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ABSTRACT 

This is the first in a series of papers on Dirichlet-type approximation in the setting 
of Cauchy sequences in normeddivisible groups.In particular, we demonstrate 
thatthe concept ofapproximation exponents are extendable to elementsbelonging to 
the completion of anormed uniquely divisiblegroup and other such groups that 
enjoy a form of divisibility.To give a measure of how “best” the approximation 
can be, we introduce group theoretic functions (dubbedproximity functions), which 

generalise the notion of the order of elements in a group. Aproximity function � 
on a group with identity eis defined by three axioms: (i) ��� ≠ �� =����	� > 0, (ii) ���ℎ�	� ≤ �������ℎ� and (iii) ���ℎ�	� ≤ ����� if ���� = ��ℎ�, where � > 0 is an absolute constant. The main result in this 
paper is to show that given a proximity function that is in a certain sense 
discontinuous at the identity, then Cauchy sequences in a uniquely divisible 
group G do not converge inside G. In the sequels, we consider the case of 
elements belonging to the completion of G but not in G. 
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1.0 INTRODUCTION 

The study of group theory naturally leads to problem of finding elements of 
a group that belongs to cyclic subgroups of the group. It is easy to see that there are 
groups for which some elements do not belong to any cyclic subgroup other than 
those generated by the elements; for instance, a prime number does not belong to 
any cyclic subgroup of the multiplicative group of rational numbers other than that 
generated by the prime itself. To study the groups for which every element belongs 
a cyclic group generated by some other element, the notion of 



J. Ezearn,  W. Obeng-Denteh 

2 

 

divisiblegroupsareimportant. To be precise, a divisible group is a group ��,∙� such 
that for every � ∈ � and natural number n there is anℎ ∈ � such that � = ℎ� ≔ ℎ ∙ℎ��	—we shall informally say that G has n-th roots for all n. Classically, divisible 
groups appeared in the theory of Abelian groups; in particular, every Abelian group 
can be naturally embedded in an Abelian divisible group and an Abelian group is 
divisible if and only if it is an injective object in the category of Abelian groups 
(Griffith (1970),Feigelstock (2006), Lang (1984));moreover in the Abelian, or 
generally locally nilpotent,torsion-free caseMalcev (1949), every divisible group is 
a uniquely divisible group: that is, �� = ℎ� implies � = ℎ. In any case, non-trivial 
Abelian divisible groups are not finitely generated, which is easily demonstrable via 
the Fundamental Theorem of Finitely-generated Abelian groups, and uniquely 
divisible groups are necessarily torsion free. A foremost example is the group of 
rational numbers ℚ under addition. In another but similar vein, given a prime 
number p, a p-divisible group is a group with p-th roots. We extend this further to a 
subset � of the prime numbers by defining�-divisible groups as groups with p-th 
roots for all p in � (this is not standard, for instanceBaumslag(1958) calls these ��-
groups);when � is the whole of the primes, then we get the divisible groups. The 
archetypal examples are the additive subgroups of ℚ given byℚ��� =�� ∈ ℚ: �|D��� ⇒ � ∈ ��where D��� is the denominator of q. We say a group is 
uniquely �-divisible if it is a�-divisible group with unique roots. As a further 
example, if � is all of the prime numbers, then a vector space over a field of 
characteristic  k is a well-defined uniquely �\�#�-divisible group; this latter 
example shows that uniquely �-divisible groups can be cyclic groups, torsion 
groups of finitely generated groups, in contradistinction to uniquely divisible 
Abelian groups (the finite fields, being or prime characteristics, are such examples). 

 

2.0 EXPOSITION ON NOTATIONANDSTATEMENT OF RESULTS 

Now given a �-divisible group��,∙�, henceforward the notation �$, where % ∈ ℚ��� and � ∈ �, shall denote (one of possibly many elements)ℎ ∈ � such that �� = ℎ& where % = �& with gcd�*, +� = 1;in particular,�$represents a unique 

element in G if G is a uniquely �-divisible group. Now if we denote by |∙|: ℚ��� →ℝ an absolute value function from ℚ��� to the real numbers ℝ, then 
Ostrowski(1916) showed that |∙| is, up to equivalence, the usual absolute value |∙|/ 
on the real numbers or the usual absolute value |∙|0 on the p-adic numbers for a 

prime p. When|∙| ≔ |∙|/,we have the following classical elementary but important 
result: 

