, as his theories 

develop, often finds himself forced by the results of his experiments to make new 

hypotheses, while he depends, with respect to the compatibility of the new hypotheses 

with the old axioms, solely upon these experiments or upon a certain physical intuition, a 

practice which in the rigorously logical building up of a theory is not admissible. The 

desired proof of the compatibility of all assumptions seems to me also of importance, 
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because the effort to obtain such proof always forces us most effectually to an exact 

formulation of the axioms. 

 The physicist, as his theories develop, often finds himself forced by the results of 

his experiments to make new hypotheses, while he depends, with respect to the 

compatibility of the new hypotheses with the old axioms, solely upon these experiments or 

upon a certain physical intuition, a practice which in the rigorously logical building up 

of a theory is not admissible….» 

 In the Introductory part of his report, Hilbert says : 

 «But, in the further development of a branch of mathematics, the human mind, 

encouraged by the success of its solutions, becomes conscious of its independence. It 

evolves from itself alone, often without appreciable influence from without, by means of 

logical combination, generalization, specialization, by separating and collecting ideas in 

fortunate ways, new and fruitful problems, and appears then itself as the real 

questioner... In the meantime, while the creative power of pure reason is at work, the 

outer world again comes into play, forces upon us new questions from actual experience, 

opens up new branches of mathematics, and while we seek to conquer these new fields of 

knowledge for the realm of pure thought, we often find the answers to old unsolved 

problems and thus at the same time advance most successfully the old theories. And it 

seems to me that the numerous and surprising analogies and that apparently prearranged 

harmony which the mathematician so often perceives in the questions, methods and ideas 

of the various branches of his science, have their origin in this ever-recurring interplay 

between thought and experience.» 

 Thus, a priori, even Hilbert himself points out that the Sixth Problem is too vague 

and virtually impracticable and, therefore, a mathematical statement of the axioms of 

physics is inherently unsound. That is why, Hilbert's Sixth Problem “Mathematical 

treatment of the axioms of physics” hadn't attracted for attention of mathematicians. 

 However, the importance of Hilbert's Sixth Problem is the fact that Hilbert 

suggests to solve physical problem by constructing special mathematical theory. That is, 

Hilbert's Sixth Problem is physical, but its solution is considered as a mathematical. 
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3.6. Formula by Nikolai Kosinov on the interconnection of three major 

dimensionless constants: the fine structure constant αααα , the number ππππ  and the 

golden ratio ΦΦΦΦ  

 The works by the Ukrainian physicist Nikolai Kosinov [24],[28], [29] became an 

important breakthrough in the "understanding of geometrical status of the fine-structure 

constant, and also that all dimensionless parameters, which characterize the micro world 

and universe, are calculable in principle." 

 In 2000, Nikolai Kosinov [24] found a simple and beautiful relationship linking 

dimensionless constants: the fine structure constant α , the number of π  and the golden 

ratio 
2

51 +
=Φ . This formula looks as follows: 

43 1 7

20 260 13010α π
−

= × ×Φ .     (3.5) 

 The new calculated value of the fine-structure constant was obtained in [24] on 

the basis of formula (3.5): 

=α 251997377362973519973.7 × 10-3  .       (3.6) 

 Since 2014, the recommended SODATA (http://www.codata.org) value of the 

fine-structure constant is as follows 

=α ×= 2973525664.7
035999139.137

1
10-3    (dimensionless). 

 Thus, the absolute error α∆  between the true and estimated values  of α  is equal 

to:  

10

3 37.2973525664 10 7.2973519973 10

5.691 10 0.0000000005691

α

−

− −∆ = × − ×

= × =

.   (3.7)  

 The relative error 
α

α∆
 in this case, equal to: 

10
8

3

5.691 10
7.779872 10 0.0000000779872

7.2973525376 10

α
α

−
−

−

∆ ×
= = × =

×
,  (3.8)  

that is, Kosinov’s formula [24] actually coincides with the recommended CODATA  

value of the fine-structure constant. 
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 3.7. Postulate of the dependence of the fine-structure constant from the 

Universe age for the mathematical model of the Fibonacci special theory of relativity 

 The presence in the formula (3.5) of the golden ratio, which is known to be the 

indicator of  mathematical harmony, starting with the ancient Greeks, led the authors of 

the present article to the usage of the Fibonacci special theory of relativity, based on the 

golden ratio, for the theoretical study of the variations of the fine-structure constant 

depending on the time evolution of the Universe age up to the present time Тpresent =13.75 

± 0,13 [billion years] according to the data of WMAP [22] or according to the specified 

data of PLANCK [23] Тpresent = 13.81 06.0±  [billion years ], starting since Big Bang.  

 To this end, we introduce into consideration the following postulate: 

 The fine structure constant α depends on the time T [billion years], counted from 

the moment of the "Big Bang" (T = 0) for Dark and Light Ages (T> 0), and for the "Black 

Hole" (T <0) by the formula:  

( )
743 1

13020 26010 сα
−

= ×π × ψ ,  
0

Tψ λ= • .   (3.9)  

 

3.8. Significances of symbols in formula for the fine-structure constant, depending 

on the age of the Universe 

  1). Т  [billion years] is the time counted from the moment of the Big Bang. 

 2). 0

1
0const

billion years

 
= 

  
λ >  is a weight coefficient.        

 3). )(ψc =
( )

2
1 1( )

( 2) ( 2)

cFsF

sF sF

ψψ

ψ ψ

− −  
=

− −
 (dimensionless) is the normalized 

Fibonacci speed of light in vacuum, )(ψc  is the module of the normalized Fibonacci 

speed of light in vacuum, ψ is a parameter of self-organization.  

 Note that )(ψc = )(ψc  for the range }2{}0{ +∞<<<<−∞ ψψ ∪ , and 

)(ψc = •i )(ψc  for the range }20{ <<ψ , where 1−=i  is imaginary unit. The values 

0=ψ  and 2=ψ  are the bifurcation values for )(ψc . For ψ  and )(ψc  we have the 

following restrictions:  
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{ }2 +∞<<ψ (the Light Ages) for the range { })( +∞<<Φ ψc  , 

}20{ <<ψ  (the Dark Ages) for the range })(0{ +∞<< ψc , 

}0{ <<−∞ ψ  (the Black Hole) for the range 
1

{0 ( ) }c ψ −
< < Φ . 

