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ABSTRACT

This is the first in a series of papers on Diritiyge approximation in the setting
of Cauchy sequences in normeddivisible groups.Iriiquéar, we demonstrate
thatthe concept ofapproximation exponents are daiele to elementsbelonging to
the completion of anormed uniquely divisiblegroupd aother such groups that
enjoy a form of divisibility.To give a measure adv “best” the approximation
can be, we introduce group theoretic functions gaproximity function¥ which
generalise the notion of the order of elements graup. Aproximity functionp

on a group with identityeis defined by three axioms: (p(g #e) =
o(g™) >0, (i) e(gh™) < Co(gle(h) and (i) o(gh™") < Co(g) Iif
o(g) = o(h), whereC > 0 is an absolute constanthe main result in this
paper is to show that given a proximity functioratths in a certain sense
discontinuous at the identity, théauchy sequences in a uniquely divisible
group G do not converge insidé. In the sequels, we consider the case of
elements belonging to the completionG®but not inG.
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1.0INTRODUCTION

The study of group theory naturally leads to problef finding elements of
a group that belongs to cyclic subgroups of theigrdt is easy to see that there are
groups for which some elements do not belong to @mjic subgroup other than
those generated by the elements; for instanceinze pnrumber does not belong to
any cyclic subgroup of the multiplicative grouprational numbers other than that
generated by the prime itself. To study the grdigpsvhich every element belongs
a cyclic group generated by some other element, thation of
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divisiblegroupareimportant. To be precise, a divisible group greup(G,”) such
that for everyg € G and natural number there is ah € G such thalg = h" := h -
h™~1—we shall informally say thaB hasn-th roots for alln. Classically, divisible
groups appeared in the theory of Abelian groupgairicular, every Abelian group
can be naturally embedded in an Abelian divisibleug and an Abelian group is
divisible if and only if it is an injective objedh the category of Abelian groups
(Griffith (1970),Feigelstock (2006), Lang (1984)pmaover in the Abelian, or
generally locally nilpotent,torsion-free caseMal¢@®49), every divisible group is
a uniquely divisible groupthat is,g™ = h™ impliesg = h. In any case, non-trivial
Abelian divisible groups are not finitely generatadhich is easily demonstrable via
the Fundamental Theorem of Finitely-generated Alpelgroups, and uniquely
divisible groups are necessarily torsion free. Aefoost example is the group of
rational numbersQ under addition. In another but similar vein, givanprime
numberp, ap-divisiblegroup is a group witlp-th roots. We extend this further to a
subsetw of the prime numbers by definimgdivisible groups as groups witbh-th
roots for allp in @ (this is not standard, for instanceBaumslag(19238y these: ;-
groups);whenw is the whole of the primes, then we get the disigroups. The
archetypal examples are the additive subgroups Qof given byQ{w} =

{q € Q:p|D(q) = p € w}whereD(q) is the denominator af. We say a group is
uniquely w-divisible if it is aw-divisible group with unique roots. As a further
example, ifw is all of the prime numbers, then a vector spaeer @ field of
characteristic k is a well-defined uniquelyw\{k}-divisible group; this latter
example shows that uniqurardivisible groups can be cyclic groups, torsion
groups of finitely generated groups, in contraddipn to uniquely divisible
Abelian groups (the finite fields, being or primeacacteristics, are such examples).

2.0 EXPOSITION ON NOTATIONANDSTATEMENT OF RESULTS

Now given aw-divisible grougG,-), henceforward the notatigg”, where
r € Q{w} andg € G, shall denote (one of possibly many eleménts); such that
g"* =h%* where r = gwith gcd(n,d) = 1;in  particularg”represents a unique
element inG if G is a uniquelyw-divisible group. Now if we denote ky: Q{w} —
R an absolute value function fron@{w} to the real numbersR, then
Ostrowski(1916) showed thit is, up to equivalence, the usual absolute valye
on the real numbers or the usual absolute valyeon thep-adic numbers for a

prime p. Whet|-| := |-|,we have the following classical elementary but ontgant
result:

