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Abstract

The light amplification by finite active media is used extensively in modern optics applications. In
this paper, the light amplification and scattering by the cluster of small active particles is studied an-
alytically and numerically with the help of the local perturbation method and phenomenological laser
theory. It is shown that light amplification is possible even for one small particle, and that the ampli-
fication is more profound when the light frequency nears the frequency of the cluster’s morphological
resonance. Theoretical discussions are supplemented by numerical results for scattering by clusters
which particles positioned at ordered and at slightly disordered positions.
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1 Introduction

Light amplification by stimulated emission of radiation (laser) is well known phenomenon routinely em-
ployed in solids-state, gas, and dye lasers [1]-[3]. With the development of micro and nano technology
the new kind of lasers, so-called photonic crystal lasers, emerged [4]-[7]. The common peculiarity of the
photonic crystal lasers is that they are made of finite number of particles or cells ordered at least in
one dimension. These lasers are extremely versatile: they can be made from active host medium filled
by passive scattering particles, or from active scatterers immersed into passive host medium, or both.
Moreover, the particles in such lasers can move or be static. From practical point of view, the photonic
crystal lasers and amplifiers can be used as light sources to compensate the optical losses in metamaterials
[8]-[10].

To the author’s knowledge, the light generation by a scattering medium with negative resonance
absorption was initially studied in work [11] where it was shown that the lasing is possible in such medium.
The scattering by individual active spheres and cylinders was studied analytically and numerically in a
number of works (see, for example [12]-[16] and references therein). At the same time, the discussion
of the scattering by a cluster of active particles is somewhat limited to very small clusters made of few
particles [17] or to periodic structures [18]. Scattering by many active particles occurs in so-called random
lasers ([19]- [25]), while analytical predictions are difficult to made for such systems due to extremely large
number of particles.

Recently, the scalar wave scattering by dispersive particles was studied by using the local perturbation
method (LPM) in the work [26]. In reality, however, the vector wave scattering occurs.

To the author’s knowledge, the cluster amplifier made of small particles was not studied analytically
and numerically in the literature before.

In this paper the light amplification and scattering by active particles with the size smaller than the
incident wavelength is studied with the help of the LPM [27]-[30] and the phenomenological laser theory
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[1]-[3]. As an example, two important cases are studied numerically: scattering by ordered cluster and
by weakly disordered cluster. It was shown that the light amplification is possible in both cases, however
it is severely affected by the size of the particles, by the concentration of the doped active atoms, by
interaction between the particles, and by morphological resonances.

2 The LPM formalism

The formalism used in this section is described in a number of papers ([27]-[28]) and it will be briefly
presented here for convenience and consistency.

Consider the cluster positioned at the origin of the coordinates and made of N identical active particles
which characteristic size L is small compared to the incident wavelength λ. The frequency-domain fourier
transform Ẽ(r, ω) of the electric field E(r, t) propagating in the host medium filled with the particles is
described by the following equation [29] (

△−∇⊗∇+ k2
)
Ẽ(r, ω) +

k2

εh

N∑
n=1

f(r− rn)(εsc,n − εh)Ẽ(rn, ω) = S(r), (1)

where r and rn are the radius vectors of the observer and the n-th particle respectively, and

k ≡ 2π

λ
=

ω

c

√
εh, f(r− rn) ≡

{
1, r ∈ Vn

0, r /∈ Vn
. (2)

Here △ and ∇ are the Laplacian and nabla operators, ⊗ defines tensor product, k is a wave number in
the host medium (ω is the angular frequency and c is the speed of light in vacuum), εsc,n and εh are
the relative (in respect to vacuum) permittivities of the n-th particle and the host medium respectively,
f is the function describing the shape of the scatterers, Vn is the volume of the n-th particle, and S is
the source of the field. The permittivity εsc,n of the active particles is, in principle, a complex function

depending on the electric field Ẽ(rn, ω) inside the particle, the frequency ω, and other parameters. We
will discuss this topic in greater detail in the next section.

