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ABSTRACT

By using a Coulomb potential, modified by thieraction between the magnetic
moments of the electron and proton, we have cdkxdilae energy levels of the hydrogen
atom. We have obtained fine and hyperfine strucigrevell as the Lamb shift. All these
effects are obtained from a simple formula which @hrect solution of the Schrodinger
equation. The obtained results are in a good ageeewith experimental data. For
example, the hyperfine splitting between the endézggls of the states 1%; and 13,0
is of the order of 5.6xIDeV, which is the source of the famous “21 cm lindiich is
strongly useful to radio astronomers for trackiygdogen in the interstellar medium of
galaxies. The energy of the stat#%,, is lower than those of the states;;, (Lamb shift)
because in the first case the contribution of the-srbit coupling terml.+2S, is
smaller.

Keywords: Magnetic moments; fine and hyperfine structuranhashift of hydrogen
atom.

1. INTRODUCTION

With the usual Hamiltonian of the hydrogerelictom we have th#-fold degeneracy
states with the same principal quantum numbernd=®ld once the spin degree of
freedom is included. I this real world however, tiegeneracy is lifted by corrections that
arise due to the special relativity. These coroasti(known as fine structure) derive from
three (superficially) different sources) (elativistic corrections to the kinetic energy ,

(b) coupling between the spin and orbital degreeeddom, €) and the contribution
knowing as a Darwin term. Relativistic correctiamit degenerate multiplets leading to
small shift in energy, ca T0- 10° eV. In additoon, nucleus has a spin which leads to
nuclear magnetic moment . Interaction of electranagnetic moment with filed
generated by nuclear magnetic moment leads todusihlitting of multiplets ( hyperfine
structure), ca 10— 108 eV. In 1947, an experimental study by W. Lamb alisced that
2Py, state is slightly lower than 2&state — Lamb shift [1]. The effect is expalined by
the theory of quantul electrodynamics [2], in whiblk electromagnetic interaction itself
is quantized. Some of the effects of this theorycizause the Lamb shift are as follows:
vacuum polarization, electron mass renormalizatmomalous magnetic moment. On
the basis of this theory we have studied in a prevpaper [3] the Lamb shift without
taking into account the electron charge. Famouesdtructure was first gotten by Bohr-
Sommerfeld model in 1816 [4]. The fine structurediformally now is the hydrogen
solution by Dirac equation [5]. Surprisingly, thes#utions by Dirac equations are just



equal to those of Sommerfeld model. However, Dgdxydrogen includes a lot of wrong
states (= 1B, 2Dsj2, 3F52, ...). The interpretation of very tiny Lamb shiftpinds
completely on the interpretation that Dirac’s hygkn is right. Quantum electrodynamics
Lamb shift is much more complicated and filled watttificial tricks. Lamb shift
measurements is too difficult and vague in respeatcueacy. We cannot see what is
really happening in the key small effect = 0.000812 eV, 10n8 MHz) hyperfine level.
Though the Lamb shift is very small, the authaedrio measure this value believing
25, state is “metastable” and the collision betweerited hydrogen atom and plates is
a precise method for Lamb shift. In this experintéete is no guarantee that modified
Zeeman effect is always linearly effective, andiextmetastable statesreally means
2S1». There are only assumpions. And, of course, thisiom method is rough and not
precise to measure this very tiny value. Even ahest optic methods, cannot confirm
these states really express the ebergy differeavesien 29, and 2R),. They just
estimate it. Considering Lamb shift is almost sas@uclear hyperfine structure some
nuclear or electron’s vibrations may influence vieny data. In this paper we calculate
the hydrogen energy levels by solving Schrodinggiagon with the modified Coulomb
potential by interaction between the magnetic mamehnucleus and electron’s
respectively, as we have proceed to study ferroetéyn [6]. Also, we have used this
modified Coulomb potential to evaluate high exaatenergy levels of helium atom [7],
deuteron energy states [8], and energy levelspadr@ic atom[9]. As we will see below,
Lamb shift appears as a natural result for thegneigenvalues of Schrodinger equation.