 4). 
2

( ) ( ln )
5 5

x x

sF x sh x
−

−
= = • ΦΦ Φ (dimensionless) is the hyperbolic 

Fibonacci sine, 
2

( ) ( ln )
5 5

x x

cF x ch x
−

+
= = • ΦΦ Φ (dimensionless) is the hyperbolic 

Fibonacci cosine.  

 5). 61803.1
2

51
≈

+
=Φ  (dimensionless) is the golden ratio.     

3.9. The procedure for finding the numerical values of the weighting factor in the postulate 

of the dependence of the fine-structure constant from the Universe age 

1).  Experimentally as a result of astronomical observations, or other experience we find 

for the Light Ages the supporting experiment for the case ( )0 00,T > α > 0 , where 

0 0T billion years 
  >  is the fixed value of the time T , measured from the moment of the 

Big Bang and 
0

α > 0  is the value of the fine-structure constant in the moment of time 

0
T .  

2). From the formula (3.9) for the case 
0

α > 0 , we calculate the corresponding value of 

the  normalized Fibonacci speed of light in vacuum:  

1559 13014 7
0 0 0

39 1307
0 .

( ) ( )

7.817371000127518 10

10c cψ ψ α

α

π
−

== • • =

• •
    (3.10) 

Here the following inequality is fulfilled: 

0{ ( ) }c ψΦ < < +∞ , 

because, by hypothesis, the experiment should be conducted for the Light Ages of the 

Universe ( )2 < ψ < +∞ , when our Universe begun to be illuminated by stars.   
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3). From the formulas (3.9) and (3.10) for the case 
0

( )c ψ , we calculate the 

corresponding value of the parameter of self-organization 
0

ψ  by the formula:  

0

0

0

2
2

2
2

1
0.5

1

( )
log

( )

c

c

ψ

ψ

ψ
−

Φ

  
  
  
  
      

− •
= •

− •

Φ

Φ

    (3.11) 

 The value 
0

2ψ > , because the Light Ages, for which the supporting experiment 

should be carried out, according to the mathematical model of the Fibonacci special 

theory of relativity, corresponds to the range { 2 ψ< < +∞ }. 

 4). For the cases 0 0T >  and 
0

2ψ > , we calculate the unknown value of the weighting 

factor λ 0  by the formula:  

0
0

0

1

T billion years

ψ
λ

 
 
  

=     (3.12) 

3.10. Temporary restrictions of the different periods of the Universe existence 

following from the supporting experiment 

 From the formula (3.12) for any value of T in the range +∞<<∞− Т , we get  

corresponding to the value of self-organization parameter ψ  by the formula: 

0 Tψ λ= • (dimensionless)    (3.13) 

Conversely, for any value of the parameter of self-organization +∞<<∞− ψ , we get 

the corresponding value of the time +∞<<∞− Т  by the formula: 

0

1
T ψ

λ
= •  [ ]billion years .    (3.14) 

 Hence, for the Fibonacci special theory of relativity, we get the following time 

intervals Т [ ]billion years  for the different periods of the Universe existence: 

1) For the Light Ages {2< +∞<ψ } we get: 
0

2
T

λ

  
 
  

< < +∞ . 

2) For the Dark Ages {0< 2<ψ } we get: 
0

2
0 T

λ

  
 
  

< < . 

3) For the Black Hole { ∞− < 0<ψ } we get: { 0<<∞− Т }. 
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4) For the bifurcation point 0=ψ (Big Bang as the transition from the Dark Ages to 

the Black Hole) we get: 0=T . 

5) For the bifurcation point 2=ψ  (the transition from the Dark Ages to the Light 

Ages) we get: 
0

2
T

λ
= . 

3.11. A quantitative description of the Universe time evolution based on the 

supporting experiment 

 We recall the basic formulas, which describe the evolution of the Universe based 

on the Fibonacci special theory of relativity, depending on the parameter of self-

organization ψ , { ∞− < +∞<ψ }. These formulas look as follows:  

( ) ( )

0

743 1
813020 260

0 0

( 1) 1( )
( ) , ( ) ( ) , ( ) ,

( 2) sec ( 1)

( ) *
, ( ) 10 , 1.85281990 10

( 1) sec sec

cFsF m
c c c c v

sF cF

sF m c m
v c c c

cF

ψψψ
ψ ψ ψ ψ

ψ ψ ψ

ψ
ψ α ψ ψ

ψ

−

     
   


    
    
    

− −
= = • = •

− −

= • = ×π × = ≈ •
− Φ

 (3.15) 

 The following procedure is a quantitative description of the Universe time 

evolution  on the basis of the supporting  experiment:  

1).  For the Light Ages we carry out the supporting experiment ( )0 00, 0T α> > . 

2). We calculate the positive supporting numerical coefficient by the formula 

0
0

0

1

T billion years

ψ
λ

 
 
  

= .  

3). We postulate that for any T in the range { ∞− < +∞<T } the following relation is 

valid: 0 Tψ λ= • . 

4). For any T in the range { ∞− < +∞<T }, the values 0 Tψ λ= •  are substituted into the 

relation (3.15), as the result we get for the Fibonacci special theory of relativity the 

following formulas, which give not only the complete qualitative, but also quantitative 

information on the Universe evolution:  
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( ) ( )

0
0

0 0

0

0

0

743 1
13020 260

0

8
0

( 1) 1( )
( ) , ( ) ( ) , ( ) ,

( 2) sec ( 1)

( )
, ( ) 10 ,

( 1) sec

*
1.85281990 10
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TT

T T

T

T

cFTsF m
c c T c c T v T

sF T cF

sF m
v T c T c

cF

c m
c

λλ
ψ

λ λ

λ
α Τ

λ

−

     
 
 

  
   


 
 
 

− −
= = • = •

− −

= • = ×π ×
−

= ≈ •
Φ

 (3.16) 

 

3.12. Limit values of the fine-structure constant for the Light Ages, the Dark Ages, 

and the Black Hole 

 It follows from the formulas (3.12) and (3.13) that even in the absence of the 

supporting experiments for the Light Ages { +∞<<ψ2 } and the Black Hole 

}0{ <<−∞ ψ  we have the following limit relations, respectively: 

Φ==
+∞→+∞→

)(lim))((lim ψψ
ψ

cTc
T

,  1lim ( ( )) lim ( )
T

c T c
ψ

ψ ψ −

→−∞→−∞
= = Φ . (3.17) 

 These arguments lead us to the following conclusions: 

 1). For the Light Ages { +∞<<ψ2 } (the positive arrow of time), the function 

( )
( ( )

( 2)

sF
c c

sF

ψ
ψ ψ

ψ
= =

−
 at changing of ψ  from 2 to + ∞  decreases monotonically from 

)2( =ψc = ∞+ to  )( +∞=ψc  = Φ  .Consequently, the number of )(+∞c  = Φ  is the lower 

bound of the c (ψ ) in the range { +∞<<ψ2 }.   