It should be noted, that the equation (1) is an approximate one and it is correct only when the small
scatterers (kL ≪ 1) are considered.

The solution of the equation (1) can be expressed in the form

Ẽ(r, ω) ≡ Ẽin(r, ω) + Ẽsc(r, ω), (3)

where the scattered field Ẽsc is

Ẽsc(r, ω) =
k2

εh

(
Î +

∇⊗∇
k2

) N∑
n=1

(εsc,n − εh)Ẽ(rn, ω)Φn(r), (4)

and

Φn(r) ≡
∫ ∞

−∞

f̃(q)eiq·(r−rn)

(q2 − k2)
dq

(5)

f̃(q) ≡ 1

8π3

∫ ∞

−∞
f(r)e−iq·rdr.

Here Î is the 3 × 3 unitary tensor in polarization space and rn is the radius vector of the n-th particle.
The function f̃ is the Fourier transform of the function f . The incident field Ẽin is created by the source
S in the host medium (more information can be found in [31]).
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The formula (4) is rather general one and it describes the field scattered by the cluster made of small
particles of arbitrary form. The resonance properties and interference between the scatterers are taken
into account by the fields Ẽ(rn, ω) inside the particles. The fields Ẽ(rn) should be found by solving the
system of 3N linear equations obtained by substituting r = rn into (3).

The scattered field (4) can be simplified when the observer is outside of the cluster, such that r ̸= rn.
In this case the integrals (5) can be calculated explicitly and the scattered field (4) can be presented in
the following form

Ẽsc(r, ω) =
k2V

4πεh

(
Î +

∇⊗∇
k2

)
×

N∑
n=1

(εsc,n − εh)Ẽ(rn, ω)
eikRn

Rn
, (6)

where
Rn ≡ |r− rn| , r ̸= rn. (7)

Here Rn is the distance between the observation point r and the radius vector rn of the n-th scatterer,
V is the scatterer’s volume.

In many practical cases the distance between the cluster and the observer is much larger than the size
of the cluster, i.e. |r| ≫ max(|rn|), and in addition, the condition k |r| ≫ 1 is satisfied. In this case the
field (6) can be simplified and it can be rewritten in the following form

Ẽsc(r, ω) =
k2V

4πεh

eikr

r

(
Î − l⊗ l

)
×

N∑
n=1

(εsc,n − εh)Ẽ(rn, ω)e
−ikl·rn , (8)

where
l ≡ r/r, r ≡ |r| ≫ max(|rn|), kr ≫ 1. (9)

We note that the formula (8) is the final expression for the field scattered by the cluster of small
particles, and it will be used in the following discussion.

3 The permittivity of the active particles: steady state solution

In this section we will study the permittivity εsc,n of the active particles which characteristic size is much
smaller than the incident wavelength (kL ≪ 1). The particles are active due to homogeneously distributed
doped active atoms. The density of the active atoms is M . We note that the permittivity εsc,n in formula
(8) can be complex number with negative or positive imaginary part, and in this case one can study wave
scattering with gain or loss in active media [12]-[14]. The problem with such approach is two-fold. First,
the value of the imaginary part is not related to the properties of the actual medium, and second, the
permittivity is the same for all particles, that is not true for real systems. As it was suggested in [15], such
approach is valid for quantitative estimations of lasers before threshold. For more accurate investigation
one should use rigorous methods taking into account atomic transitions and pump dissipation.