2. EFFECTS OF THE INTERACTION BETWEEN THE MAGNETIC
MOMENTS ON THE COULOMB POTENTIAL

In a previous paper [10] we have found théofeing expression for the energy of
interaction between two electrons via bosons
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whbereD is a coupling constanty is the mass of an electrdR s the distance between
the two electrong, is the massive density of the interacting fi€@/c? is the “mass
density” associated to the energy of the ineradigld when this is not a massive field,
wy =cq is the classical oscillation frequency of ititeracting field o is the oscillation
frequency of an electron,is the wave vector of the interacting fietf,is the wave
vector of the boson associated with the electkas,the wave vector of the electren -
n/2m, ng is the occupation number of the bosons associgitedhe interacting field,
Ngo IS the occupation number of the bosons associatacan electron and is the
occupation number of the electrons. When the interg filed is a photon field, them, =
0. For a quasifree electreq - &q = 0, tyo = hg,72m. The Coulomb interaction occurs
via photons, so that we may assume that the integaglectron oscillates witty,,. By
using thahy = ngo = 0,nk = nikq = 1, Eq. (1) becomes
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wherel =q,R2 — ®,R1. The interaction energy becomes

E =000729"C = o 1€ (5)
R R

Taking the upper limit of gas 0.94/R, which is with 6% lower tharvR, one obtains the
value ofa just as the experimental value. The relation ¢pyesents the Coulomb’s law, which
now is obtained without taking into account thectlaen charge concept. It was showed [10] that
for charges of opposite sign the interaction enébyyas the sign minus. In presence of a
magnetic field in the above equation we introdieepotential vector and thus we substityfe
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We consider the potential vectar(uxR)/R® wherep is the magnetic dipole moment aRds a
vector from the middle of the loop to the obsematpoint. The theory and experiment
demonstrate that the free electron has a magneticemt equal to the Bohr magnetianand a
spin momentuns, the projections of which on a specified directase $ = +h/2 =hms where g
= +1/2 is the spin quantum number. Bgf = puggms with g = 2, one obtains
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where (h/eins; and (h/edng; are the flux vectors. Fay, = g, =q, resukts

N=qg,Rcosf-T,
r = e’ (4mm, 4mmy (8)
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We have used the relatian, =q, _ﬁ st X wherex is a unit vector which is
mc

perpendicular t&k andu. The interaction enrgy between the two electronsrmwe take into
account their magnetic moments is given by theesgion

hc}ﬂ (2+13cosl,) (9)

wherel, is given by Eq. (8). For ;sp= my; = 1/ 2, one obtains, = 0, so that Eq. (9) reduces to
Eq.(4), that is when the spins of the two electramsorienred in the same direction there is not a
modification of the Coukomb potential. Wherym 1/ 2, m, = - 1/ 2 one obtaing, =
21me’/mc?R, so that for a certain value of R one obtdins 1t and the interaction energy between
the two electrons is reduced by a factor of 0.743125.

However, like the electron the proton hasia apgular momentum with,s 1/ 2, and
associated with this angular momentum is an intridgpole moment

K-
i, =R”sp (10)

where M is the proton mass apds a numerical factor known experimentally to be
2.7928. The magnetic moment of the electron moanogind the proton is
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whereL is the orbital angular momentum a8ds the epin angular momentum. For the
hydrogen atom
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S,=%1/ 2 is the proton spin quantum numbegx1/ 2 is the electron spin quanum

number and s the magnetic quantum number of the electrom félation (11) we
replace

L+2S=gJ 11@)

where

g=1+ s(s+D+j(j+P-1(+]
2j(j+1)

is the gyromagnetic factor, one obtains
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where mis the magnetic quantum number of the total amgutamentunj of the

electron. In Table | are given the values of patameefor diferent states of the electron
in hydrogen atom.

Table |
The values of the parametgyanda for the hydrogen atom energy states
state mm $ g a, 10°m
nSp; 0 1/2 1/2 2 8.8391067371418.8391067/31418
NSpo O /2 -1/2 2 8.86601392707782 8.8660139270782
NPy 1 -1/2  1/2  2/3 0.01345262138974 2.9373998490684
NP2 1 -1/2  -1/2 213 0.01345262138974 2.96430703390049
NP2 1 1/2 1/2 4/3 17.69166422937 17.691667069252
NP1 1 1/2 -1/2 4/3 17.718569447215 17.718574259188
NDzp2 2 -1/2  1/2 0.8 8.8391067371418 10.609618893964
NDzp1 2 -1/2 -1/2 0.8 8.86601392707782 10.6365259935
NDsps 2 /2 1/2 1.2 26.54422265475 26.544227401362

NDspo 2 /2 -1/2 1.2 26.57112789753 26.571134591298



nFsps 3 -1/2 1/2 1.0285714285714 17.@2937  22.750272973314
NFs/2,2 3 -1/2 -1/2  1.028571428571A4.718569447215 22.77713016355
NF7/2.4 3 12 1/2 1.2380952380938.3967832921 38.347641177507
N3 3 12 -1/2  1.2380952380988.42368632291 38.374548367444
The 8" column is for the value af given by Eq. (12) and the last column is for thiaen

by Eq. (1) in the case §F j.