TTTTHEOREMHEOREMHEOREMHEOREM    2.12.12.12.1: Let 9 ∈ ℝ. Then for some : > 1 there is an infinite sequence �%���;	/ ∈ ℚ so tha t9 ∈ ℝ\ℚ if and only if0 < |9 − %�| = >??ord�%� BC+ ℤ�E�FE. 
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Here ℝ\ℚ is the complement of ℚ in ℝ—that is, the irrational numbers; the 
notation G = >�H� implies |G| ≤ IH for some absolute constant I > 0;also,ord�ℎ ∈ J� denotes the order (or period) of an element h in the group H 
and ℤ denotes the set of integers (thus, ord�%� BC+ ℤ� gives denominator of %�). 
Dirichlet proved that in fact with the implied constant being I = 1, the theorem 

holds with : ≥ 2; the optimal situation occurs when I = 1/√5 (see Hurwitz 
(1891)) still with : ≥ 2. An important remark is that the sequence �%���;	/  in the 
Theorem above is a Cauchy sequence, therefore Theorem 2.1 equally states that 
there are no Cauchy sequences converging inside ℚ with the given estimate. The 
object of this paper is to extend the “if” part of the above theorem to uniquely �-
divisible groups G and their completions via norms, with the estimates measured in 
terms of quasi-order functions on G. We address the “only if” part in a sequel to this 
paper. First, we introduce our main functions: 

DDDDEFINITIONEFINITIONEFINITIONEFINITION2.2.2.2.2222�Norm on �-Divisible Groups�: For a set of primes �, let ��,∙� 
be a �-divisible group with identity element e and let |∙|: ℚ��� → ℝ be an absolute 
value function. Then a function ‖∙‖: � → ℝ is a norm on G if it satisfies: 

i. ‖�‖ = 0only if� = � 
ii. ‖�ℎ‖ ≤ ‖�‖ + ‖ℎ‖ 
iii.  ‖�$‖ = |%|‖�‖, % ∈ ℚ��� 

We denote by ��,∙, ‖∙‖� a�-divisible group with a norm ‖∙‖.IfG is Abelian, then it is 
just a normed linear space but over the integraldomainℚ���. Indeed if ��, +, ‖∙‖� is 
a normed vector space over a field _, then |∙| is the well-defined absolute value 
function induced by the absolute value function on _ over the vector space. 

DDDDEFINITIONEFINITIONEFINITIONEFINITION2.2.2.2.3333�Proximity Function on Groups�:Let G be a group with identity 
e. Then a function �: �\��� → ℝ is aproximity function on G if for all � ≠ ℎ: 

i. ��� ≠ �� = ����	� > 0 
ii. ���ℎ�	� ≤ �������ℎ� 
iii.  ���ℎ�	� ≤ ����� if ���� = ��ℎ� 

where � > 0 is an absolute constant. If in (ii) we have the strongerbound ���ℎ�	� ≤ � max�����, ��ℎ��, then we say � is an ultra-metric proximity function. 
Especially, if � is integer-valued with � = 1and that (ii) and (iii) 

read ���ℎ�	�| lcm?����, ��ℎ�E and ���ℎ�	�|���� if ���� = ��ℎ� respectively, 

then we say � is an order function. 

We shall typify a proximity function by � with the constant C understood. 
Obviously the product of two proximity functions is a proximity function; and also 
if � is a proximity function, then so is �F for any real number : > 0; thus we say 

two proximity functions �	,�f are equivalent if �	=�fF for some : > 0. 

ExampleExampleExampleExamplessss    2.2.2.2.4444: 
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• For Abelian torsion groups G, the function ��∙� ≔ ord�∙� is an order 
function with � = 1. 
 

• For groups with ultra-metric norms‖∙‖, the functions ��∙� ≔ ‖∙‖ and ��∙� ≔9‖∙‖, where 9 ≥ 1 is real, are ultra-metric proximity functions with � = 1. 
 

• For groups with bounded norms—i.e.,‖∙‖ ≤ I, withM fixed—the 

function ��∙� ≔ 9‖∙‖�h, where 9 ≥ 1 is real, is a proximity function with � = 9h. 
 

• If � is the additive group of an algebraic number field, then the absolute 
Weil height ℎ�∙� ≔ ∏ max�1, |∙|j�j 0klmn  is a proximity function with � = 2. 

We shall be interested in those proximity functions � on��,∙, ‖∙‖�such that for 
some :o > 0 the function ��∙�Fp‖∙‖: �\��� → ℝ is, in essence,discontinuous at the 
identity e; precisely, 

DDDDEFINITIONEFINITIONEFINITIONEFINITION2.2.2.2.5555�Proximity Function on�-Divisible Groups�: Let ��,∙, ‖∙‖� be a 
normed �-divisible group with identity e and let � be a proximity function on G. 
Then � issaid to be aclose proximity function on G if there exists a :o > 0such 
that inf������F‖��‖� = 0for a null sequence �����;	/ ⊂ �\���if and only if : <:o; otherwise, then � is said to be an open proximity function on G. 