It is important to acknowledge that when the particles are small the number of active atoms in upper
state is constant within the particle, while this number can be different for other particles. We assume
that all the scatterers have the same density M of the active atoms. It is not limiting assumption, and
it is very convenient one. We also assume that the amplifier is at steady state, so the densities of the
active atoms in the upper and low states are time independent. We approximate the active atoms as
two-level systems exited by the optical pump with the frequency ωp and relaxing with the wide range of
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the frequencies ωj (j = 1, 2, .., p, .., Nω). We can present the permittivity εsc,n of the small particles in
the following form

εsc,n ≡ ε0sc,n + ε′sc,n(rn, ω), (10)

where ε0sc,n is the permittivity of the n-th scatterer without the active atoms and ε′sc,n is the permittivity
of the n-th particle due to the presence of the active atoms. The latter can be expressed in the following
form [1]

ε′sc,n(rn, ω) = i
c

ω

√
ε0sc,n [ML(rn)σa(ω)−MU (rn)σe(ω)] , (11)

where the emission and the absorption cross sections of the active medium respectively are

σe(ω) ≡ 2πe2γeα

mc
√

ε0sc,n

(
(ω − Ωe)

2 + γ2e

) , (12)

σa(ω) ≡ 2πe2γaα

mc
√

ε0sc,n

(
(ω − Ωa)

2 + γ2a

) , (13)

and the density of the active atoms is

M = MU (rn) +ML(rn). (14)

Here MU and ML are the densities of the active atoms in the upper and low states respectively, and M
is the total density of the active atoms. The frequencies Ωa and Ωe are the resonance frequencies for
absorption and emission respectively, and α is the oscillator strength. The frequencies γa and γe are the
dipole relaxation frequencies for the absorption and the emission respectively (typical values are about
1013 Hz [32]), and e and m are the electron’s charge and mass respectively.

The importance of the formula (11) is that it allows us to use experimentally measured emission and
absorption cross sections (σe and σa) when the density MU is known. This approach will be used in the
following section where the results of the numerical calculations will be presented. It should be noted
also that we neglected by the real part of the permittivity ε′sc,n because it is small compared to the
optical contrast ε0sc,n − εh, especially near the resonance. We note that the formulae (12) were calculated
assuming that ω ∼ Ωe, Ωa.

3.1 Rate equation approximation

The expressions (10) and (11) for the permittivity of the particles suggest that the densities MU and ML

should be known. We can find them by using the rate equation approximation (see for example, [1]).
When the pulse duration exceeds the dipole relaxation time (typically 10−13 s), the density MU of

the upper level atoms can be calculated by using the rate equation approximation in which the dopants
respond so fast that the induced polarization follows the optical field adiabatically [32]. We use the
following rate equation [34]

dMU (rn)

dt
=

Nω∑
j

Ij(rn, ωj)×

[ML(rn)σaj −MU (rn)σej ]−MU (rn)/τ, (15)

where

σaj ≡ σa(ωj), σej ≡ σe(ωj), (16)

Ij(rn, ωj) ≡ cεh
4πh̄ωj

∣∣∣Ẽ(rn, ωj)
∣∣∣2∆ω2. (17)
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Here σaj and σej are the absorption and the emission cross sections at the frequency ωj respectively,
and Ij is the flux of photons at the frequency ωj , and the |...| brackets denote the absolute value. The
parameter τ is the relaxation time of the exited atom (typically 10−3 − 10−6 s [32]), h̄ is the reduced
Planck constant, ∆ω = ωj+1 −ωj is the frequency bin, and Nω is the total number of the frequency bins.

Since we consider only steady state solutions when

dMU (rn)

dt
= 0, (18)

the solution of the rate equation (15) is

MU (rn) =
M

∑Nω
j Ij(rn, ωj)σaj

1/τ +
∑Nω

j Ij(rn, ωj)(σaj + σej)
, (19)

and the formula (11) for the permittivity ε′sc,n has the form

ε′sc,n(rn, ω) ≡ i
cM

ω

√
ε0sc,n ×

σa(ω)/τ +
∑Nω

j Ij(rn, ωj) [σa(ω)σej − σe(ω)σaj ]

1/τ +
∑Nω

j Ij(rn, ωj)(σaj + σej)
(20)

The formula (20) is the main result of this section and it shows that the permittivity of the small
active scatterer is a complex function of the intensities of the fields Ẽ(rn, ω) inside the particles, frequency
ω, position of the particles rn, and absorption and emission cross sections σaj and σej . When the light
intensity changes (due to increased reflection from the scatterer’s boundaries or due to decreased amount
of the scattered light from all other particles, for example), it will affect the permittivity ε′sc,n (20). We
note that the photon fluxes Ij(rn, ωj) should be found by solving the system of nonlinear equations with

respect to the fields Ẽ(rn, ωj) inside the particles.

