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Abstract
Analytical consideration of uni-axial single-domafierromagnet during the first
order phase transition induced by a magnetic felderformed. Field is directed along
the symmetry axis antiparallel to initial magnetiaa direction. For samples of the flat

shape, besides the known change of the magnetizdtiection on180 , at definite
relations between values of magnetic field, the metigation and the anisotropy of a
crystall, there is continuous spectrum of statesh wintermediate magnetization
directions. In these states, a precession frequeaney0. For samples of spherical
shape, a process of the phase transition doesepend on the demagnetization field. At
addition action of high frequency field perpendauto the main magnetic field, there
are dynamic equilibrium states, i.e. "self-orgamigistates” of ferromagnet, when the
entropy increase connected with dissipation is camepted by the negative entropy
flow due to the periodic field. It is shown thatdem these conditions, by varying the
frequency of the periodic field, we can control #&f-organising system, i.e. decrease
or increase the system energy and, correspondinghange the direction of
magnetisation in ferromagnet.
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1. Introduction

A very large number of phenomena and processdaaren, which can be classified as
"self-organizing systems" or "dissipative structlird1-4]. Processes belonging to this
category are, for examplspunding of wind and stringed musical instrumentsyhistle
sound, existence of proteins, development of plafuisctioning of animals and humans.
Generally, the life itselfn all its forms is an example @lch"self-organizing systems'lt
may seem surprising that, unlike nature, the marséif was able to invent so limited number
of such systems. This could include such exampiasdan be reproduced on the laboratory
table the chemical "Belousov-Zhabotinsky reacti¢s, 6], “Benar cells” at liquid boiling [7].
Precessing ball solitons during the magnetic phesgsition in ferromagnet could also be
considered as “classical” self-organizing systenseaif-organizing states (SOS) [f§ome of
these systems are structures periodic in space time. Others are more compldut the

common feature of all these processes is thatog®df energy in the system associated with



dissipation, is fully offset by the influx of engrfrom external sources, i.e. inflow of entropy
due to the dissipation mompensatethy the negative flow of entropy due to the coupliag

an externasource.
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It should be noted that the effects of SOS the@gjanizing states, after the works [1-
3], been actively studied in the subsequent y&desnote here only a few works related to the
effect of the so-called self-organized criticali§OC) [9-B], with the appropriate addition of
a list of references.

In this article, the SOS arising at the first orgdrase transition in uni-axial single-
domain ferromagnet under the action of a magnétid flirected along the symmetry axis are
considered.

At first, in the second part of this article, peatities of the first-order phase transition in
a single-domain ferromagnet has been analyzed. sbiee purpose of the single-domain
condition for this article is to exclude extranemasirces of nucleation of a new phase, such
as domain walls or external boundaries of the aty¢For example2n -degree boundaries
themselves are nuclei of a new phase.) In suchittons, the phase transition under the
action of the magnetic field is determined by thecgss of coherent magnetization change.

In the third part of the article, the changes ie ffihase transition of ferromagnet under
the action of additional high frequency magnetadiperpendicular to the main field have
been considered. In such conditioBS)S offerromagnet arise. Features of these states have

been investigated.

2. Phasetransition in single-domain ferromagnet

ferromagnet: (a) — up to saturation under a field
H,.., and (b) — ferromagnet under fiekdl,.

[HHHLHH HHTHHJH Figure 1. Scheme of the final states of the
PLLERLLL 1T

Analysis scheme of ferromagnetic is presented ig. A Initially, the sample is

magnetized to saturation along the directia@) {see in Fig. 1(a). For this it is necessary that



the applied field H,,, <O was in absolute value greater than arising in thepse the

demagnetizing field, i.e.\Hm\>Hd. Fig. 1(b) shows the ferromagnet magnetized to

saturation along the axig)(under the action of the fielti, > \Hd\. Thus, Fig. 1 corresponds

to the final states of the ferromagnet. In a giaglicle the process ofa) - (b) transition is
analyzed.

