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Abstract 
Analytical consideration of uni-axial single-domain ferromagnet during the first 

order phase transition induced by a magnetic field is performed. Field is directed along 
the symmetry axis antiparallel to initial magnetization direction. For samples of the flat 

shape, besides the known change of the magnetization direction on o180 , at definite 
relations between values of magnetic field, the magnetization and the anisotropy of a 
crystall, there is continuous spectrum of states with intermediate magnetization 
directions. In these states, a precession frequency 0=ω . For samples of spherical 
shape, a process of the phase transition does not depend on the demagnetization field. At 
addition action of high frequency field perpendicular to the main magnetic field, there 
are dynamic equilibrium states, i.e. "self-organizing states" of ferromagnet, when the 
entropy increase connected with dissipation is compensated by the negative entropy 
flow due to the periodic field. It is shown that under these conditions, by varying the 
frequency of the periodic field, we can control the self-organising system, i.e. decrease 
or increase the system energy and, correspondingly, change the direction of 
magnetisation in ferromagnet. 
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1. Introduction 
 

A very large number of phenomena and processes are known, which can be classified as 

"self-organizing systems" or "dissipative structures" [1-4]. Processes belonging to this 

category are, for example, sounding of wind and stringed musical instruments, a whistle 

sound, existence of proteins, development of plants, functioning of animals and humans. 

Generally, the life itself in all its forms is an example of such "self-organizing systems". It 

may seem surprising that, unlike nature, the man himself was able to invent so limited number 

of such systems. This could include such examples that can be reproduced on the laboratory 

table: the chemical "Belousov-Zhabotinsky reaction" [5, 6], “Benar cells” at liquid boiling [7]. 

Precessing ball solitons during the magnetic phase transition in ferromagnet could also be 

considered as “classical” self-organizing system or self-organizing states (SOS) [8]. Some of 

these systems are structures periodic in space or in time. Others are more complex. But the 

common feature of all these processes is that the loss of energy in the system associated with 
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dissipation, is fully offset by the influx of energy from external sources, i.e. inflow of entropy 

due to the dissipation is compensated by the negative flow of entropy due to the coupling to 

an external source.  

Suimilar an excited system existing at the expense of compensation of dissipation loss of 

energy by the influx of energy from external sources (SOS), is considered in this paper. 

It should be noted that the effects of SOS the self-organizing states, after the works [1-

3], been actively studied in the subsequent years. We note here only a few works related to the 

effect of the so-called self-organized criticality (SOC) [9-19], with the appropriate addition of 

a list of references. 

In this article, the SOS arising at the first order phase transition in uni-axial single-

domain ferromagnet under the action of a magnetic field directed along the symmetry axis are 

considered.  

At first, in the second part of this article, peculiarities of the first-order phase transition in 

a single-domain ferromagnet has been analyzed. The sole purpose of the single-domain 

condition for this article is to exclude extraneous sources of nucleation of a new phase, such 

as domain walls or external boundaries of the crystal. (For example, π2 -degree boundaries 

themselves are nuclei of a new phase.) In such conditions, the phase transition under the 

action of the magnetic field is determined by the process of coherent magnetization change. 

In the third part of the article, the changes in the phase transition of ferromagnet under 

the action of additional high frequency magnetic field perpendicular to the main field have 

been considered. In such conditions, SOS of ferromagnet arise. Features of these states have 

been investigated. 

 

2. Phase transition in single-domain ferromagnet 

 

 

 
 
Figure 1: Scheme of the final states of the 
ferromagnet: (a) – up to saturation under a field 

zsatH , and (b) – ferromagnet under field zH . 