THEOREM 2.1: Leta € R. Then for som@ > 1 there is an infinite sequence
{1 €EQsothaa e R\Qifandonly ib < |a — 1| = 0((ord(rn mod Z))_“).
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Here R\Q is the complement o) in R—that is, the irrational numbers; the
notatiorx = 0(y) implies |x|]<My for some absolute constant
M > 0;alsoprd(h € H) denotes the order (or period) of an elenteint the grouH
andZ denotes the set of integers (thusd(r;, mod Z) gives denominator of,).
Dirichlet proved that in fact with the implied cdast beingM = 1, the theorem
holds with u > 2; the optimal situation occurs whet = 1/v/5 (see Hurwitz
(1891)) still withu > 2. An important remark is that the sequefeg, -, in the
Theorem above is a Cauchy sequence, therefore dine@rl equally states that
there are no Cauchy sequences converging ir@idéth the given estimate. The
object of this paper is to extend the “if” parttbe above theorem to uniquedy-
divisible groupsG and their completions via norms, with the estirmateasured in
terms of quasi-order functions @ We address the “only if” part in a sequel to this
paper. First, we introduce our main functions:

DEFINITION2.2(Norm on @w-Divisible Groups): For a set of primes, let (G,")
be aw-divisible group with identity elememtand let|-|: Q{@w} —» R be an absolute
value function. Then a functidh||: ¢ — R is anormon G if it satisfies:

i.  |lgll=oonlyifg =e
i. lghll < llgll + [[All
. g™l = Irlligll, r € Q{w}

We denote byG,,, ||-||) aw-divisible group with a nornji-||.IfG is Abelian, then it is
just a normed linear space but over the integraldo@{w}. Indeed if(G, +, ||-||) is

a normed vector space over a fidldthen|:| is the well-defined absolute value
function induced by the absolute value functiorFoover the vector space.

DEFINITION2.3(Proximity Function on Groups):Let G be a group with identity
e. Then a functio: G\{e} — R is groximity functioron G if for all g # h:

i olg#e)=0(@H>0
i, o(gh™) < Co(g)eo(h)
ji. — o(gh™) < Co(g) if 0(g) = o(h)

whereC > 0 is an absolute constant. If in (i) we have theorsgerbound
o(gh™1) < Cmax{o(g), o(h)}, then we say is anultra-metric proximity function
Especially, if o is integer-valued with ¢ =1and that (i) and (iii)
reaco(gh™1)|lem(o(g), 0(h)) and o(gh™Y)|o(g) if o(g) = o(h) respectively,
then we say is anorder function

We shall typify a proximity function byp with the constantC understood.
Obviously the product of two proximity functionsasproximity function; and also
if o is a proximity function, then so @' for any real numben > 0; thus we say
two proximity functionsp, 0, areequivalentf o,;=p5 for someu > 0.

Examples 2.4:
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e For Abelian torsion groupss, the functiong() := ord(-) is an order
function withC = 1.

e For groups with ultra-metric norrg|, the function(-) := ||-|| ance(*) :=
al'll wherea > 1 is real, are ultra-metric proximity functions with= 1.

e For groups with bounded norms—ilgl, <M, withM fixed—the
functior () := al'l-  wherea > 1 is real, is a proximity function with
C = a™.

* If G is the additive group of an algebraic number figleen the absolute
Weil heighth(*) := [, piace max{1,|-|,,} is a proximity function withC = 2.

We shall be interested in those proximity funct'onen(G,, ||-||)such that for
somep, > 0 the functiono(:)#0||-||: G\{e} = R is, in essence,discontinuous at the
identity e; precisely,

DEFINITION2.5(Proximity Function onww-Divisible Groups): Let (G, ||-||) be a
normecw-divisible group with identitye and leto be a proximity function ort.
Then g issaid to be @ose proximityfunction onG if there exists pg > Osuch
thatinf{o(g,)*|lg.|1} = Ofor a null sequencég,} -, < G\{e}if and only if u <
Uo; otherwise, thep is said to be anpen proximityfunction onG.

REMARKS: Otherwise statednf{o(g,)*|lgx|l} > 0 for all null sequencég,},-, <

G\{e} if and only i'u = u,. We typify a close proximity function o by

(0;C,up) and in that case we shall say that the element§ iare in close
proximity(orin close ordey to each other; else, where necessary, we shalthea
elements are open proximitgresp.in open orde)to each other.