 But then, according to (3.9), the fine-structure constant 

( )
743 1

13020 260( ) 10 cα ψ π ψ
−

= × ×  at changing of ψ  from 2 to + ∞  decreases 

monotonically from the value  

( )
7

130

743 1 43 1
13020 260 20 260 ( )( 2) 10 2 10cα ψ π π

− −
= = +∞+∞= = × × ψ = × ×  

to the value 

( )
743 1 43 1 7

13020 260 20 260 130( ) 10 10 0.007297351997377362cα ψ
− −

== +∞ = π × ψ = +∞ = π ×Φ× ×
 

 Consequently, the lower bound of the fine-structure constant )(ψα  for the Light 

Ages is the number:  
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43 1 7
20 260 130( ) 10 0.007297351997377362α ψ

−
== +∞ = π ×Φ× , (3.18) 

what corresponds to Kosinov’s  formula (3.5).  

 Due to the limit relations (3.17), the lower bound of the fine-structure constant 

)(Tα  for the Light Ages, even for the absence of the supporting experiment, is equal to 

the number: 

+∞=T(α )=
43 1 7
20 260 13010 0.007297351997377362

−
=π ×Φ×   (3.19) 

 2). For the Black Hole { 0<<∞− ψ } at changing of ψ  from 0 to ∞−  (the 

negative arrow of time), the function c (ψ )= )(ψc =
( )

( 2)

sF

sF

ψ
ψ −

 increases monotonically 

from )0( =ψc =0 to )( −∞=ψc  = Φ -1   

 Consequently, the function  )(ψc  is (strictly) decreasing on the interval  (- )0,∞  

from the value Φ
−1

 to the value 0.   

But then, according to c (ψ )= )(ψc =
( )

( 2)

sF

sF

ψ
ψ −

, the fine-structure constant (3.9) at 

changing of ψ from 0 to - ∞  increases monotonically from the value  

7
130

743 1 43 1
13020 260 20 260 0 0( 0) 10 0 10cα ψ ψ 

 
 

− −
× == = ×π × = = ×π  

to the value 

( )

( )
7

1 130

743 1
13020 260

43 1
20 260 .0.0069288144971348135..

( ) 10

10

cα ψ ψ

−

−

−
× Φ =

= −∞ = ×π × = −∞ =

×π

 

 Due to the limit relations (3.17), the upper bound of the fine-structure constant 

)(Tα for the Black Hole, even without the supporting experiment, at changing of T  

from 0 to ∞− , is the number: 

( )
7

1 130
43 1
20 260 .0.0069288144971348135..( ) 10Tα −

−
× Φ == −∞ = ×π  (3.20) 
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 3). For the Dark Ages { 20 <<ψ }, the normalized Fibonacci velocity of light in 

vacuum ( ) ( )c i cψ ψ= • , that is, c (ψ ) is imaginary quantity. In order to find the values 

of the fine-structure constant, we use the formula (3.9):  

( )
743 1

13020 26010 сα
−

= ×π × ψ , 

where instead c (ψ ) we take the module )(ψc , then at the interval { 20 <<ψ } the fine 

structure constant =α α (ψ ) takes the real values. The limit values for α (ψ ) are the 

following: 

( )
743 1 43 1 7

13020 260 20 260 130 ,( 0) 10 0 10 0 0сα ψ ψ
− −

= = ×π × = = ×π × =  

( ) ( )
743 1 43 1 7

13020 260 20 260 130 ,( 2) 10 2 10сα ψ ψ
− −

+∞ +∞= = ×π × = = ×π × =  

 The fine-structure constant α (ψ ) at the interval { 20 <<ψ } at increasing of ψ  

is a monotonically increasing function from the value α (ψ = 0 )=0 to α (ψ =2)=+ ∞ . 

With regard to the limits of the fine-structure constant α  for the Dark Ages, starting 

since the moment of the Big Bang, for which T=0, then the first limit value for T=0 does 

not depend on the supporting experiment ( ( )0 00, 0T α> >  and is equal to )0( =Тα =0 

 As for the other limit value α (ψ =2)=+ ∞ , then the value of the time 

( )2T T ψ∗ = =  depends on the reliability of the supporting experiment. As the supporting 

experiment should be carried out for the Light Ages and by this experiment, the values 

( )0 00, 0T α> >  are determined, then from here the positive supporting numerical 

coefficient is given definitely by the formula: 0
0

0

.0
T

λ
ψ

= >   

 Next, we use the relation 
0 Tψ = λ •  for any values of ψ  and Т. From here, we get 

the formula 
0

T
ψ
λ

=  (see the formula (3.14)). But then the interval { 20 <<ψ } for the 

Dark Ages in terms of the time T [billion years] is given by 
0

2
0 T

λ

  
 
  

< < , that is, it 
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depends from the supporting experiment. For the endpoints 0=ψ , 2=ψ , which are 

bifurcation points, we get Т( 0=ψ )=0 [billion years] and ( )
0

2
2T ψ = =

λ
[billion years], 

respectively. 

3.13. Graphs, tables, and calculations 

3.13.1. Graphs . The  usage to this methodology for a quantitative description of the 

evolution of the universe for the model of the Fibonacci special theory of relativity on the 

basis of the given supporting experiment ( )0 0,T α , realized for the Light Ages { 2< 

ψ < ∞+ }, is based on the fact that when we change the parameter of self-organization ψ  

from 2 to + ∞ , the derivative 
ψ

ψα

d

d )(
<0 . Note also that for the Black Hole {2< ψ < ∞+ } 

the derivative 
ψ

ψα

d

d )(
<0.  For the Dark Ages the derivative 

ψ

ψα

d

d )(
>0.  

