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APROXIMATIONSIN DIVISIBLE GROUPS:PART Il

ABSTRACT

We verify some assertions in the prequel to thigepain which certain functions
which are referred to as proximity functions wengraduced in order to study
Dirichlet-type approximations in nhormed divisibleogps and similar groups that
enjoy a form of divisibility, for instance-divisible groups.
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1.0INTRODUCTION

A divisible group(G, .) is defined as a group such that for everg {G} and
natural numben there is arh € {G} such thay = h™: = h. h™"1; informally, we say
that G ha:-th roots for alin. A foremost example is the group of rational nurebe
Q under addition. Similarlyp-divisiblegroup is a group witip-th roots. Now letw
denote a subset of the prime numb@&8,5,7, ...}. In the prequel [2] to this paper,
we studied thewo-divisible groups, which are groups wifhth roots for allp € @.
Archetypal examples are the additive subgroups @f given by Q{w} =
{q € Q:p|D(q) = p € w}whereD(q) is the denominator af. We say a group is
uniquely w-divisible if it is a w-divisible group with unique roots. For more
introduction to divisible groups, see the referen¢#,3,4,5,6,7]. We recall the
following definitions given in [2]:

DEFINITION 1.1 (Norm on @-Divisible Groups): For a set of primes, let (G,)
be aw-divisible group with identity elememtand let|-|: Q{w} — R be an absolute
value function. Then a functidh||: G - R is anormon G if it satisfies:

i lgll=0onlyifg=e
i, Ilghll < ligll + IRl
ii.  1lg"l = Irlllgll, r € Qfw)

The absolute valdyd: Q{w} — R, essentially via Ostrowski's Theorem [8], is the
usual one on the real numbers or on pkedic numbers. We denote §¢ -, ||-||) a
w-divisible group with a nornfj-||.

DEFINITION1.2 (Proximity Function on Groups): Let G be a group with identity
e. Then a functio: G\{e} — R is aproximity functionon G if for all g # h:

I o(g#e)=0(g™H>0
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i, o(gh™) < Co(g)o(h)
ji. — o(gh™) < Co(g) if o(g) = o(h)

where C > 0 is an absolute constant. If in (i) we have theorsgjer bound
o(gh™1) < Cmax{o(g), o(h)}, then we sayp is anultra-metric proximity function
Furthermore, ifo is integer-valued withC =1 and that (i) and (ii) read

e(gh™")|1em(e(g), e(h)) ande(gh™Hle(g) if e(g) = o(h) respectively, then we
sayp is anorder function

For Abelian torsion groups G, the functigid.) = ord(.) is an order function (see
Example 1.4 in [1] for more examples).

DEFINITION1.3 (Proximity Function on Normed w-Divisible Groups): Let
(G, |I)l) be a normedwo-divisible group with identitye and leto be a proximity
function onG. Thengp is said to be alose proximityfunction onG if there exists a
Uo > 0 such thainf{o(g,)*|lg.|I} = 0 for some null sequendg,,}n-; < G\{e} if
and only ifu < u,; otherwise, themw is anopen proximityfunction onG. We shall
say that the elements (@ arein close proximity(andn close ordey to each other;
else, where necessary, we shall say the elemeamits apen proximity(resp.in open
order) to each other.

We typify a close proximity function o0& by (o; C, uy). The main result proved in
[2] is the following theorem.

THEOREM 1.4: Let(p; C, uy) be a close proximity function d&,-, ||-||) and letg € G.
Then for everyu > u, and Cauchy sequendg,},-, € G\{g, e} converging to g,
there exists N such thdlgg,t|l = 0(e(g,)™*) if and only ifn < N, where the
implied constant is independent of n or g; morepvkis is also true fou = y,
if gis ultra-metric and the implied constant is less arth

1 . — —
mmfgqtgn{Q(.ggnl)#o ”.9.9711 113.