3.THE ELECTRON ENERGY LEVELS IN THE HYDROGEN ATOM

For the radial wve functio® = R(r )Y,™ exp(-iEth), the non-relativistic Schrédinger
equation for the hydrogrn atom becomes

{hz (—d—z—gi+wj—vc(r)}R:ER (13)
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Now we write R(r) ='p(r) wherep(0) = 0. Eq. (13) is now
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We are interested in the bound state solutionsfeerefore we assunpér )~e®" for

r—oo, SO that we try the solutigae(r }=f(r )exp(r[1+0.65013266cos(a/r)
+0.65013266sin(a/r)]), Eq (4) becomes
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To avoid f(r ) to diverge at infinity to overcomgetwanted exponential supression, we
require f(r ) to be a polynomial in r

f(r)=> cr" (16)

The differential equaton then becomes
> {c (k-Dr*? -2p[1+0.6501326@0s@/r) + 0.6501326Gin(@/ r)|c,kr ™ +
k

1.3002653%a[cos@/r) - sin@/r)lc,r*? + B2[1+ 0.6501326@0s@/ r) + 0.65013266in(@/ r)]*c,r* -
1.30026538%a[cos@/r) - sin@a/r)|1+ 0.6501326&0s@/ r) + 0.65013266in(@/ r)]c r* +
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At this stage we assume the constraint conditiahttie argument aine andcosine,
alr=a/n’a,, wheren=I+k+1 is the principal quantum number amds the Bohr radius.
Collecting coefficients ofF* the above equation gives us the recursion relation
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The values of the parameteare given in Table I. F@&—0, one obtains the usual
formula

E=- (22)

By using series expansions
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wherea=2x1.65013266/144 For hydrogen-like atonts is replaced by Z. In Table Il
are presented the values of the hydrogen energjslewhich a calculated by using Eq.
(26).The values from the second column are caledlby using fora relation (12), while
the values from the third column are calculatedibing Eq. (13) form = j.

Table Il
Theoretical values for the hydrogen energy levels

State E, eV EreV
1Si21 13.596644259086 13.596644298919

1S12,0 13.596638854037 13.596638853414
2Pz 3.3996083257277 3.3995898246396
2Pi20 3.3996083257277 3.3995896537839
2S121 3.3995524824729 3.3995524824676
2Si112,0 3.3995523122557 3.39955231222263

2Ps2.2 3.3994964759455 3.399496475934



2P521
3Pu2,1
3Pi2,0
3Si21
3S112,0
3Pz,
3Ps12,1
3Dsp2,2
3Ds/2,1
3Ds/2,3
3Dsz,
4Pz
4Pyj2,0
4S1/2.1
4S112,0
4Psp2,2
4Ps21
4D3p2,2
4D32,1
4Dsp2,3
4Dsp2,2
4Fs123

4Fs5p2,2

3.3994963057496

1.5109370602782

1.5109370602782

1.510863419155

1.5109296837614

1.5109223300492

1.5109223076329

1.510863419155

1.5109296837614

1.5109149543317

1.5109149319167

0.8499021000561

0.8499021000361

0.8499003548712

0.8499003495472

0.8498986044214

0.8498985990976

0.8499003548712

0.8499003435472

0.8498970496022

0.8498970496022

0.8498986044214

0.8498985990976

3.399496305714

1.5109346238136

1.5109346013966

1.5109297061781

1.5109296837013

1.5109223300521

1.5109223076331

1.5109282309608

1.5109282085009

1.5109149554326

1.5109149319085

0.84990152886

0.8499015¥@54

0.84990036287

0.849900348854

0.849898a084

0.8498986908

0.849900064/

0.849899849

0.8498968%84

0.849896843

0.8498916249

0.84989 8626



AF2.4 0.8498985990976 0.849894035
4Fp3 0.8498950983502 0.849894342

We have used the following values of the constantsd.109389x18" kg,
c=2.997925x18m/s,h=1.054572x13%Js,8, = 0.529177x10°m. With these values of
the constants one obtaifis = a°’mc¥/2 = 13.598433643441 eV. The obtained results are
in a good agreement with experimental data. In Figre presented some low —energy
states of yhe hydrogen atom including fine strugthyperfine structure and the Lamb
shift. For the specific case of the ground stathefhydrogen atorm(=1) the energy
separation between the states/d&and 1% 1is 5.6x10° eV. The photon corresponding
to the transitions between these states has waythlelose to 21 cm. This is the source
of the famous “21 cm line” which is extremely uddturadio astronomers for tracking in
the interstellar medium of galaxies. The separaietween 28, and 2R, states is 10