The derivation of the derivative 
ψ

α

d

d
 

 Let us prove that the derivative 0
d

d

α
ψ

<  for the function 

( )
743 1

13020 260( ) 10 cα ψ ψ
−

= ×π × , where )(ψc =
)2(

)(

−ψ

ψ

sF

sF
, if 

}2{}0{ +∞<<<<−∞ ψψ ∪ , and that the derivative 0
d

d

α
ψ

>  for the function 

)(ψc =
)2(

)(

ψ

ψ

−sF

sF
,  if }20{ <<ψ . 

 

  The derivative 
ψ

α

d

d
 for the interval }2{ +∞<<ψ is calculated as follows. Let us 

introduce the following designations:   

π 260

1

20

43

10 •=
−

к ; 
2

51+
=Φ ; )(

130

7

ψα ck •= ; )(ψc =

ΦΦ
ΦΦ

−−

−

−

−
ψψ

ψψ

22
 

 Then we have:  
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( ) ( )
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





Φ−Φ

Φ−Φ

ΦΦ
ΦΦ
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ΦΦΦΦ
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−
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
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




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



−

+
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−−
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=

−−

−−−−

ψψ

ψψ

ψψ

ψ

α
ψψ

ψψψψψψ

22
260

22
ln7

260

253

222

22

k

d

d
 

 The sign of the derivative 
ψ

α

d

d
 coincides with the sign of the following 

expression: 

2 2
) ( )(

ψ ψ ψ ψ− − −
− • + +Φ Φ Φ Φ

2 2
) ( )(

ψ ψ ψ ψ− − −
+ • − =Φ Φ Φ Φ

2 2
( )2 0

−
−− • <Φ Φ . 

 That is, in this case, the sign 
ψ

α

d

d
=-1. Similarly the derivative 0<

ψ

α

d

d
 is 

calculated for the interval }0{ <<−∞ ψ  and the derivative 0>
ψ

α

d

d
 is calculated for the 

interval }20{ <<ψ . 

 The points 2,0 == ψψ  are points of bifurcation. In the bifurcation points 

2,0 == ψψ , the derivative 
ψ

α

d

d
 is not defined and it is necessary to define it on the left 

and on the right of the bifurcation points. 

 To illustrate the above statements, we confine ourselves to the graph of the 

function (3.9) ( )
743 1

13020 260( ) 10 cα ψ ψ
−

= ×π ×  on an infinite interval 

{ }∞<<∞− ψ  (see Fig.3.1). 
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Figure 3.1. The graph of the fine-structure constant (black curve) at { }∞<<∞− ψ  

 

 For the quantitative description of the Universe evolution by using the model of 

the Fibonacci special theory of relativity on the basis of the given supporting experiment 

( )0 0,T α , we also need to find the explicit dependence of the parameter of self-

organization ψ  for the given values of the module )(ψc  of the normalized Fibonacci 

light speed in vacuum )(ψc . The normalized Fibonacci light speed in vacuum has the 

form:  

)()( ψψ cc =  at { }0<<∞− ψ  ∪   { 2< ψ < ∞+ } and )()( ψψ cic •=  at { 0< ψ <2}. 

 As 
2 ( 2)

( )c
ψ ψ

ψ ψ
ψ

−

− − −

−
=

−
Φ Φ

Φ Φ
, then 

2

2 ( 2)
( )c

ψ ψ

ψ ψ
σψ

−

− − −
 
 

−
= •

−
Φ Φ

Φ Φ
, where 1=σ  at 

{ }0<<∞− ψ  ∪ { 2< ψ < ∞+ } and 1−=σ  at { 0< ψ <2}. Hence we obtain the formula 

of dependence ψ  from )(ψc , which has the following form:  

2
2

2
2

0.5
( )

( )
log

c

c

σ
ψ

σ

ψ

ψ
−Φ

  
− •  

=   
  − •    

Φ

Φ
,    (3.21) 
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where ( )log xΦ
 is the logarithm with the base Φ  from the variable x. Recall that 

( )log xΦ =
)ln(

)ln(

Φ

x
. 

 Fig. 3.2 shows the graph of the formula (3.21) for any values { ∞− < ψ < ∞+ }. 

1 2 3 4

4

2

2

4

6

 

Figure.3.2. The graph of the dependence of the parameter of self-organization ψ  from 

the module )(ψc  of the normalized Fibonacci light velocity in vacuum )(ψc . 

 The wide black curve in the upper part of Fig.3.2 corresponds to the Light Ages, 

for which   

{ Φ < <)(ψc ∞+ } ⇔ { 2< ψ < ∞+ }, 1=σ . 

 The thin black curve in the upper part of Fig. 3.2 corresponds to the Dark Ages, 

for which })(0{ +∞<< ψc  ⇔ { 0< ψ <2}, 1−=σ  

 The wide black curve in the lower part of Fig. 3.2 corresponds to the Black Hole, 

for which 

{ }10 ( )c ψ −< < Φ ⇔ { }0<<∞− ψ , 1=σ . 

3.13.2. Tables  

The Black Hole { 0<<∞− ψ } 

Formulas for numerical calculations 

( )
743 1

13020 260( ) 10 cα ψ ψ
−

= ×π × , )()( ψψ cc = , 
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2 ( 2)
( )c

ψ ψ

ψ ψ
ψ

−

− − −

−
=

−
Φ Φ

Φ Φ
= Exp[ )ln(

7

130
α• + )10ln(

14

559
-
14

1
ln  (π )], 





































•−

•−

=

Φ

Φ

−
Φ

2
2

2
2

)(

)(
log

1

1

5.0

ψ

ψ
ψ

c

c
, 

where through Exp (x) the function e
x

is denoted.  