REMARKS: Otherwise stated, inf������F‖��‖� > 0 for all null sequences�����;	/ ⊂�\��� if and only if : ≥ :o. We typify a close proximity function on G by ��; �, :o� and in that case we shall say that the elements in G are in close 
proximity(orin close order) to each other; else, where necessary, we shall say the 
elements are in open proximity(resp. in open order)to each other. 

Our interest in close proximity functions on normed �-divisible groups is 
the following result, which is the main theorem of this paper: 

TTTTHEOREMHEOREMHEOREMHEOREM2.2.2.2.6666: Let ��; �, :o� be a close proximity function on ��,∙, ‖∙‖� and let � ∈ �. Then for every : > :o and Cauchy sequence �����;	/ ⊂ �\��, ��converging 
to g, there exists N such that ‖����	‖ = >�������F� if and only if * ≤ x, where the 
implied constant is independent of n or g; moreover, this is also true for : = :o 
if � is ultra-metric and the implied constant is less than 	yzp inf{|{}�������	�Fp‖����	‖�. 
In other words, there are only finitely many elements of G in close proximity to any 
element in G with respect to the given estimates; or equivalently, Cauchy sequences 
in G do not converge inside G with respect to the given estimates. 
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3.0 ELEMENTARY  RESULTS 

We establish here some elementary but noteworthy properties of normed �-
divisible groups endowed with close proximity functions. We also state some close 
proximity functions on certain �-divisible groups but first, we prove the following: 

CCCCOROLLARY OROLLARY OROLLARY OROLLARY 3.13.13.13.1: Every normed �-divisible Abelian group is a uniquely �-
divisible group. 

Proof: Indeed, for some � ≠ ℎ suppose �� = ℎ� where * > 1 is a natural number 
whose prime divisors belong to �. Then ��ℎ�� = ��ℎ�	�� = �, thus 

|*|‖�ℎ�	‖ = ‖��ℎ�	��‖ = ‖�‖ = 0 

But|*| ≠ 0 and so ‖�ℎ�	‖ = 0, implying�ℎ�	 = � or � = ℎ, a contradiction. QEDQEDQEDQED 

CCCCOROLLARY OROLLARY OROLLARY OROLLARY 3.3.3.3.2222: Any normed �-divisible group is non-cyclic and torsion-
free. 

Proof: Let �� ≠ �� generate the group. Then �	/0 = �� for some � ∈ � and integer *and so �0��	 = �, implying that g is a torsion element. But if ℎ ≠ � is a torsion 
element with ℎ$ = � for some % ≠ 0, then 0 = ‖�‖ = ‖ℎ$‖ = |%|‖ℎ‖. It follows 
that ‖ℎ‖ = 0 or ℎ = �,  which is a contradiction. Thus there are no torsion 
elements.QEDQEDQEDQED 

CCCCOROALLRY OROALLRY OROALLRY OROALLRY 3333.3.3.3.3: Let ��,∙, ‖∙‖� be a normed �-divisible group and let �� be its 

completion with respect to ‖∙‖. Then �� ∋ lim�→/ �$} where �%���;	/ ⊂ ℚ��� 
converges in the completion of ℚ��� with respect to the absolute value |∙| 
associated to ‖∙‖. 

Proof: First, let �%���;	/ ⊂ ℚ���, then for any � ∈ � we have ��$}��;	/ ⊂ �. Thus 

‖�$} ∙ ��$���	‖ = ‖�$}�$�‖ = ‖�‖|%� − %�| 
Consequently, the sequence ��$}��;	/  converges in�� with respect to (the natural 
metric induced by) the norm‖∙‖ ifthe sequence �%���;	/  converges in the completion 
of ℚ��� with respect to (the natural metric induced by) the absolute value |∙|. QEDQEDQEDQED    

CCCCOROLLARY OROLLARY OROLLARY OROLLARY 3.3.3.3.4444: Let ��; �, :o� be a close proximity function on ��,∙, ‖∙‖�. 

Then there exists an absolute constant �� > 0 such that lim inf�→o �����Fp‖��‖  ≥�� for every null sequence �����;	/ ⊂ �\���. 
Proof: Suppose to the contrary that there exists no such absolute constant ��. 