To analyse magnetic phase transition in the fergymaaiwith uni-axial anisotropy, we use
the Landau-Lifshitz equation [20] in the Gilbertrfo

om ow om
— = Xx—+K mx— 1| (k>0 1
a " om K( at) (k>0) @)

and the following expression for the density of rgiye
K
W=Hm " -mH, +E,. (2)
H, is an external magnetic field directed along timés@ropy axisZ (H, >0); K, >0,
Y =2ug/h; mis a non-dimensional vector of ferromagnetism é@nahe absolute value) to

1, mg=m,+imy, initial magnetizaton is along the (-z) directiom present paper

m, =+ 1—\mD2 ; E, is energy of demagnezation for the sample. We idennly two

cases: sample of the flat shape, moreover, th&rtbgs of such sample is much smaller than
the dimensions in other directions and the symmaxig is perpendicular to the plane of a

sample; in the second case the sample is of trerisphform.
2.1 Sample of theflat shape

In this case the energy of demagnetization is
E, = 41M jm? 3)

where M, is the magnetization of a crystal. In such cagaa#on (1) can be written as:

omy om, _om,
== ~hm, ( Zhd)nwwk(mu M j 4)

Here the differentiation is carried out with resptecthe dimensionless time=2u K7t ;
h=H,/K,; parameter of demagnetization fieig = 4M, /K, .
The solutions of Eq. (4) have the following form:

m,(1) = p(ne” ()



From (4), the equations, which define the corregdpone betweem, and w and the time

changes of these parameters are the following:

(1-2h,)m, +h = w(1+K?), (6)
(herek? <<1, therefore we neglect this value.)
d
d—mz = K(o(l— mzz) (7)
T
For the energy density relative to initial statelvese:
1_ 2
e, =@-20) T hem), ®
and
$:—K002(1—m§). 9)
dt

In what follows we consider the process of changihgarameters of a ferromagnet in the
transition from the initial state whemn, =-1. In this process, the energy decreases,
respectivelym, increases from the initial value, and precessieguency also changes. The
character of changes in a ferromagnet during thesetransition depends strongly on the
shape of the sample.

In Figs. 2 for the sample of flat form, limit vakief main parameters are given as
functions of h, value for different values of acting field. Initial energy ise =0, final
energy ise,. Correspondingly, we have initiah,, =-1 and final m,,, initial ¢, and final
®,. These limiting values are determined from equmsti®) and (8).

If h>0, there are two ranges for limit values of the paters. In the first of them, a

completed reorientation (CR) takes place if
O<shs(2h,-D):m,=+1, 0 =h-(@1-2h,), w,=h+(@-2h,), e,=—2h. (20)
In the second range, the transitions into interatei# states , whens,, < (+1), occur if

h2(2h,-1): m,=-h/@A-2h,), @ =h-@-2h,), &, =0, %=m. (1)

If h<0, there is not completed phase reorientation, ly ghe transitions into
intermediate states. In latter case, the limit petars, as in (11), are the following:

m, =-h/@-2h,), & =h-@1-2h,), @, =0, %:%'

As can be seen, for a given value of a field, catga phase reorientation occurs only at

(12)

sufficiently small value ot, . At a higher value oh,, the final valuew, =0 and as can be



seen in these Figs. 2, the valueg < (+1) . The field value becomes insufficient to overcome
the demagnetizing fields. Fig. 2(e) correspondé to0, i.e. when the fieldH,_, <0, which

magnetizes the sample to saturation, is simply weaoln this casen,, = 0. In this case the

magnetization in final state is perpendicular ® &lxis of anisotropy.
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Figures 2: Limit values of main parameters for #ample vs demagnetisation field
(energy is denoted by filled circlesy, value — empty rectangle, frequency -
continuous line): (ap =15, (b) h=1,(c) h=05, (d) h=01, () h=0, (f) h=-05.



Note that for multi-domain sample, zero magnegddficorresponds to the state, when the
magnetic moments of domains are directed with eguabability along or against the
anisotropy axis and averageg =0, asm,, in our case.

If the current field is negative, i.&L< , fhe valuem,, <0, as is shown in Fig. 2(f).

So there are continuous spectrum of intermediad¢est as though frozen states of a
ferromagnet. System tends in each of these “fratates” (FS) asymptotically, wherein the
precession frequenay -~ .0

In Fig. 3, in dependence of the critical field twe pparameter of demagnetization field, the

boundaries of considered above areas are shown.