 
 

 
Analysis scheme of ferromagnetic is presented in Fig. 1. Initially, the sample is 

magnetized to saturation along the direction (-z) – see in Fig. 1(a). For this it is necessary that 
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the applied field 0<dsatH  was in absolute value greater than arising in the sample the 

demagnetizing field, i.e. dzsat HH > . Fig. 1(b) shows the ferromagnet magnetized to 

saturation along the axis (z) under the action of the field dz HH > . Thus, Fig. 1 corresponds 

to the final states of the ferromagnet. In a given article the process of )b()a( →  transition is 

analyzed. 

To analyse magnetic phase transition in the ferromagnet with uni-axial anisotropy, we use 

the Landau–Lifshitz equation [20] in the Gilbert form: 










∂
∂×κ+

∂
∂×γ=

∂
∂

t

W

t

m
m

m
m

m
 ( 0>κ ) (1) 

and the following expression for the density of energy: 

dzz EHmm
K

W +−= ⊥
21

2
. (2) 

Hz is an external magnetic field directed along the anisotropy axis Z ( 0>zH ); 01 >K , 

hBµ=γ 2 ; m is a non-dimensional vector of ferromagnetism equal (in the absolute value) to 

1, yx immm +=⊥ , initial magnetizaton is along the (-z) direction, in present paper 

2
1 ⊥−±= mmz ; dE  is energy of demagnezation for the sample. We consider only two 

cases: sample of the flat shape, moreover, the thickness of such sample is much smaller than 

the dimensions in other directions and the symmetry axis is perpendicular to the plane of a 

sample; in the second case the sample is of the spherical form. 

 

2.1 Sample of the flat shape 

 

In this case the energy of demagnetization is  

2
04 zd mME π=   (3) 

where 0M  is the magnetization of a crystal. In such case, equation (1) can be written as: 

( ) 








τ∂
∂−

τ∂
∂κ+−−−=

τ∂
∂ ⊥

⊥⊥⊥
⊥ m

m
m

mmmhhm
m

i z
z

zd21 . (4) 

Here the differentiation is carried out with respect to the dimensionless time tKB
1

12 −µ=τ h ; 

1z KH = h ; parameter of demagnetization field 104 KM hd π= . 

The solutions of Eq. (4) have the following form: 

ττω
⊥ τ=τ )()()( iepm  (5) 
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From (4), the equations, which define the correspondence between zm  and ω and the time 

changes of these parameters are the following: 

( ) )1( 2κ+ω=+ hm2h-1 zd ,  (6) 

(here 12 <<κ , therefore we neglect this value.) 

( )21 z
z m

d

dm −κω=
τ

. (7) 

For the energy density relative to initial state we have: 

)1(
2

)1(
)21(

2

z
z

dfl mh
m

he +−−−= , (8) 

and 

( )22 1 zm
d

de −κω−=
τ

. (9) 

In what follows we consider the process of changing of parameters of a ferromagnet in the 

transition from the initial state when 1−=zm . In this process, the energy decreases, 

respectively zm  increases from the initial value, and precession frequency also changes. The 

character of changes in a ferromagnet during the phase transition depends strongly on the 

shape of the sample. 

In Figs. 2 for the sample of flat form, limit values of main parameters are given as 

functions of dh  value for different values of acting field h . Initial energy is 01 =e , final 

energy is 2e . Correspondingly, we have initial 11 −=zm  and final 2zm , initial 1ω  and final 

2ω . These limiting values are determined from equations (6) and (8). 

If 0>h , there are two ranges for limit values of the parameters. In the first of them, a 

completed reorientation (CR) takes place if  

)12(0 −≤≤ dhh : 12 +=zm , )21(1 dhh −−=ω , )21(2 dhh −+=ω , he 22 −= .  (10) 

In the second range, the transitions into intermediateie states , where )1(2 +<zm , occur if  

)12( −≥ dhh : )21(2 dz hhm −−= , )21(1 dhh −−=ω , 02 =ω , 
)21(2

)21( 2

2
d

d

h

hh
e

−
−−= . (11) 

If 0≤h , there is not completed phase reorientation, but only the transitions into 

intermediate states. In latter case, the limit parameters, as in (11), are the following: 