Indeed, then for every integer B ≥ 1, there is a null sequence ����B���;	/ ⊂ �\��� 
such that lim inf�→/ �?���B�EFp‖���B�‖ < 1/B. It follows that for every m 

there are infinitely many ℎ� ∈ ����B���;	/ so that ��ℎ��Fp‖ℎ�‖ < 1/B.But since ����B���;	/  and ����B + 1���;	/  are null sequences, then we can choose ℎ��	such 
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that ‖ℎ��	‖ < ‖ℎ�‖. It then implies that�ℎ���;	/  is a null sequence 
within f��Fp�ℎ��‖ℎ�‖� = 0, whichis acontradiction to the fact that� is a close 
proximity function. QEDQEDQEDQED    

CCCCOROLLARY OROLLARY OROLLARY OROLLARY 3.3.3.3.5555:A close proximity function on a �-divisible group induces 
close proximity functionson ℚ���. 
Proof: Indeed fix a non-identity element� belonging to the �-divisible groupG. 
Now given any null sequence �%���;	/ ⊂ ℚ���\�0� and a close proximity function � 
on G, then ��$}��/ is a null sequence in G and thus inf����$}�‖�$}‖� > 0. But then inf����$}�‖�$}‖� = ‖�‖ inf����$}�|%�|�. Hence if �{�%�� ≔ ���$}� then we have inf��{�%��|%�|� > 0, implying that �{ is a close proximity function on ℚ���. Since 

we can do same for every non-identity element g in G, the conclusion follows. QEDQEDQEDQED    
As per examples we state, without verification, three close proximity 

functions, which we put together in the following lemma. We shall verify these, 
alongside other close proximity functions, in a sequel to this paper 

LLLLEMMA EMMA EMMA EMMA 3.63.63.63.6: The following are close proximity functions on the respective groups 
defined: 

(i) Suppose the absolute value function associated to the normed �-
divisible group ��,∙, ‖∙‖� is the usual one on the real numbers. Assume S 
is a normal subgroup of G such that the quotient group �/� is Abelian 
and torsion, and that the norm‖∙‖ is a discrete norm on S—i.e., there is 
an absolute constant l such that‖� ∈ �\���‖ ≥ �. Then the function ��/���� = C%+�� ∙  �� ≔ B�*�* ∈ ℤ�o: �� ∈ �� is a close order 

function on G with :o = 1, � = 1; moreover, if � is a singleton set then � is ultra-metric. (We refer to this as a �-ary order function on G). 
 

(ii)  Given a prime p and the group ℚ���, then the function �0�� ≠ 0� =���k�{�|�|��/ k�{ 0�� (where �∙� (resp. �∙�) denotes the floor (resp. ceiling) 

function and where |∙|/ is the usual absolute value on the real numbers) 
is a close ultra-metric proximity function on ℚ��� with :o = 1 and � = � given the usual p-adic norm on ℚ. (We refer to this proximity 
function as the p-adic proximity function on ℚ���). 

 
(iii)  For an algebraic number field � with the usual normalised absolute 

values |∙|j over all places v such that ∏ |9|jj = 1 for every 9 ∈ �\�0�, 
the function ���9� ≔ ∏ B�G�1, |9|j�j —i.e., the Weil height—is a close 
proximity function on �� with :o = 1 and � = 2 given the norm defined 
by the usual absolute value on the complex numbers. (We shall refer to 
this as the �-proximity function). 



APROXIMATIONS IN DIVISIBLE GROUPS I 

7 

 

EEEEXAMPLEXAMPLEXAMPLEXAMPLE    3.73.73.73.7: A particular example of case (i) above is given by � = ℚ���and � = ℤ, where the function ��/� is a close order function on ℚ��� given the usual 

norm on the real numbers. Indeed |* ∈ ℤ| ≥ 1 and so |∙| is discrete on ℤ. On the 
other hand, a non-example is given by� = ℚ�× , the multiplicative group of (the 
positive real values of the) ℚ���-powers of the positive rational numbers ℚ�o ≔ � 

with norm ‖∙‖ ≔ |log�∙�|—that is, ℚ�× ≔ ��$ ∈ ℝ�o: � ∈ ℚ�o, % ∈ ℚ����.Here the 

so-defined �-ary order function ��/� is an open order function on ℚ�× . This is so, 

obviously, as the norm is not a discrete norm on ℚ�o;indeed, for instance, �1 +
	� �;	

/ ⊂ ℚ�o and yet ¡log ¢1 + 	�£¡ → 0 as * → ∞. 

 

4.0 PROOF OF MAIN RESULTS 

We now establish the main resultsof this paper, culminating in the proof of the main 
theorem stated in the introduction. We start with the following lemma. 