3.2 Usage of weak scattering

As the expression (20) for the permittivity of the small active particles suggests, the field scattered by the
cluster should be found by solving the system of nonlinear equations with respect to the fields Ẽ(rn, ω)
inside the particles. However, this tedious task is essentially simplified in our case, because we consider
the scattering by small particles. As the result, the scattered field in the sum (20) is small compared to
the incident one, and it is natural to use perturbation theory where the intensities Ij are small compared
to the pump intensity Ip. We distinct pump and signal (anything but a pump) frequencies ωp, and ωj

respectively.
When the signal is so small that

1/τ + Ip(rn, ωp)(σap + σep) ≫
Nω∑
j ̸=p

Ij(rn, ωj)(σaj + σej), (21)

σap ≡ σa(ωp), σep ≡ σe(ωp), (22)

the permittivity (20) can be expressed in the approximate form

ε′sc,n(rn, ω) = −i
cM

ω

√
ε0sc,n ×

σa(ω)/τ + Ip(rn, ωp) [σa(ω)σep − σe(ω)σap]

1/τ + Ip(rn, ωp)(σap + σep)
. (23)

5



−2
0

2

x 10
−7

−2
0

2

x 10
−7

−2

0

2

x 10
−7

x, my, m

z
, 

m

Figure 1: The schematic representation of the spherical cluster made of 123 small cubes. The period of
the cluster is d=2.2L, and the characteristic size of the cubes is L = 25 nm.

For some estimations it can be sufficient to use the permittivity (23), while for rigorous numerical calcu-
lations one can apply general formula (20) where fluxes Ij are found by using the method of successive
approximations.

When emission and absorption spectra are very distinct and separated such that σep = σas = 0, we
can simplify the formula (23) for the pump and the signal respectively

ε′sc,n(rn, ωp) = i
cM

ωp

√
ε0sc,n

σap/τ + Is(rn)σapσes
1/τ + Ip(rn)σap

,

(24)

ε′sc,n(rn, ωs) = −i
cM

ωs

√
ε0sc,n

Ip(rn)σesσap
1/τ + Ip(rn)σap

.

The important feature of the formulae (24) is the sign flip: for the pump it is positive (the pump is
absorbed) and for the signal it is negative (the signal is amplified).

4 Intensity of the scattered field and the light amplification

We define the intensity of the scattered field as Isc ≡ |Esc|2, and by using the formula (8) we can present
the intensity in the following form

Isc(r, ω) =
k4V 2

16π2ε2hr
2
×∣∣∣∣∣(Î − l⊗ l

) N∑
n=1

(εsc,n − εh)Ẽ(rn, ω)e
−ikl·rn

∣∣∣∣∣
2

, (25)

where
l ≡ r/r, r ≡ |r| ≫ max(|rn|), kr ≫ 1, (26)

and the permittivity εsc,n is described by the expression (20) or by (23).
The expression (25) suggests that the light amplification (related to the imaginary part of the per-

mittivity εsc,n) is due to step wise amplification inside each active particle, and it is coded in the fields

Ẽ(rn, ω). Below we consider the fields Ẽ(rn, ω) in grater detail for one active particle.
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4.1 The light amplification by small active sphere

Consider the light amplification by small active sphere. In this case the intensity of the scattered field is
described by the expression (25) where the field Ẽ(r1, ω) has the following form [33]

Ẽ(r1, ω) =
Ẽin(r1, ω)

D(ω)
, (27)

and the denominator D is

D(ω) = 1 +
(εsc,1 − εh)

3εh

(
1− L2k2 − i

2

3
L3k3

)
. (28)