Table 3.1. The dependence of α  from ψ  for the Black Hole  

    ψ                       α   ψ                α  

∞−  0.0069288144971348135  -4 0.00692538187440185 

-10000 0.0069288144971348135  -3 0.006919646794970036 

-1000 0.006928814497134813  -2 0.006903455705682327 

-100 0.006928814497134813  -1 0.006850192996684811 

-10 0.006928803964023771  -0.5 0.006768784213889069   

-9 0.006928786919435824  -0.05 0.006406984558898941 

-8 0.006928742286426307  -0.005 0.006026519400304021 

-7 0.006928625369162896  -0.0005 0.005664706511828369 

-6 0.006928318818909652  -0.00005 0.0053242413463155105 

-5 0.0069275131121957064  0 0 

 

Table 3.2. The dependence of ψ from )(ψc  for the Black Hole 

                     )(ψc  
ψ   

             )(ψc  
      ψ                     

0.618033988749895=
1−Φ  ∞−   0.6123724356957945 -4 

0.618033988749894827 -10000  0.6030226891555273 -3 

0.6180339887498948 -1000  0.5773502691896257 -2 

0.6180339887498948 -100  0.5 -1 

0.6180165405913052 -10  0.40044657145607854 -0.5 

0.617988307121335 -9  0.14437305931408442 -0.05 

0.6179143806533247 -8  0.04631539686890963 -0.005 

0.6177207681213422 -7  0.014667481696040147 -0.0005 

0.6172133998483676 -6  0.0046389387118200036 -0.00005 

0.6158817620514397 -5  0 0 
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The Dark Ages { 20 <<ψ } 

Formulas for numerical calculations 

( )
743 1

13020 26010 cα ψ
−

= ×π ×  ,  )()( ψψ cic •= , 

2 ( 2)
( )c

ψ ψ

ψ ψ
ψ

−

− − −

−
=

−
Φ Φ

Φ Φ
= Exp[ )ln(

7

130
α• + )10ln(

14

559
-
14

1
ln(π )], 

2
2

2
2

1
0.5

1

( )

( )
log

c

c

ψ
ψ

ψ
Φ −

  
+ •  

=   
  + •    

Φ

Φ

 

Table 3.3. The dependence of α  from ψ for the Dark Ages 

    ψ                       α   ψ                α  

0 0  1.15 0.007173203111587392 

0.00000005 0.004420677984437741  1.295 0.007236786535409398 

0.0000005 0.004703400500624787  1.3995 0.007286414039484436 

0.000005 0.0050042047632669956  1.49995 0.007339081525719611 

0.00005 0.005324250600866376  1.599995 0.007399158790659007 

0.0005 0.005664804976045141  1.6999995 0.007471875746442799 

0.005 0.006027567016514314  1.79999995 0.007568544855416565 

0.05 0.006418132522321802  1.899999995 0.007725409677896242 

0.5 0.006889391594589547  1.9999999995 0.012947368238045895 

1 0.007110696049622987  2 +∞ 

Table 3.4. The dependence of ψ from )(ψc  for the Dark Ages 

             )(ψc  
          ψ   

             )(ψc  
            ψ  

0 0  1.176495436910126 1.15 

0.00014669849260547704 0.00000005  1.3860143882604832 1.295 

0.000463901433387913 0.0000005  1.5735816664444588 1.3995 

0.001466987270482024 0.000005  1.798780757504753 1.49995 

0.004639088462289398 0.00005  2.0928249016653453 1.599995 

0.014672217221849427 0.0005  2.5096386981179037 1.6999995 

 0.04646514788007947 0.005  3.186330402711177 1.79999995 

0.14911029919188895 0.05  4.663866193655711 1.899999995 

0.5558929702514211 0.5  68167.01784975648 1.9999999995 

1 1  +∞ 2 
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The Light Ages { +∞<<ψ2 } 

Formulas for numerical calculations  

( )
743 1

13020 26010 cα ψ
−

= ×π × ,  )()( ψψ cc = , 

2 ( 2)
( )c

ψ ψ

ψ ψ
ψ

−

− − −

−
=

−
Φ Φ

Φ Φ
 = Exp[ )ln(

7

130
α• + )10ln(

14

559
-
14

1
ln(π )], 

2
2

2
2

1
0.5

1

( )

( )
log

c

c

ψ
ψ

ψ
Φ −

  
− •  

=   
  − •    

Φ

Φ
 

Table 3.5. The dependence of α from ψ for the Light Ages 

     ψ                       α   ψ                α  

2 ∞+   5 0.007307020113639036 

2.0000005 0.01075009435860901  6 0.007300968990174425 

2.000005 0.010103904514440983    7 0.0072987228593058675 

2.00005 0.009496563927388494  8 0.0072978740776367965   

2.0005 0.008925793102351615  9 0.007297551190335574 

2.005 0.008389917123235882  10 0.007297428049702034 

2.05 0.007891699729461058  100 0.007297351997377362 

2.5 0.0074698788899746965  1000 0.007297351997377362 

3 0.007381105661489203  10000 0.007297351997377362 

4 0.007324157706770783  ∞+  0.007297351997377362             

Table 3.6. The dependence of ψ from )(ψc  for the Light Ages 

                     )(ψc  
ψ   

             )(ψc  
      ψ                          

+ ∞ 2  1.6583123951777001 5 

2155.6310252322273 2.0000005  1.632993161855452 6 

681.6713738379511 2.000005  1.6236882817719775 7 

215.56654703247312 2.00005  1.620185174601965 8 

68.17802951613534 2.0005  1.618854426800759 9 

21.59109211198998 2.005  1.618347187425374 10 

6.926500032284402 2.05  1.618033988749895 100 

2.4972120409568324   2.5  1.6180339887498953 1000 

2 3  1.61803398874989 10000 

1.7320508075688774 4  1.618033988749895= Φ  ∞+  
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Calculations 

 According to current data, the period of the Dark Ages { 0< ψ <2} ended after 

550 [million years] from the moment of the Big Bang, when the first stars, quasars, 

galaxies, clusters and super clusters of galaxies began to form. It was happened the re-

ionization of hydrogen by the light of stars and quasars. For more detailed information 

we present the table of the Chronology of the Big Bang.  

Table 3.7. Chronology of the Big Bang 

Time  Т  from 

the moment  of 

the Big Bang 

        

Age 

      

Event 

To the present 

moment, billion 

 years 

0 Singularity Big Bang 
13,7 billion 

years  

0 — 10−43 с 

Beginning Dark 

Ages. 

Planck epoch 

Birth of particles 13,7 billion years 

10−43 — 10−35 с 
The era of Grand 

Unification 

Separation of gravity from the united 

electroweak and strong interactions. Possible 

birth of monopoles. The destruction of the 

Grand Unification. 

13,7 billion years 

10−35 — 10−32 с 
The inflationary 

epoch 

The radius of the Universe increases 

exponentially  on  many orders. The structure 

of the primary  quantum fluctuations by means 

of swelling gives the beginning of large-scale 

structure of the universe. Secondary heating 

Baryogenesis.. 