Theorem 1.4 implies that there can be only finitelgny elements of G in close
proximity to any element in G with respect to theeg estimates; or equivalently,
Cauchy sequences in G do not converge inside Gregbect to the given estimates.
A converse to this theorem, would give a Dirichiigie approximation for
(incomplete)w-divisible groups. In the present paper, we gisketchy verification
of some assertions on examples of proximity fumgigiven in [2]. On the other
hand, we have been unable to prove exactly theclidai-type approximation
theorem forw-divisible groups and we leave the task to othénan(s).
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2.0PRELIMINARIES

We require the following definitions and resultsnérm||. || on an arbitrary group G
with identity e is said to beliscreteif

(D) 1I11: G = Ry

(2) llabll < llall + llbll, Va,b € G
@) lla™ll = Inlllall,a € G,n € Z
(4) infaegeyllall > 0

Let K be an algebraic number field and@be the field of algebraic numbers.
The absolute Weil heiglit: K — R.,is given by

hQ) = | [ max(, 1)

where v runs through all places Kfand|-|,is a normalised absolute value, hence
[T,lal, = 1. We know (see [9]) that(af) < 2h(a)h(B) and alsch(a™1) = h(a)

if a #0.

The p-adic norn}-|,,of a rational numbeq = %, wherea, b are integers witth # 0

is given by

=0

Wherep”»@ is the greatest power dividing and similarlyp”»® is the greatest
power dividingb.

3.0MAIN RESULT

We now establish the main result of this paper,civhiwas stated without proof in
[2]. The proof here is a sketch.

LEMMA 3.1: The following are close proximity functions on tespective groups
defined:

@) Suppose the absolute value function associatelgetmormedo-divisible
group (G, |Ill) is the usual one on the real numbers. Assume & is
normal subgroup of G such that the quotient gr@ys is Abelian and
torsion, and that the norfjr|| is a discrete norm on S—i.e., there is an
absolute constant | suchthafjg € S\{e}|| =1. Then the function
06/s(g) =ord(g- S) =min{n € Z,,:g" €S} is a close order
function on G withyy, = 1, € = 1; moreover, ifw is a singleton set then
o is ultra-metric. (We refer to this asa-ary order function on G).

(i) Given a prime p and the grou@{p}, then the functiorp,(q # 0) =
[pliegUale)/togPl] (where|:] (resp.[-]) denotes the floor (resp. ceiling)

3
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function and wheré|., is the usual absolute value on the real numbers)
is a close ultra-metric proximity function @{p} withp, =1 andC =p
given the usual p-adic norm @ (We refer to this proximity function as
the p-adic proximity function o@{p}).

(i)  For an algebraic number field with the usual normalised absolute
values|-|, over all places v such th{,|a|, = 1 for everya € K\{0},
the functiongk (@) = [], max{1, |a|,}—i.e., the Weil height—is a close
proximity function oriK* with 4, = 1 andC = 2 given the norm defined
by the usual absolute value on the complex numlféfs. shall refer to
this as theK-proximity function).

Proof. The proof of the above lemma would be generdgtchy.
For (i), it is easy to see that singg/s(g) = ord(g-S) = min{n € Z,,:g" € S},
that is sincep;,s denotes the order of agroup, then straightforwaitlisuffices for
the definition of a proximity(indeed, an order ftina). To see that it is a close order
function, we let{g,},-1 € G\{e}be any null sequence; then we observe that
foru = uy, = 1, we have

inf{o(g,)*llgnll} = infllg,|l >0

which is so since(g,) = 1.

For (ii), we observe that far # randq,r # 0, we have
Qp(q) = [pllog(lqlw)/logm] = [pllog(l—qloo)/long] = Qp(—q)
and
o,(q—1) = [pllog(lq—rloo)/logpl]
< [pllog(lqlw)ﬂog(lrloo)/long]
< [p1+llog(lqloo)+log(lrloo)/logpJ]
< p[pllog(lqloo)/log pJ”pllog(IrIoo)/log pJ]

= pop(@)op (1)

If 0,(q) =0,(r), we easily see that,(q — 1) < po,(q). Finally, if{g,}ns1 €
Q{p} is a non-zero null sequence, the we see thatlifer=au,= 1 and with the p-
adic norm|. |,,, we have

inf{o, (q.)"Iqnlp} = 1
which is so since by definition we have the inetyal, (q) > Iqlgl.
For (iii), we know that

ox (@) = ox(a@™)
and that
ox(aB™) < 2ok(@ok(B~1) = 20k (@) ok (B)

It is easy to see thapk(af™!) < 20x(a) when gk(a) = ox(B). Finally,if
{an}ns1 € K is a non-zero null sequence, then foratt uy,= land norm|.|, we
have

inflog (an)#|a,|} = 1

4
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which is so since normalisation of absolute vaiogdies that

nlow(@) | | lanl, =1
v

lanly<1

which completes the proof.
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