The resonance frequency ωr is found from the following equation

ReD(ωr) = 0, (29)

and the resonance width ξ is defined as

ξ ≡

∣∣∣∣∣ ImD(ω)
∂ ReD(ω)

∂ω

∣∣∣∣∣
ω=ωr

. (30)

In accordance with formulae (29) and (30) the resonance width ξ and the resonance frequency ωr respec-
tively are

ξ =

√
εhLω

2
r

3c
+

3c2 Im(εsc,1 − εh)

2ωrL2Re2(εsc,1 − εh)
, (31)

and

ωr =
c
√
3

L
√

Re(εsc,1 − εh)

(
1 +

Re(εsc,1 − εh)

3εh

)1/2

. (32)

When the permittivity εsc,1 of the particle is real, the resonance width is defined by the first term in
Eq. (31). When the imaginary part of the permittivity εsc,1 is taken into account and it is negative or
positive, the resonance width can be slightly decreased or increased respectively. The formulae (31) and
(11) suggest that when MUσe < MLσa, the resonance width increases (with respect to the one in the
passive medium) and it decreases when MUσe > MLσa.

This decrease (or increase) corresponds to effective gain (or loss) of the field scattered by the particle
at the resonance frequency.

We note that similar conclusions can be drawn for the clusters consisting of two and more particles,
while the analytical investigation of such systems is much more complicated.

5 Two numerical examples: light amplification by ordered and by
weakly disordered spherical cluster

In this section the light amplification and scattering by active clusters (clusters made of an active material)
is studied numerically. The normalized intensity ℜ of the scattered field is calculated. The normalized
intensity is defined as

ℜ(r, ω) ≡ Isc(r, ω)/Iinc(0, ω). (33)

All the used clusters are 3D structures (as shown, for example, on the figure 1) made of cubes doped
with Y b3+ (active material). The absorption and emission cross sections are taken from [35] and the other
parameters are from [34]. The incident field is generated by the point source described by the following
formula

Ẽin(r, ω) = E0
eik(r−rs)

4π |r− rs|
, k |r− rs| ≫ 1, (34)
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Figure 2: The normalized intensity of the scattered field ℜ versus normalized frequency kL for the
spherical cluster made of small cubes with different density of the active atoms M . The period of the
cluster is d=2.2L, and the permittivity of the particles and the host medium is εsc,n = 4.2466 and εh = 1
respectively, the characteristic size of the cubes is L = 25 nm, and the total number of the particles in
the cluster is N = 515.
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Figure 3: The normalized intensity of the scattered field ℜ versus normalized frequency kL for slightly
disordered spherical cluster made of small cubes. The results of two runs are presented, and the scattering
by the ordered cluster is also shown for comparison. The period of the cluster is d=2.2L, and the density
of the active atoms is M = 5 ∗ 1027 m−3. The permittivity of the particles and the host medium is
εsc,n = 4.2466 and εh = 1 respectively, the characteristic size of the cubes is L = 25 nm, and the total
number of the particles in the cluster is N = 515.

where the field E0 is polarized along z direction. The source is positioned at rs = {1, 0, 0} and the center
of the cluster is positioned at the origin of coordinates r = {0, 0, 0}. The pump wavelength is selected to
be λp = 911 nm, and at this specific wavelength the field E0 is artificially increased by several orders of
magnitude to simulate the pump. Finally, the perturbation theory is used to calculate the density of the
upper level atoms.

5.1 The amplification and scattering by ordered spherical cluster

Consider the scattering by the spherical cluster made of the small active cubes organized into simple
cubic lattice. The size of the cubes in the cluster is L = 25 nm, the period is d = 2.2L, the radius of the
cluster is 5d. The permittivity of the scatterers is εsc,n = 4.2466 and the permittivity of the host medium
is εh = 1. Such combination of the cluster’s permittivity and dimensions creates optical resonance of the
passive cluster (cluster without any active material) near kL = 0.16 (λ = 982 nm).