)21(2 dz hhm −−= , )21(1 dhh −−=ω , 02 =ω , 
)21(2

)21( 2

2
d

d

h

hh
e

−
−−= . (12) 

As can be seen, for a given value of a field, completed phase reorientation occurs only at 

sufficiently small value of dh . At a higher value of dh , the final value 02 =ω  and as can be 
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seen in these Figs. 2, the values )1(2 +<zm . The field value becomes insufficient to overcome 

the demagnetizing fields. Fig. 2(e) corresponds to 0=h , i.e. when the field 0<zsatH , which 

magnetizes the sample to saturation, is simply removed. In this case 02 =zm . In this case the 

magnetization in final state is perpendicular to the axis of anisotropy. 

 

 

 

 

 

 

 

 

 

 
 
 
 
 
 
 
 
 
 
 
 

 
Figures 2: Limit values of main parameters for flat sample vs demagnetisation field 
(energy is denoted by filled circles, zm  value – empty rectangle, frequency – 
continuous line): (a) 5.1=h , (b) 1=h , (c) 5.0=h , (d) 1.0=h , (e) 0=h , (f) 5.0−=h . 
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Note that for multi-domain sample, zero magnetic field corresponds to the state, when the 

magnetic moments of domains are directed with equal probability along or against the 

anisotropy axis and averaged 0=zm , as 2zm  in our case. 

If the current field is negative, i.e. 0<h , the value 02 <zm , as is shown in Fig. 2(f). 

So there are continuous spectrum of intermediate states, as though frozen states of a 

ferromagnet. System tends in each of these “frozen states” (FS) asymptotically, wherein the 

precession frequency 0→ω .  

In Fig. 3, in dependence of the critical field on the parameter of demagnetization field, the 

boundaries of considered above areas are shown.  

 

 

Figure 3: The dependence of the critical field on the parameter 
of demagnetization field showing the boundaries between areas 
with different characters of the phase reconstruction in the case of 
the thin flat sample.  

 

 

Note that the expressions (10), (11) and (12) are also valid for the phase transition in the case 

of a ferromagnet with the easy magnetization plane, i.e. at 01 <K . 

Let us consider the time dependence of parameters during the phase transition. In 

correspondence with equations (6) and (7), the time dependence of zm  can be obtained: 

[ ]∫ −+−κ
=τ z

z

m

m
zdz

z

mhhm

dm
0 )21()1(

1
2

. (13) 

In Figs. 4, the time dependences of main parameters for flat sample are presented, 

according to (13) and (6), (8). In all these and in subsequent examples, the dissipation 

parameter is 4105 −×=κ . These time changes correctly correspond to dependences of the type 

shown in Figs. 2. 

For a given dh  value, a minimum field, in which a change in orientation occurs, is: 

dhh 21min −= . If for flat sample 2566.1=dh , i.e. 1.010 =KM , this field equals to 

513274.1min −=h  (an approach to this value can be seen in Fig. 4(d)). 

In Fig. 5, field dependences of energy and zFSm  parameter of FS for flat sample at 

2566.1=dh  are presented. 
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Figures 4: The time dependences of fle , zm  and ω  for flat sample: (a) 5.0=h , 

6283.0=dh  ( 05.010 =KM ); (b) 1.0=h , 6336.1=dh  (0.13); (c) 0=h , 5655.0=dh  (0.045); 

(d) 2566.1,4.1 =−= dhh  (0.1). 