Our interest in close proximity functions on norm@edivisible groups is
the following result, which is the main theoremntlut paper:

THEOREM2.6: Let (o; C, 1) be a close proximity function @&, ||-||) and let
g € G. Then for every. > u, and Cauchy sequenég, }»-, < G\{g, e}converging
to g, there exists N such tHig gl = 0(e(g,)™*) if and only ifn < N, where the
implied constant is independent of n or g; morepveis is also true fou = p,
ifois ultra-metric and the implied constant is less arth

1 . _ _
oo Infgg,{0(ggn ) 0 llggn 13-
In other words, there are only finitely many eletsesf G in close proximity to any

element inG with respect to the given estimates; or equivile@auchy sequences
in G do not converge insid®é with respect to the given estimates.
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3.0ELEMENTARY RESULTS

We establish here some elementary but notewortbpepties of normeds-
divisible groups endowed with close proximity funas. We also state some close
proximity functions on certaiw-divisible groups but first, we prove the following

COROLLARY 3.1: Every normedo-divisible Abelian group is a uniqueby-
divisible group

Proof: Indeed, for somg # h supposeg™ = h™ wheren > 1 is a natural number
whose prime divisors belong . Theng™h™ = (gh™})" = e, thus

Inlllgh=| = lI(gh=)"|I = lle]l = 0
But|ln| # 0 and sd|gh~t|| = 0, implyinggh™! = e or g = h, a contradictionQED

COROLLARY 3.2: Any normedw-divisible group is non-cyclic and torsion-
free

Proof: Let{g # e} generate the group. Thgd/? = g™ for somep € @ and integer
nand sog?™"1 = e, implying thatg is a torsion element. But i # e is a torsion
element withh™ = e for somer # 0, then0 = ||e|| = ||h"|| = |r]l|k]|. It follows
that ||h|| =0 orh =e, which is a contradiction. Thus there are no itors
elementQED

COROALLRY 3.3: Let (G, ||I-]) be a normeds-divisible group and le€ be its
completion with respect td-||. Then G 3 lim,_., g™ where {r}>_; c Q{w}
converges in the completioof Q{w} with respect to the absolute valyd
associated tdi-||.

Proof: First, let{r, };—, € Q{w}, then for any € G we have{g™}_; < G. Thus
g™ - (g™~ = g™ ™ = ligllln — 7l

Consequently, the sequenfg™}>_, converges i with respect to (the natural
metric induced by) the noiiv| ifthe sequencérn,};--, converges in the completion
of Q{w} with respect to (the natural metric induced by) ébsolute valug|. QED

COROLLARY 3.4: Let (g;C,u,) be a close proximity function o, ||-|]).
Then there exists an absolute constgnt- 0 such thatim inf,,_, 0(g)*°llgnll =
L, for every null sequendg,.}n-; < G\{e}.

Proof: Suppose to the contrary that there exists no sumdolute constant,.
Indeed, then for every integetr > 1, there is a null sequengg,,(m)},-, c G\{e}
such thatlim infn_)ooQ(gn(m))”"llgn(m)ll < 1/m. It follows that for everym

there are infinitely mank,, € {g,,(m)},-,so thato(h,,)*°|h,,|| < 1/m.But since
{g.(m)};~; and{g,(m + 1)};>_; are null sequences, then we can chdggsg such

5
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that||hpms1 |l < llhyll. It then implies thdh,};m-; iSs a null sequence
within f{o*° (h,,)||h., ||} = 0, whichis acontradiction to the fact thats a close
proximity function.QED

COROLLARY 3.5:A close proximity function on a-divisible group induces
close proximity functionsoQ{w}.

Proof: Indeed fix a non-identity elemeantbelonging to thew-divisible groufs.
Now given any null sequende, },-; < Q{w}\{0} and a close proximity functiom
on G, then{g™};’ is a null sequence B and thusnf{o(g™)||g™||} > 0. But then
inflo(g™)lg™ I} = llgllinf{e(g™)Ir.|}. Hence ifg, (1) == 0(g™) then we have
inf{o, (r,)|m|} > 0, implying thate, is a close proximity function o@{w}. Since
we can do same for every non-identity elenggint G, the conclusion followsQED

As per examples we state, without verification,eéhrclose proximity
functions, which we put together in the followingmima. We shall verify these,
alongside other close proximity functions, in awssdo this paper

LEMMA 3.6: The following are close proximity functions on thepective groups
defined:

@) Suppose the absolute value function associatedhéo normedo-

divisible group(G,, |I-|]) is the usual one on the real numbers. Assume S

is a normal subgroup of G such that the quotierugrG /S is Abelian
and torsion, and that the noth| is a discrete norm on S—i.e., there is
an absolute constant | such thagte S\{e}|| =. Then the function
06/s(g) = ord(g- S) =min{n € Z,,:g" €S} is a close order
function on G withu, = 1, € = 1; moreover, ifw is a singleton set then
o is ultra-metric. (We refer to this asaary order function on G).