13,7 billion years 

10−32 — 10−12 с Electroweak epoch 

The universe is filled with a quark-gluon 

plasm, leptons, photons, W- and Z-bosons, the 

Higgs boson. Breaking supersymmetry. 

13,7 billion years 

10−12 — 10−6 с Quark era 

Electroweak symmetry is broken, all four 

fundamental interactions exist separately. 

Quarks have not yet merged into hadrons. The 

universe is filled with a quark-gluon plasma, 

leptons and photons. 

13,7 billion years 

10−6 — 100 с Hadron era 
Hadronization. The annihilation of baryon-

antibaryon pairs. Thanks CP-violation remains 
13,7 billion years 
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a small excess of baryons over antibaryons 

(about 1:109). 

100 seconds — 3 

minutes 
Lepton era 

The annihilation of lepton-antileptons pairs. 

The collapse of the neutrons. The substance 

becomes transparent to neutrinos. 

13,7 billion years 

3 minutes — 

380 000 years 
Proton era 

Nucleosynthesis of helium, deuterium, traces 

of lithium-7 (20 minutes). The substance starts 

to dominate over the radiation (70 000 s) that 

lead to changes in the expansion of the 

universe. At the end of the era (380 000 years) 

recombination of hydrogen and the universe 

becomes transparent to photons of thermal 

radiation. 

13,7 billion years 

380 000 years —

550 million 

years 

The Dark Ages  

The end of the 

Dark Ages 

The universe is filled with hydrogen and 

helium, the relict  radiation of atomic hydrogen 

at 21 cm. The stars, quasars and other bright 

sources are absent. 

13,15 billion 

years  

550 million 

years
 
 — 1 

billion years 

Beginning Light 

Ages. 

Reionization 

Forming the first stars (stars population III), 

quasars, galaxies, clusters and superclusters of 

galaxies.  

Reionization of hydrogen by the light of stars 

and quasars. 

12,7 billion years 

1 billion years 

— 8,9 billion 

years 

The formation of interstellar clouds, which 

gave rising   the Solar System. 
 4.8 billion years 

8,9 billion 

years— 9,1 

billion years 

The era of the 

substance 
The formation of the Earth and other planets of 

the Solar System, hardening breeds 
4.6 billion years 

                

 Table 3.7 is created on the materials of Wikipedia, the free encyclopaedia 

https://ru.wikipedia.org/wiki / Chronology of the Big Bang 

 In this publication, for the Fibonacci special theory of relativity we will follow to 

the following strategy: 

1). We leave the value of time T , measured from the Big Bang to the present time, the 

same as in Table 3.7, i.e. Т=13.7  [billion years]. Until now there is no clear consensus 
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on the value of the time T, because in addition to Т=13.7  [billion years], the following 

options are offered: Т=13.73, 13.75, 13.798, 13. 81 [billion years] and so on [21-29].  

 This once again confirms the opinion, expressed by David Hilbert in 1900 that in 

experimental sciences there is not any completely precise data. They always have some 

uncertainty. In order to achieve the authentic harmony with reality, we need to create the 

rigorous mathematical model (according to Hilbert):  

 “It remains to discuss briefly what general requirements may be justly laid down 

for the solution of a mathematical problem. I should say first of all, this: that it shall be 

possible to establish the correctness of the solution by means of a finite number of steps 

based upon a finite number of hypotheses which are implied in the statement of the 

problem and which must always be exactly formulated. This requirement of logical 

deduction by means of a finite number of processes is simply the requirement of rigor in 

reasoning. Indeed the requirement of rigor, which has become proverbial in 

mathematics, corresponds to a universal philosophical necessity of our understanding; 

and, on the other hand, only by satisfying this requirement do the thought content and the 

suggestiveness of the problem attain their full effect”[1-3].   

 2). we use  as the initial value of the fine-structure constant α  the following value, 

given by Kosinov’s formula [24]: 

43 1 7
20 260 130 0.00729735199737736210α

−
== ×π × Φ . 

 Since 2014, the recommended SODATA (http://www.codata.org) value of the 

fine-structure constant is as follows 

=α ×= 2973525664.7
035999139.137

1
10-3    (dimensionless). 

 Thus, the absolute error α∆ between the true and estimated values α  is equal to: 

10

3 37.2973525664 10 7.2973519973 10

5.691 10 0.0000000005691

α

−

− −∆ = × − ×

= × =

.    

 The relative error 
α

α∆
 in this case, equal to: 

10
8

3

5.691 10
7.779872 10 0.0000000779872

7.2973525376 10

α
α

−
−

−

∆ ×
= = × =

×
,     
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that is, Kosinov’s formula [24] actually coincides with the recommended CODATA  

value of the fine-structure constant. 

         Next, we will consider two examples of experiments and their quantitative 

comparison with numerical data, obtained by using the mathematical model of the 

Fibonacci special theory of relativity. 

 Mainly, this problem concerns to numerical comparisons of the experimental and 

theoretical results, related to the value of the time T, which is measured from the moment 

of the Big Bang, and also with modification of the fine-structure constant, depending on 

the time T. 

 We note that in the framework of the classical special theory of relativity, which 

postulates the constancy of the light speed in a vacuum, such a comparison is impossible 

in principle. 

   

Example 1. Experiment for the bifurcation point ψψψψ=2 

 For the observable Universe at 0 2ψ =  (this bifurcation point corresponds to the 

transition from the Dark Ages to the Light Ages), the fine-structure constant α = ∞+ (see 

Tables 3.3 and 3.5). Therefore, the supporting experiment in the case ( )0 0,T α  is 

impossible.  