 

 
 
 
Figure 5: Field dependences of energy (full circles) 
and zm  parameter (empty rectangles) of FS for flat 

sample at 2566.1=dh . Here, the frequency for all 

states is 0→ω . 
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i.e. for spherical shape of the sample, the parameters zm , ω  and e  and their time changes do 

not depend on the dh  value, but the value of energy contains a constant component 








 π+
1

0

3

4

K

M
. Therefore, instead of (6) and (8), we have the following: 

)1()1( 22 <<κκ+ω=+ hmz , (15) 

)1(
2

)1( 2

z
z

sph mh
m

e +−−= . (16) 

In Fig. 6, dependences of energy and frequency on zm  at three field values, 

1.5and0.1,5.0=h , for spherical sample are presented, in correspondence with (15) and (16). 

Of course, the transition from 1−=zm  to 1+=zm  is possible only if 1≥h . 

 

 

 
 
Figure 6: Dependences of energy and frequency on 

zm  at three field values for spherical sample.  
 

 

 

 

In the case of spherical sample, according to (7) and (14): 

∫ +−κ
=τ z

z

m

m
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z

mhm

dm
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1
2

. (17) 

In Fig. 7, the time dependences of energy and zm  value are shown at 5.1and1.1,1=h  for 

spherical sample. In these cases the change of zm  is from )999.0(−  to )999.0(+ . 

 

Figures 7: Time dependences of energy and zm  for spherical sample: (a) 1=h , (b) 

1.1=h , (c) 5.1=h . All changes are from 999.01 −=zm  to 999.02 +=zm . 
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Reorientation of the magnetization in single-domain ferromagnets under the action 

magnetic field pulses had been studied in many papers. These studies were conducted 

primarily in connection with the creation of high speed memory elements. We refer here just 

to a few articles related to the issues addressed in this paper: [21 - 27]. Single-domain 

ferromagnets (Stoner particles) on the basis of numerical solutions of Landau-Lifshitz were 

considered in those studies. The different directions of the external magnetic field was taken 

into account, but the symmetric case was not considered there, when the field is acting along 

the symmetry axis of the crystal with uniaxial symmetry. In addition, calculations were made 

at conditions corresponding to high values of dissipation parameter 1≈κ  in equation Landau-

Lifshitz, i.e. in the area of Stoner-Wohlfatrth limit [21]. In this region, the time by coherent 

switching takes a minimum value in the range close to 10-9s.  

In the next part of this article, a particular case for the analysis of self-organizing states is 

considered, when the magnetic field is directed along the axis of anisotropy. Such geometry 

allows to enter the frequency of precession relatively to the axis of symmetry and enables an 

exact analytical consideration of the phase transition (as opposed to numerical calculations in 

[21 - 27]). Moreover, some features of reorientation (see above) not detected in [21 - 27] have 

appeared. 

Comparing our results with [21 - 27], we see that by taking into account 2κ  relative to a 

unit in the equation (15), we have instead of (17) the ratio (in this case for the spherical 

sample):  

∫ +−







 κ+
κ

=τ z

z

m

m
zz

z

mhm

dm
0 ))(1(

1
2

. (18) 

In Fig. 8, dependency of 
1

2 1
)1/(

−










κ
+κ≡κ+κ  on κ  is shown. It can be seen that the 

rate of change of parameters of the ferromagnet, i.e. a speed of coherent switching is 

maximum at 1=κ , in corresponding with [21]. 

 

 

 

Figure 8: Dependency of effective parameter effκ  of 

coherent switching on κ . 
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Using the value 5.0
1 2 =

κ+
κ≡κeff  corresponding to the maximum speed, instead of the 

value 3105.0 −×=κ  taken from magnetic resonance investigations, as it is in Fig. 4 and Fig. 7, 

we obtain the same curves for parameters variation but with the transformation )()( nstst →µ  

of the timeline, i.e. in accordance with [21 - 27] about quick coherent switching in 

ferromagnets. 