(i) Given a prime p and the grou@{p}, then the functiorp,(q # 0) =
[pliogUale)/togPl] (where|:] (resp.[']) denotes the floor (resp. ceiling)
function and wher¢|,, is the usual absolute value on the real numbers)
is a close ultra-metric proximity function oQ{p} with yu, =1 and
C = p given the usual p-adic norm d@. (We refer to this proximity
function as the p-adic proximity function @p}).

(i)  For an algebraic number field with the usual normalised absolute
values|-|, over all places v such th§f,|a|, = 1 for everya € K\{0},
the functionog (@) = [], max{1, ||, }—i.e., the Weil height—is a close
proximity function oriK* with 4, = 1 andC = 2 given the norm defined
by the usual absolute value on the complex numiféfs.shall refer to
this as theK-proximity function).
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EXAMPLE 3.7: A particular example of case (i) above is given b= Q{w}and
S =Z, where the functiomg s is a close order function d@{w} given the usual
norm on the real numbers. Indepde Z| > 1 and sol-| is discrete orZ. On the
other hand, a non-example is givenGby Q;, the multiplicative group of (the
positive real values of th&{w}-powers of the positive rational numb&s, = S
with norm ||| == |log(-)|—that is,Q% = {q" € Rs¢: q € Qso, 7 € Q{w}}.Here the
so-definedw-ary order functiorps s is an open order function ddg. This is so,

obviously, as the norm is not a discrete normQgg;indeed, for instance{l +

l}:;l C Q5o and yetllog(l + %)| — 0 asn - .

n

4.0 PROOF OF MAIN RESULTS

We now establish the main resultsof this papemmnating in the proof of the main
theorem stated in the introduction. We start whid following lemma.

LEMMA4.1: Let(o; C, o) be aclose proximity function d&,-, ||:||). Then for
every distinguished Cauchy sequergel},-, c G\{e} (i.e., g, # lim,_ g, for
all n) we havdim,,_,., 0(g,) = .

Proof:Given thafg,},-, is distinguished and Cauchy, then it containsrdimite
subsequence of distinct elements; thus for exery0, there existdN such that for
all m,n > N whereg,, # g,we have0 < ||gngntll < &in that cases inL:=
inf{o(gmgn D"l gmgntll} > Ofor everyu > pq, then it follows that

infQ(gmgn N lgmgnl _ L L
gmgnl lgmgntll = &

(Co(gm)o(gn)" = 0(gmgr)* =

Buﬂimg_)oi =L limg_)oi = oo, thuSimm,nzivqoo(CQ(gm)Q(gn))ﬂ =o0. Now
Im*Gn

suppose to the contrary thiam inf,,_,,, 0(g,) < . It follows that there exists an
infinite subsequence ¢y, }o-1, say{g}n=1, such thab(g;) < U for some upper
boundU. But since{g,},-, is a distinguished Cauchy sequence, thef}, -, is
also a distinguished Cauchy sequence converginthecsame limit, thus (by the
same argument as above)we hanam,nZN%o(CQ(g;‘n)g(g;;))” = oo. But then
Im*gn

given any disjoint partitioné andB of {g;},-;—i.e. AUB = {gs}s=,bUtAN B =
@—then we arrive at

lim  (Colgi)o(g) = c*| lim o(gi)* || lim o(gp* | < (CU?)~

mmnz=N- oo m2=N—-oo n2N-oo
Im*In gmEA 9gn€B
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which is a contradiction to the fact that left-haside is unbounded. Consequently,
lim inf,_ 4 0(g,) = o and sdim,,_,., 0(g,) = . QED