Figure 3: The dependence of the critical field loe parameter
of demagnetization field showing the boundariesvben areas
with different characters of the phase reconstoncith the case of
the thin flat sample.

Note that the expressions (10), (11) and (12) @ \alid for the phase transition in the case
of a ferromagnet with the easy magnetization plaaeatK, <0.
Let us consider the time dependence of parametergd the phase transition. In
correspondence with equations (6) and (7), the dependence afn, can be obtained:
_1m dm,
T .
k*mo (L-mE)[h+ (L-2h,)m,|

In Figs. 4, the time dependences of main paramdterdlat sample are presented,

(13)

according to (13) and (6), (8). In all these andsubsequenexamples, the dissipation

parameter i =5x10™. These time changes correctly correspond to depees of the type
shown in Figs. 2.

For a givenh, value, a minimum field, in which a change in ot&in occurs, is:
h., =1-2h,. If for flat sample h, =1. 2566 i.e. M,/K, =01, this field equals to
h.., = —1.513274(an approach to this value can be seen in Fig).4(d

In Fig. 5, field dependences of energy amgs parameter of FS for flat sample at

h, =1.2566 are presented.
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Figures 4: The time dependences &f, m, and w for flat sample: (a)h= 05

h, =0.6283(M,/K, = 005); (b) h= 01, h, =1.6336 (0.13); (c)h = Q h, = 05655 (0.045);

(d) h=-14, h, =1.2566 (0.1).
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2.2 Sample of a spherical shape
In this case

2 _4n
E, = NdzMomz2 + NdDMo‘mj‘ :?

Figure 5: Field dependences of energy (full circles
and m, parameter (empty rectangles) of FS for flat

sample ath, =1.2566. Here, the frequency for all

statesis - 0

M,

(14)



’ i.e. for spherical shape of the sample, the parametersw and € and their time changes do

not depend on theh, value, but the value of energy contains a constamhponent

[+ 4;'?"] . Therefore, instead of (6) and (8), we have ttieviong:

1

m+h=wl+K?) (K?<<1), (15)
e =(1"72mzz)—h(1+ m,). (16)

In Fig. 6, dependences of energy and frequency mn at three field values,
h= 0510andl.5, for spherical sample are presented, in correspmow with (15) and (16).

Of course, the transition fromm, = -1 to m, = +1 is possible only ifh > 1.

Figure 6: Dependences of energy and frequency on
-1 m, at three field values for spherical sample.

In the case of spherical sample, according torfd)(&4):

1m dm,

== ———*2—. (17)
K Imw (1-m)(h+m,)

In Fig. 7, the time dependences of energy amdsalue are shown &t = 1,1.1and15 for

spherical sample. In these cases the change @ from (-0.999 to (+0.999).
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Figures 7: Time dependences of energy and for spherical sample: (ah =1, (b)
h=11, (c) h=15. All changes are fronm,, = -0.999 to m,, = +0.999.



Reorientation of the magnetization in single-domé&nromagnets under the action
magnetic field pulses had been studied in many ngapehese studies were conducted
primarily in connection with the creation of highe®d memory elements. We refer here just
to a few articles related to the issues addressethis paper: [21 - 27]. Single-domain
ferromagnets (Stoner particles) on the basis oferigal solutions of Landau-Lifshitz were
considered in those studies. The different direstiof the external magnetic field was taken
into account, but the symmetric case was not censttithere, when the field is acting along
the symmetry axis of the crystal with uniaxial syatry. In addition, calculations were made
at conditions corresponding to high values of gason parametek =1, in equation Landau-
Lifshitz, i.e. in the area of Stoner-Wohlfatrth [tnfi21]. In this region, the time by coherent
switching takes a minimum value in the range ctos&0®s.

In the next part of this article, a particular cémethe analysis of self-organizing states is
consideredwhen the magnetic field is directed along the afisnisotropy. Such geometry
allows to enter the frequency of precession redffito the axis of symmetry and enables an
exact analytical consideration of the phase tramsifas opposed to numerical calculations in
[21 - 27]). Moreover, some features of reorientaijsee above) not detected in [21 - 27] have
appeared.