 

3. Self-organizing states 

 

Using an additional external high frequency magnetic field, we can fix the precession 

frequency and thereby stabilize the intermediate states of the ferromagnet. If the added 

periodic field is perpendicular to a main field, and 

τω
⊥⊥ = 0

1
iehKH , (19) 

we can express the magnetic component of magnetization in the form 

( ) ( ) ( )( )τβ−τω
⊥ τ=τ 0iepm , (20) 

i.e. the precession phase of magnetic moments differs from the phase of periodic field. In this 

case, the equations for zm  in the case of flat sample take the following form:  

( ) ( ) β−+
τ

κ+=
















τ
β−ω−+−− ⊥ cos1211 2

0
2

zz
z

zdz mmh
d

dm

d

d
hmhm , (21) 








 β−








τ
β−ω−κ−=

τ ⊥ sin11 0
22 h

d

d
mm

d

dm
zz

z  (22) 

From (8), we obtain expressions for energy density relative to the initial state, together 

with the energy of interaction with the periodic field (see, for example, [8]): 

β−−+−−−= ⊥ cos1)1(
2

)1(
)21( 2

2

0 zz
z

d mhmh
m

he  (23) 

and for the change of this energy connected with dissipation and the action of external 

periodic field: 

( ) βω−+




















τ
β−ω−+









τ−
κ−=

τ ⊥ sin11
1

1
0

2
2

0
2

2

2 zz
z

z

mh
d

d
m

d

dm

md

de
. (24) 

The equations (19) – (24) constitute a complete description of the system, including its 

time transformation. However, in the present paper we consider only dynamic equilibrium 

state of ferromagnet, i.e. when the decrease of energy caused by dissipation is compensated 
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by energy flow from the external periodic field, i.e. ( ) 00 =ττ dde . Furthermore, in this case 

00 =τddmz  and 00 =τβ dd . Therefore, for this equilibrium state of ferromagnet, i.e. for 

self-organizing state (SOS), we obtain the following expressions: 

( ) 0sin11 0
2
00

2
0 =β−−κω−=

τ ⊥hmm
d

dm
zz

z , (25) 

( ) 0sin11 0
2
00

2
00

0 =β−−κω−ω−=
τ ⊥hmm

d

de
zz . (26) 

From these expressions, we obtain the relation: 

( )⊥−κω=β hmz /1sin 2
000 . (27) 

Correspondingly, the corrected equation for SOS takes the following form (instead of (6)): 

( )[ ] )1(211 2
0

2
0

22
000

2
0 zzzdz mhmhmhm −ωκ−=ω−+−− ⊥ . (28) 

From equations (25) and (26), it can also be seen that the energy compensation and 

consequently the origin of SOS is possible only if  

2
00min 1 zmhh −κω=≥ ⊥⊥ . (29) 

For such a system, the entropy increase connected with dissipation is compensated by the 

negative flow of the entropy, which is the result of external periodic field. It can be expressed 

as follows: 

0=
τ

+
τ

=
τ

⊥

d

ds

d

ds

d

ds hdiss , (30) 

where 

( ) 01
1 2

2
0 <−κω−=

τ
=

τ
−=

τ
⊥

z
dissdissh m

Td

de

Td

ds

d

ds
. (31) 

 

 
 
 

Figure 9: The frequency dependences of energy, 

0zm  value and the negative flow of the entropy 

due the external periodic field in SOS for flat 
sample, at 1.0=h , 2566.1=dh , 002.0=⊥h . In 

this case maximum of 0zm , at 00 =ω , equals 

approximately (+0.05). 
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Examples of the frequency dependences of energy, value of 0zm  and the change in 

entropy for the flat and spherical samples in SOS at 3102 −
⊥ ×=h are presented in Fig. 9 and 

Fig. 10. It should be noted that in the examples shown, the quantities )( 00 ωe  and )( 00 ωzm  

differ very little, not more than 1-2%, from such values in the absence of ⊥H  field.  

 
 
 
 
 
Figure 10: The frequency dependences of 
energy, 0zm  value and the negative flow of the 

entropy due the external periodic field in SOS 
for spherical sample, if 5.1=h , 002.0=⊥h . 
 