 However, it was determined experimentally (see Table 3.7), that for this case we 

have: 0 550 0.55T million years billion years   
   = = . But then we get the following values 

for the supporting numerical coefficient 0λ  and the inverse supporting numerical 

coefficient 1

0λ − : 

0
0

0

2 1
3.636363363

0.55T billion years

ψ
λ

 
 
  

= = = ,  1
0 0.275 billion years−  

 λ =  (3.22) 

 Therefore, for any T [billion years]  we get: 

0

2

0.55
T Tψ λ= • = •  [dimensionless] ,   (3.23) 

and for any ψ  we have: 

1
0

0.275 billion yearsT λ ψ−  
 = • =     (3.24) 

 In particular, for Т=13.7 [billion years] we get: 

0

2
3.63636 13.7 49.8182

0.55
T Tψ λ= • = • = • =     (3.25) 
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)()( ψψ cc = =
2 ( 2)

ψ ψ

ψ ψ

−

− − −

−

−
Φ Φ

Φ Φ
=1.618033988749895[dimensionless]      (3.26) 

( )
743 1

13020 260 0.0072973519973736210 cα ψ
−

== ×π × [dimensionless]    (3.27) 

 Example 2. As noted above, the quasars observations, made in April 2004 by 

using UVES spectrograph on one of the 8.2-meter telescope of Paranal Observatory in 

Chile, showed, that 10 billion years ago the possible value of α  could not be more than 

76 10−×  of α .  

 Because we assumed, that the current age of the Universe, measured from the 

moment of the Big Bang, is T=13.7[billion years], then 10 billion years ago, this age was 

equal to 
0 13.7 10 3.7T billion years 

 = − = .  

 For the modern time T=13.7[billion years] the fine-structure constant 

=α 0.007297351997377362. Then, according to the Paranal Observatory in Chile for 

the past age of the Universe Т0=3.7 [billion years], the fine-structure constant 
0α  

satisfies to the non-equalities: 

max0min 0.007297351997377362 0.007297351997377362α α α α =

=

= < ≤ = + ∆

0.00729735637885605,
(3.28) 

where 7 96 10 4.37841198426416 10α α− −∆ = • • = • . 

 According to the data, obtained in Example 1,  

0
0

0

1
3.636363636363636363

T billion years

ψ
λ

 
 
  

= = . 

This implies that the parameter of self-organization 0ψ , corresponding to the past age of 

the Universe Т0=3.7 [billion years] is equal to the value  

0 0 0Tψ λ= =3.636363636363636363 • 3.7=13.454545454545455[dimensionless].   (3.29)  

 Because the resulting value 
0 2ψ > , then the given supporting experiment { }0 0,T α  

held for the Light Ages { +∞<<ψ2 }. As mentioned above, for the Fibonacci special 

theory of relativity for Light Ages the following relation is valid: 
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)()( ψψ cc = =
( )22

ψ ψ

ψψ

−

− −−

Φ −Φ

Φ − Φ
, where )(ψc  is the normalized Fibonacci light velocity 

in vacuum. 

 By substituting 0 13.454545454545455ψ =  into the formula for )(ψc , we get: 

( )0 1.618045254395514c ψ = . By substituting this value 0( )c ψ , into the formula 

( )
743 1

13020 26010 cα ψ
−

= ×π × , we get: 
0

0.007297354733194072α = .  

 From the above arguments we get the following non-equalities: 

 
min 0

max

0.007297351997377362 0.007297354733194072

0.0072973563757885605
α α

α

= < = <

=<
 (3.30) 

 From the non-equalities (3.30) we obtain the following deviations: 

1) 9
0min min

2.735816710328076 10α α α −∆ = − = • is the absolute deviation of 
minα  

 from 
0α , 

7min

min

3.7490540559251047 10
α

α
−∆

= • is the relative deviation  of 
min

α  from 
0α . 

2) 9
max max 0 4.378411198706356 10α α α −∆ = − = • is the absolute deviation of maxα  from 

0α ,  7max

max

6.000000000 10
α

α
−∆

= •  is the relative deviation  of maxα  from 0α . 

 

3.14. Reconciliation of the theoretical results of the Fibonacci special theory of l 

relativity with experimental data  

 1). Thus, we see that indeed the inequalities (3.30) are fulfilled: 

max0min
α α α< ≤ . 

Moreover, the difference between the experimental data , maxmin
α α  («experience»), 

obtained as a result of astronomical observations, and the theoretical data 
0

α  

(“thinking"), obtained under the Fibonacci special theory of relativity, manifested in the 

ninth decimal digit after the point for the absolute deviation and in the seventh decimal 

digit after the point for the relative deviation. 
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 2). Consequently, the mathematical model of the Fibonacci special theory of 

relativity is fully consistent with the following experimental data:  

 а1). Ending of the Dark Ages after the Big Bang happened through 550 million 

years (see Table 3.7). 

 а2).10 billion years ago, the possible value of the fine-structure constant α  could 

not be more  than 0.6 million part ( ) of the α  (observational data of Paranal 

Observatory in Chile). 

3.15. Quantitative results of the Fibonacci special theory of relativity from the 

moment of the Big Bang T=0 to any value of the time T [billion years] 

3.15.1. The Light Ages (Т>0.55 [billion years]) 

 1). The fine-structure constant α  [dimensionless] with increasing the time T 

decreases from +∞=α  to =α
54680360098237.137

1
=0.007297351997377362.  

 2). The light speed in vacuum 
sec

m
c
 
 
 

 with increasing the time T decreases from 

+∞=c  to с=2.99 792 458 • 108 (the light speed in vacuum for the classical special 

theory of relativity).   

 3). The speed of the light source in vacuum 
sec

mν
 
 
 

 with increasing the time T 

increases from 0ν =  to  v=2.99 792 458 • 108. 

3.15.2. The Dark Ages ( 0<T< 0.55  [billion years] ) 

 1). The fine-structure constant α  [dimensionless] with increasing the time T 

increases from 0=α  to =α ∞+  

 2). The light speed in vacuum 
sec

m
c
 
 
 

 is imaginary quantity. 

 3). The speed of the light source in vacuum 
sec

mν
 
 
 

is imaginary quantity. 

3.15.3. The Black Hole ( T< 0  ) 

 1). The fine-structure constant α  [dimensionless] with decreasing the time T 

increases from   

0=α  to =α
41063248336946.144

1
= 0.0069288144971348135. 
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 2). The light speed in vacuum 
sec

m
c
 
 
 

 with decreasing the time T increases from  

с=0 to  с= 1.1451052938512468 • 108 . 

 3). The speed of the light source in vacuum 
sec

mν
 
 
 

with decreasing the time T 

decreases from  v=0  to  v= .1− 1451052938512468 • 108.  