Comparing our results with [21 - 27], we see thatdking into accounk? relative to a
unit in the equation (15), we have instead of (i@ ratio (in this case for the spherical
sample):

T:(1+Kj‘.‘ngmz. (18)
K mo (1= )(h+m,)

-1
In Fig. 8, dependency of /(1+k?) E(K +1] on K is shown. It can be seen that the
K

rate of change of parameters of the ferromagnet,ai speed of coherent switching is

maximum atk =1, in corresponding with [21].

Figure 8: Dependency of effective parameteg, of
coherent switching om .

KI(1+K?)
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Using the valuex EHLZ =05 corresponding to the maximum speed, instead of the
K

value k = 05x10°° taken from magnetic resonance investigations, iasn Fig. 4 and Fig. 7,

we obtain the same curves for parameters varistinrwith the transformation(us) — t(ns)

of the timeline, i.e. in accordance with [21 -, 2&bout quick coherent switching in

ferromagnets.
3. Sdf-organizing states

Using an additional external high frequency magnééld, we can fix the precession
frequency and thereby stabilize the intermediatgest of the ferromagnet. If the added
periodic field is perpendicular to a main fielddan

H, =Kher, (19)
we can express the magnetic component of magnretizatthe form

m, (1) = p(t)e ), (20)
i.e. the precession phase of magnetic momentgsliifem the phase of periodic field. In this

case, the equations fom, in the case of flat sample take the following form

(1—m§)[(1—2hd m, +h—(wo —zﬁﬂ =+ S+ m 1 cosp, 1)
T T
d(TmZ= /1—@{K1/1—nf(%—(fj—hmsin[3} (22)
T T
From (8), we obtain expressions for energy denstative to the initial state, together
with the energy of interaction with the periodieli (see, for example, [8]):

(1_2”‘22) ~h(1+m,) - h,y1-m? cosB (23)

and for the change of this energy connected wilsipation and the action of external

& =(1-2h,)

periodic field:

gfz_K[ 1 (d(';:zj +(1—m§{wo—3§j }hu./l—nfwosin[}. (24)

1-my
The equations (19) — (24) constitute a completerg@®on of the system, including its
time transformation. However, in the present paperconsider only dynamic equilibrium

state of ferromagnet, i.e. when the decrease afggreaused by dissipation is compensated

10
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by energy flow from the external periodic fields.ide,(t)/dt =0. Furthermore, in this case
dm,,/dt =0 and dB,/dt =0. Therefore, for this equilibrium state of ferromag i.e. for

self-organizing state (SOS), we obtain the folloywxpressions:

OLIL:Z:\/l—mzzo (K%\/l—rnfo -h, sinBO):O, (25)

d .
=1, [k TG, ~hsing, )= 0. (26)
From these expressions, we obtain the relation:

sinB, = (Kwo,ll— e, /hD). (27)

Correspondingly, the corrected equation for SO8gdke following form (instead of (6)):

Vl_rnzzo[(l_Zhd)mzo"'h_wo]:mzo\/hé - KAaf (- mb) . (28)

From equations (25) and (26), it can also be skah the energy compensation and

consequently the origin of SOS is possible only if

hy 2 hepyy = Kayy1- mfo : (29)
For such a system, the entropy increase connedthdlissipation is compensated by the

negative flow of the entropy, which is the resdlegternal periodic field. It can be expressed

as follows:
- d
ds _ds;s 98 _ 0, (30)
drt drt drt
where
d : : 2
i:_dsdls =1ded|$ =_@(1_nf)< 0. (31)

dt dt T dt T

Qx104(MHz)
1 2

Figure 9: The frequency dependences of energy,
m,, value and the negative flow of the entropy
due the external periodic field in SOS for flat
sample, ath= 0,1 h, =1.2566, h, =0.002. In

this case maximum ofn,,, at w, = 0, equals
approximately (+0.05).
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Examples of the frequency dependences of enerdye & m,, and the change in
entropy for the flat and spherical samples in SOB & 2x10*are presented in Fig. 9 and
Fig. 10. It should be noted that in the examplasash the quantities,(w,) and m,(w,)

differ very little, not more than 1-2%, from suchlwes in the absence bf; field.