THEOREM4.2: Let (; C, uy) be a closeproximity function o, |||) with G
as its completion. L&g,}>-, < G\{e}be a Cauchy sequence converging ©G so
thal 0 < ||ggntll = 0(e(g,)~¥M)for all n, whereu > p,. Then for all sufficiently
large m and g(g) = o(g,)if and only ifg,, = g,; moreover, this is also true for

U = o if the implied constant is less thaq;m fg, 29,00 (GmIn Dl gmgn 13-

Proof:LetM be the implied constant in the estimai@(g,,)™*). Now from the sub-
additivity of [|-]|, we have

Ngmgn | < Ngmd™ Il + 1ggx M = lggm | + 1 Ggx Il
< Mo(gm)™ + Mo(gn)™*

Let us assume thalg,,) =o(g,) but that g, # gn,. Thus||gmgnlll <

2Mo(gn)™* or equivalently 0(gn)* *0(gn)*lgmgn'll < 2M and
sinceo(gmgn®) < Co(gn).thero(gn)* #o (0(gmgn D llgmgnll) < 2CHoM.
Finally, via the lower bound

0(Gmgn )l gmgnll = infy, .o {0(gmgn )" llgmgnll} ==L, then we arrive
ato(g )t Ho < —ZC“OM and as  suag,) is bounded above

( K=Ho)
by( 2CHo M) ’ ifu > poor thal > ZCLuowhery = uy. Henceif u> u,,

)1/(/4—#0)

therg,, = gnifo(gm) = 0(gn) > (%ZC"OM , which latter condition holds

for all sufficiently large ndue to Lemma4.l; similarly =y, and M <
L/2C* then necessarily,, = gnifo(gm) = 0(gn), which completes the
proof QED

We now prove our main theorem, thus:

THEOREM4.3: Let (o; C, u,) be a close proximity function di&,, ||||) and
let g€ G. Then for everyu>pu, and Cauchy sequencdg,},-; € G\
{g, e}converging to g, there exists N such thay;*|| = 0(e(g,)™*) if and only if
n < N, where the implied constant is independent of g;amoreover, this is also
true for u=p, ifpis ultra-metric and the implied constant is lessarth

infy.4 {0(gg7" )" llggn* I}

Proof:Given ||gg; 1|l < Mo(g,)™* for some absolute constahtthen multiplying
through by(e(g)e(g,))" gives us

0(g)* 0 (2(9)e(gn)) llggitll < Mo(g)*o

Buto(ggn"') < Co(g)e(gn), hence(gn)**oe(ggn ) llggn*ll < CHoMo(g)Ho.
Sinceg € {gn}2-,, then for some infimuin we havel < o(gg;DHllgg:tl;
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thus p(g,)* Ho < C*oMp(g)H°/Land as suchfop > u, it follows thate(g,) is
bounded above byC# Mo(g)Ho /L)*o/#=Ho) Hence Lemma 4.1 tells us that there
is no distinguished Cauchy sequergg},~,; converging tog and satisfying the
estimate in the lemma,so we can chodse= max{n: o(g,) < (CHoMo(g)Ho/
L)*o/(h=ko)} Nowleu = u,  Withgbeingultra-metric  andsuppasg,,) >
o(g)suchthat lggntll < Mo(g,) . Here,note
tha (gg,t) < € max{o(g,),0(9)} = Co(g,) and consequently we have

L < 0(ggx D llggntll < C*oo(gn )" llggntll < CHoM

implying thaiM > L/CH°; hence if we require tha < L/C"0, then necessarily we
must have the bound(g,,) < o(g). It thus follows from Lemma 4.1 that there is no
distinguished Cauchy sequengg, },-, converging tay and satisfying the estimate
in the Lemma;in this case we can chobse= max{n: ¢(g,) < 0(g)}.QED

REMARKS: In conclusion, we note that if a close>pnaity function exhibits the
extra property of being uniform—that is, if thesesome absolute constait > 0

such thato(g,)*°llgnll = L, for every null sequencgy,},-1 < G\{e}—then the

latter parts of Theorems 4.2 and 4.3 would I;réygeLQ and C—,lmL respectively

e
instead of——infy., {0(gga)*llggrIl} and —-infy. fo(ggn)*llggnll}.

In this way, the implied constants in the theorensve would be independent rof
or Gwhenu = u,. We make use of this uniformity in the sequelis paper.
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