 
 
 
 
 
 
 
Figure 11: The frequency dependences of energy, 

zm  value and minimum amplitude of periodic 

field ⊥h  for SOS in the case of flat sample, at 

1.0=h , 2566.1=dh . 

 

 

 

In Fig. 11, the frequency dependence of minimum amplitude of periodic field ⊥h  for SOS 

in flat sample, according to (27, is shown. 

However, in addition to obtaining SOS, you can change these states. Assume that the 

precession frequency varies slowly enough. In this case, in Equations (24) - (27) instead of 

0ω , we have )( 0 t
dt

dω+ω , where 0ω  is the initial frequency. We can in all equations simply 

replace )( 0 t
dt

dω+ω  on )(0 tω . In result, we obtain the characteristics of self-organising state 

which depend on time, i.e. )(0 te , )(0 tmz  and 
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- in the case of flat sample, and  

( )2
0

1
00 )(1)()(sin hthtt −ω−κω≅β −

⊥  (33) 

- for spherical sample.  

and, correspondingly, the change of entropy depends on the time too, according to Fig. 9 and 

Fig. 10. As a result, changing the frequency of external field, and consequently the energy 

0
2
0 cos1)( β−= ⊥⊥ zmhte  too, we can control the self-organising system, and not only reduce 

the system energy, but also increase it, decreasing 0zm  value and returning the ferromagnetic 

in direction to initial phase state. 

Further, we can compare the soliton SOS described in [8] with those presented here. 

Precessing ball solitons of paper [8] may also occur at the first-order transition in a 

ferromagnet. But their origin is spontaneous and is connected with significant fluctuations in 

the system configuration. Moreover, the probability of such SOS is strongly dependent on the 

temperature and the distance from the bifurcation point, in which their energy relative to the 

initial state is zero. 

The SOS presented here, in contrast to [8], are not localized in space, but distributed 

throughout all volume of the crystal; their appearance is not associated with fluctuations, they 

do not have a random, probability character, and do not depend on temperature. 

 
Conclusions 

 

1 A single-domain ferromagnet with uniaxial anisotropy at the first-order phase transition 

under the action of a magnetic field directed along the anisotropy axis has been considered. 

Analytical analysis of the entire process of phase transition is performed for two 

configurations of crystalline samples: a thin flat sample with the anisotropy axis perpendicular 

to the surface of the plane, and the spherical shape of the sample.  

2 The two cases of phase reconstruction are significantly different. In the first case, the 

phase transition depends essentially on the relation between the sample magnetization and 

anisotropy of the crystal and thus of the demagnetisation field. There are two areas for 

demagnetisation field parameter. In the first of these areas, a "full" phase reconstruction is 

carried out in the crystal, i.e. a change in the magnitude zm  from 11 −=zm  to 12 +=zm . In the 

second area, "unfinished" phase reconstruction is carried out, i.e. a transition in "frozen states" 
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(FS) where 12 <zm . These states have a continuous spectrum, the precession frequency is 

0→ω  for each such state.  

3 A phase transition for sample of spherical form is described in the same variables as for 

flat sample, but in this case the process of transition does not dependent on the 

demagnetization field. In spherical samples, FS does not arise.  

4 At simultaneous action of high-frequency magnetic field perpendicular to the direction of 

the main field, a self-organizing state (SOS) of a ferromagnetic arises, in which the 

ferromagnetic is in dynamic equilibrium. In this equilibrium state, the entropy increase 

connected with dissipation is compensated by the negative flow of the entropy that is the 

result of external periodic field. 

5 Relations between the main parameters of SOS, i.e. between the values of fields, energy, 

precession frequency, and the angle between ferromagnetism vector and the anisotropy axis, 

have been analysed.  

6 Changing the frequency of the alternating field, and thereby, the flow of the entropy, can 

be a continuous method to change all parameters of SOS, including reduction or increase of 

the system energy. 
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