The figure 2 shows the normalized intensity ℜ of the scattered field for the active clusters with Y b3+
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density M = 5 ∗ 1027 m−3, M = 2.5 ∗ 1027 m−3, and M = 1027 m−3. For comparison, the intensity of the
scattered field from the passive cluster with Y b3+ density M = 0 m−3 is also presented.

The figure 2 shows that light is significantly amplified at the selected frequency kL = 0.16 for the
doping exceeding M = 1027 m−3. For relatively low M , when the doping increases 2.5 times (from
M = 1027 m−3 to M = 2.5 ∗ 1027 m−3), the intensity grows only 1.6 times. However, for relatively higher
M , when the doping increases only 2 times (from M = 2.5∗1027 m−3 to M = 5∗1027 m−3), the intensity
grows 2.25 times. Additional simulations (not presented here) suggest that at even higher doping, the
light amplification increases several orders of magnitude while the doping increases only few times. It
is important to realize that by using correct design, the light amplification can be produced by cluster
made of few hundreds of small active particles. This phenomenon opens a way for novel applications in
nanomedicine, nanooptics, and security.

We realize that the size of the cluster used in our calculation is too small to made a lasing with the
conventional values of the doping M (M ∼ 1025 m−3) and that is why we have presented only results
with M smaller than physically realistic limit (∼ 1028 m−3).

5.2 The amplification and scattering by spherical cluster with weak positional dis-
order

In this subsection we consider the light amplification and scattering by the active cluster which particles
are randomly positioned near predefined positions. The predefined positions are the nodes of the cubic
lattice with the period of d = 2.2L, and the particles are positioned not further than 0.1L from the nodes
to avoid a collision. We note that the distance 0.1L is actually 2.5 nm, that is much less than the size of
the particle L, and that is why we call this cluster weakly disordered one.

We note that the density of the active atoms in the cluster is M = 5 ∗ 1027 m−3. The permittivity of
the particles and the host medium is εsc,n = 4.2466 and εh = 1 respectively, the characteristic size of the
cubes is L = 25 nm, and the total number of the particles in the cluster is N = 515.

The results of the calculations are presented on the Figure 3. The figure shows the results of two
simulation runs for the disordered cluster and one result for ordered cluster for comparison.

The figure suggests that despite weak positional disorder the random positioning significantly influ-
ences the scattering and amplification by the cluster. In our particular case, two scattering peaks compete
with each other: one near kL = 0.154 (λ = 1020 nm) and another is near kL = 0.147 (λ = 1069 nm).
This feature is probably related to the emission spectrum of active material (Y b3+) which has two crests:
very narrow one near 980 nm and broad one near 1030 nm.

The random amplifier differs from the nonrandom one in a number of ways. The first difference is
the absence of well defined boundaries, which in turn, govern the morphological resonances. Thus, the
amplification (or lasing) can be at several frequencies simultaneously. The second difference is the random
structure inside the cluster, affecting the interaction between the particles and the total gain as the result.
It is important to realize that even small randomness will significantly affect the light amplification in
the cluster made of small active particles, and that proposed theory can explain and predict the related
effects.

When the allowed distance from the particles to the nodes increases (while the period is fixed or also
increases), the effective size of the cluster grows. As the result, the interaction between the particles in
the cluster will, in average, drop down. In addition, the effective permittivity of the cluster will decrease,
reducing the reflection of the light inward from the surface of the cluster. Under these conditions, the
lasing will become much more difficult.

6 Conclusions

The light amplification and scattering by the cluster made of the small active particles have been studied
analytically and numerically.
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The permittivity of the small active particles has been calculated in steady state by using the rate
equation approximation.

The light amplification has been discussed for small active particle. It has been suggested that the
amplification (or loss) effectively occurs in the active particle due to narrowing (or broadening) of the
resonance.

The light scattering by the ordered and slightly disordered clusters of small active particles has been
calculated numerically. The numerical simulations have been shown that the light amplification occurs
near the morphological resonances which are governed by the shape of the cluster and its optical contrast.
It was shown that even small randomness can significantly affect the light amplification of the cluster
made of small active particles.
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