 

3.16. Advantages of the Fibonacci special theory of relativity in comparison with the 

classical special theory of relativity 

 The Fibonacci special theory of relativity has the following advantages over the 

classical special theory of relativity: 

 1). The Fibonacci special theory of relativity provides a high consistency of the 

theoretical data with the latest experimental data, containing information on the 

particular values of the fine-structure constant α  as the function of the time T since the 

moment of the Big Bang. 

 2). The Fibonacci special theory of relativity establishes the connection between 

the any values of the time T since the moment of the Big Bang and the following 

variables, which can be calculated according to this theory: the fine structure constant 

)(Тαα = , the light velocity in vacuum с=с (Т), the velocity of the light source v= v (Т). 

 3). The Fibonacci special theory of relativity allows to get, in dependence of the 

value of T, the qualitative and quantitative (numerical) information about the following 

variables: the fine-structure constant )(Тαα = , the light velocity in vacuum с=с (Т), the 

velocity of the light source v= v (Т) not only for the Light Ages, but also for the Dark 

Ages and the Black Hole.  . 

  4). Einstein’s postulate about the constancy of the light speed in vacuum is the 

main postulate of the classical special theory of relativity. In this connection, the 

classical special theory of relativity does not own with the possibilities of the Fibonacci 

special theory of relativity. According to the formulas of the classical special theory of 

relativity is fundamentally impossible to calculate the values of the fine-structure 

constant, depending on the different ages of the Universe since the moment of the Big 

Bang.  
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 5). Knowledge of the dependence of the fine structure constant )(Тαα =  from 

the Universe age T is one of the most mysterious physical-mathematical problem of 

modern science. Even the minor deviations, as the latest experiments show, dramatically 

can alter our ideas about the evolution of the Universe. 

 6). The authors in Section 3 of this article showed, that the described in Section 2 

Fibonacci special theory of relativity it is a mathematical theory, that solves the problem 

of the variability of the fine-structure constant α  depending on the different  

ages of the Universe since the Big Bang. This theory, developed on the basis of the 

Mathematics of Harmony [8] is highly consistent with modern experimental data and is a 

kind of the genetic code of the Universe. No wonder, the physical-mathematical problem 

of the fine- structure constant is named "MILLENNIUM PROBLEM." 

 7). The created by the authors Fibonacci special theory of relativity meets the 

basic requirements, which were presented in 1900 by David Hilbert to his unsolved (due 

to its vagueness) physical- mathematical Sixth Problem, which in fact is reduced to the 

question of the harmony between mathematical theory and physical experiment. 

 Hilbert writes [1-3]:      

 “ I should say first of all, this: that it shall be possible to establish the correctness 

of the solution by means of a finite number of steps based upon a finite number of 

hypotheses which are implied in the statement of the problem and which must always be 

exactly formulated. This requirement of logical deduction by means of a finite number of 

processes is simply the requirement of rigor in reasoning”   

 Since physical experiments always have errors and therefore, according to Hilbert 

[1-3], «in the meantime, while the creative power of pure reason is at work, the outer 

world again comes into play, forces upon us new questions from actual experience, opens 

up new branches of mathematics, and while we seek to conquer these new fields of 

knowledge for the realm of pure thought, we often find the answers to old unsolved 

problems and thus at the same time advance most successfully the old theories. And it 

seems to me that the numerous and surprising analogies and that apparently prearranged 

harmony which the mathematician so often perceives in the questions, methods and ideas 

of the various branches of his science, have their origin in this ever-recurring interplay 

between thought and experience». 
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 Although Hilbert's Sixth Problem is called "Mathematical statement of the axioms 

of physics", but Hilbert recognizes that the creation of the system of axioms in physics 

that would meet properties of consistency, independence and completeness, is virtually 

impossible. 

 Therefore, a priori, as follows logically from Hilbert’s above-cited words, the 

only one possibility remains to create the mathematical theory of physical problem, and 

then to check its reliability by using finite number of experiments. 

 The created by the authors Fibonacci special theory of relativity (see Section 2 of 

this work, and References for it) fully meets this Hilbert requirement.  

 8). In conclusion, the authors put forward the task to create on the basis of the 

Mathematics of Harmony the analogue of the classical Einstein's general theory of 

relativity, which can be called the Fibonacci general theory of relativity. The solution to 

this problem is beyond the scope of this publication.  

 

4. Conclusions 

 In 2000 a group of the eminent physicists has formulated the 10 Physics 

MILLENIUM PROBLEMS. These Physics MILLENIUM PROBLEMS have been 

presented at the Strings 2000 Conference (July, 10-15, University Michigan, Ann Arbor).  

 The first Physics MILLENIUM PROBLEM, formulated by the prominent 

physicist, David Gross (University of California, Santa Barbara), Nobel Prize Laureate in 

Physics-2004, sounds as follows:   

 “Are all the (measurable) dimensionless parameters that characterize the 

physical universe calculable in principle or are some merely determined by historical or 

quantum mechanical accident and incalculable?” 

 The authors of this article have focused on the fine-structure constant 

(Sommerfeld's constant), which is a fundamental dimensionless physical constant, 
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characterizing the strength of the electromagnetic interaction between elementary 

charged particles.  

 Bearing in mind the fine-structure constant as the main dimensionless physical 

constants of physical world, the authors of the present article have reformulated David 

Gross’ MILLENNIUM PROBLEM as follows: 

 “Is the fine-structure constant, which characterizes the physical universe, 

calculable or non calculable?”  

 Based on Mathematics of Harmony [8], the "golden" matrices [9] and Fibonacci 

special theory of relativity [7,12,13,17,18], the authors of this article have deduced the 

mathematical formula that determines the dependence of the fine-structure constant from 

the time T since the Big Bang.  

 This formula makes it possible to calculate the values of the fine-structure constant 

for all stages of evolution of the Universe starting since the Big Bang (the Dark Ages, the 

Light Ages) and the Black Hole (the negative arrow of time). 

 We have proved the high coincidence of theoretical data for the value of the fine 

structure constant α  with the experimental data for the Light Ages of the Universe (see 

also Fig. 3.1 and Tables 3.5-3.6).  

 A substantiation of the coincidence between the theoretical and experimental data 

for the Black Hole and the Dark Ages is not possible. Such experimental data in physics 

and astronomy do not exist yet. However, we have pointed out both theoretical and 

numerical picture of the change of the fine-structure constant for the Black Hole, and for 

the Dark Ages (Fig. 3.1, Tables 3.1-3.2, 3.3-34). 
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