H
|

“

K

Figure 10: The frequency dependences of
energy, m,, value and the negative flow of the

entropy due the external periodic field in SOS
for spherical sample, ifi= 15, h, =0.002.

T
o
I\
(ds,/dD)T/

—-0.5
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1 2

ot e b ~05

Figure 11: The frequency dependences of energy,
m, value and minimum amplitude of periodic
= field hy for SOS in the case of flat sample, at
h=01, h, =1.2566.
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In Fig. 11, the frequency dependence of minimumlaage of periodic fieldh, for SOS
in flat sample, according to (27, is shown.

However, in addition to obtaining SOS, you can gmithese states. Assume that the

precession frequency varies slowly enough. In thise, in Equations (24) - (27) instead of

wy,, we have(w, +%t), where w, is the initial frequency. We can in all equaticasiply

replace (w, +d—(:t) on w,(t). In result, we obtain the characteristics of seffanising state

which depend on time, i.e)(t , m,(t) and

. -1 [q_ ((*)o(t) B h)2
sinB,(t) Okay,(H)h, [1 -2y (32)

12



- in the case of flat sample, and

sinBy(t) Koy (D7 1- (e (t) - ) (33)

- for spherical sample.
and, correspondingly, the change of entropy dependse time too, according to Fig. 9 and

Fig. 10. As a result, changing the frequency otewl field, and consequently the energy
e (t) =h,y1-m cosB, too, we can control the self-organising systend, aot only reduce

the system energy, but also increase it, decreasjpgralue and returning the ferromagnetic

in direction to initial phase state.

Further, we can compare the soliton SOS describefB]i with those presented here.
Precessing ball solitons of paper [8] may also pcat the first-order transition in a
ferromagnet. But their origin is spontaneous ancbisnected with significant fluctuations in
the system configuration. Moreover, the probabibifysuch SOS is strongly dependent on the
temperature and the distance from the bifurcatiointpin which their energy relative to the
initial state is zero.

The SOS presented here, in contrast to [8], arelogatlized in space, but distributed
throughout all volume of the crystal; their app@aris not associated with fluctuations, they

do not have a random, probability character, andata@lepend on temperature.

Conclusions

1 A single-domain ferromagnet with uniaxial anisotyagt the first-order phase transition

under the action of a magnetic field directed altimg anisotropy axis has been considered.

Analytical analysis of the entire process of phasansition is performed for two
configurations of crystalline samples: a thin #ample with the anisotropy axis perpendicular
to the surface of the plane, and the sphericalesb&fhe sample.

2 The two cases of phase reconstruction sgmificantly different. In the first case, the
phase transition depends essentially on the reldieiween the sample magnetization and
anisotropy of the crystal and thus of the demagattn field. There are two areas for
demagnetisation field parameter. In the first afsén areas, a "full* phase reconstructi®n

carried out in the crystal, i.e. a change in thgmitade m, from m, = -1 to m,, = +1. In the

second area, "unfinished" phase reconstructioansed out, i.e. a transition in "frozen states"

13
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(FS) wherem,, <1. These states have a continuous spectrum, thegsiea frequency is
« — 0, for each such state.

3 A phase transition for sample of spherical forndéscribed in the same variables as for
flat sample, but in this case the process of ttamsidoes not dependent on the
demagnetization field. In spherical samples, FSdu arise.

4 At simultaneous action of high-frequency magnettdf perpendicular to the direction of
the main field, a self-organizing state (SOS) offearomagnetic arises, in which the
ferromagnetic is in dynamic equilibrium. In this udirium state, the entropy increase
connected with dissipation is compensated by tlgatnee flow of the entropy that is the
result of external periodic field.

5 Relations between the main parameters of SOJyéteveen the values of fields, energy,
precession frequency, and the angle between fegoetam vector and the anisotropy axis,
have been analysed.

6 Changing the frequency of the alternating field] émereby, the flow of the entropy, can
be a continuous method to change all paramete®0&, including reduction or increase of

the system energy.
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