eV in the second column and the separation is 4@5&V in the third column, and is
generated by the spin-orbit coupling. This app&aise two times larger than the
experimental value. Lamb shift appears also agwadaesult in our model. The
difference in energy between the two energy le28ls and 2Ry, is 5.6x10 eV in the
second column and 3.7x1@V in the third column, and are some larger thn t
experimental value. In Table Il we present tharealofa andE when we use relation
(12a) form< j.

Tablé Il

Values of the parametarand of the energl for m< j in hydrogen atom
State m 2,10 m E eV
2P, 1/2 5.888253291095 3.399578652

2P3), 1/ 2 5.9151604830371  3.3995711528654
3Ps22 1/ 2 5.888253291695 1.51093B1656
3Ps21 1/ 2 5.9151604830371  1.5109228%
4P3p2, 1/ 2 5.888253291095 0.84%385H 1
AP35 1 1/ 2 5.9151604830371  0.8499803%5
3D322 1/ 2 3.5275705378802  1.5109820U58
3Dz2.1 1/ 2 3.5546777278078 1.510994463
4Ds)22 1/ 2 3.5275705378803 0.8491151670

4D3p2 1 1/ 2 3.5546777278078 0.8138998068



3Ds/2,3 3/2 15.921155007834 193K¥ 104893

3Ds/2,3 1/ 2 5.2980826043022 0%366300179

3Ds)2,2 3/2 15.948062192762 10%237828262
3Ds)2,2 1/ 2 5.3248897942298 10932634421
4Ds)p 3 3/2 15.921155007834 8498989542875
4Ds)2 3 1/ 2 5.2980826043022 8409010590711
4Ds)2 2 3/2 15.948062192762 .8498989491837
4Ds)2 2 1/ 2 5.3248897942298 .8408994046181
AFsp03 3/2 13.644782348006 0.8498994046181
AFsp03 1/ 2 4.5392917186926 0.8498012051090
AFsp2.2 3/2 13.671689535933 0.8498993992976
AFsp2.2 1/ 2 4.5661999086202 0.8499011997882
AFp2.4 5/2 27.387328385376 0.8498966873162
AF2.4 3/2 16.42701559324 0.8498988544792
AFp2.4 1/ 2 5.4667028011041 0.8499010217233
4Fp3 5/2 27.4142355575303.8408966819961
4Fp3 3/2 16.4539227831680.8498988481588
4Fp3 1/ 2 5.493609990317 0.8499010164025

It is observed that the separation betweespZ/; = 1/ 2) and 2B, states is 1.87x10eV
which is by 2.5 times lower than the experimentdue. It is possible that the levels;zP
for mj = 3/2 and 1/ 2, respectively, participate to tia@sitions with a weight so that the
result is that experimentally observed.

4. CONCLUSIONS

We have presented a thoery which includessimale formula fine and hyperfine
structure, as well as the Lamb shift for the hyeérogtom. The theory is based on the



modification of the Coulomb potential due to theenaction between the magnetic
moments of the electron and proton, respectivelgr level associated with a
particular set of quantum numberd andj is split into two levels of slightly different
energy depending on the relative orientation offtedon magnetic dipole with the
electron state. The obtained results are in a ggogement with experimental data. For
example, the separation energy between the twesstéthe ground state is close to the
famous wavelength of a photon of 21 cm. The enefdlje states ni? are lower than
the energy of the states mJecause in the first case the contribution ofsihia-orbit
coupling termL+2S is lower. Some values of the separation betweemtiergy states in
our theory are overevaluated with respect to erpantal data. This means that our
theory may be improved.
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1/2 3P3/2%M 3/
3S < mmmm— - e 3D
3P R

Nearly equal (split by Lamb shift)

3/2

2P B i ———

1/2

28 pmme— - Fine structure (spin-orbit coupling)
2|:,’1/2 0.00011 eV
* Lamb shift
0.000055 eV

E-» triplet
18", :}- Hyperfine splitting
E«««- singlet 0.0000055 eV