LLLLEMMAEMMAEMMAEMMA4.4.4.4.1111: Let ��; �, :o� be aclose proximity function on ��,∙, ‖∙‖�. Then for 
every distinguished Cauchy sequence �����;	/ ⊂ �\��� (i.e., �� ≠ lim�→/ �� for 
all n) we have lim�→/ ����� = ∞. 

Proof:Given that�����;	/  is distinguished and Cauchy, then it contains an infinite 
subsequence of distinct elements; thus for every ¥ > 0, there exists N such that for 
all B, * ≥ x where �� ≠ ��we have 0 < ‖�����	‖ < ¥;in that cases ince � ≔inf��������	�F‖�����	‖� > 0for every : ≥ :o, then it follows that 

?�����������EF ≥ �������	�F ≥ inf �������	�F‖�����	‖‖�����	‖ = �‖�����	‖ > �¥ 

Butlim¦→o §¦ = � lim¦→o 	¦ = ∞, thuslim�,�¨©→/{�|{} ?�����������EF = ∞. Now 

suppose to the contrary that lim inf�→/ ����� < ∞. It follows that there exists an 
infinite subsequence of �����;	/ , say ���∗ ��;	/ , such that ����∗ � ≤ « for some upper 
bound U. But since �����;	/  is a distinguished Cauchy sequence, then ���∗ ��;	/  is 
also a distinguished Cauchy sequence converging to the same limit, thus (by the 

same argument as above)we have lim�,�¨©→/{�∗ |{}∗ ?�����∗ �����∗ �EF = ∞. But then 

given any disjoint partitions A and B of ���∗ ��;	/ —i.e. ¬ ∪ ® = ���∗ ��;	/ but¬ ∩ ® =∅—then we arrive at 

lim�,�¨©→/{�∗ |{}∗
?�����∗ �����∗ �EF = �F ± lim�¨©→/{�∗ ∈² ����∗ �F³ ± lim�¨©→/{}∗ ∈´ ����∗ �F³ ≤ ��«f�F 
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which is a contradiction to the fact that left-hand side is unbounded. Consequently, lim inf�→/ ����� = ∞ and so lim�→/ ����� = ∞. QEDQEDQEDQED    
TTTTHEOREMHEOREMHEOREMHEOREM4.4.4.4.2222: Let ��; �, :o� be a closeproximity function on ��,∙, ‖∙‖� with �µ  

as its completion. Let�����;	/ ⊂ �\���be a Cauchy sequence converging to�¶ ∈ �� so 
that 0 < ‖�¶���	‖ = >�������F�for all n, where : > :o. Then for all sufficiently 
large m and n,����� = �����if and only if �� = ��; moreover, this is also true for : = :o if  the implied constant is less than 

	fyzp inf{�|{}��������	�Fp‖�����	‖�. 
Proof:LetM be the implied constant in the estimate >�������F�. Now from the sub-
additivity of ‖∙‖, we have 

‖�����	‖ ≤ ‖���¶�	‖ + ‖�¶���	‖ = ‖�¶���	‖ + ‖�¶���	‖≤ I������F + I������F 

Let us assume that����� = ����� but that �� ≠ ��. Thus ‖�����	‖ ≤2I������F  or equivalently �����F�Fp�����Fp‖�����	‖ ≤ 2I and 
since �������	� ≤ ������,then�����F�Fp��������	�Fp‖�����	‖� ≤ 2�FpI. 
Finally, via the lower bound �������	�Fp‖�����	‖ ≥ inf{�|{}��������	�Fp‖�����	‖� ≔ �, then we arrive 

at�����F�Fp ≤ 	§ 2�FpI and as such����� is bounded above 

by¢	§ 2�FpI£	/�F�Fp�
if: > :oor thatI ≥ §fyzpwhen: = :o. Henceif : > :o, 

then�� = ��if����� = ����� > ¢	§ 2�FpI£	/�F�Fp�
, which latter condition holds 

for all sufficiently large ndue to Lemma4.1; similarly if : = :o and I <� 2�Fp⁄ ,then necessarily �� = ��if����� = �����, which completes the 
proof.QEDQEDQEDQED    

We now prove our main theorem, thus:    
TTTTHEOREMHEOREMHEOREMHEOREM4.34.34.34.3: Let ��; �, :o� be a close proximity function on ��,∙, ‖∙‖� and 

let � ∈ �. Then for every : > :o and Cauchy sequence �����;	/ ⊂ �\��, ��converging to g, there exists N such that ‖����	‖ = >�������F� if and only if * ≤ x, where the implied constant is independent of n or g; moreover, this is also 
true for : = :o if �is ultra-metric and the implied constant is less than 	yzp inf{|{}�������	�Fp‖����	‖�. 
Proof:Given ‖����	‖ ≤ I������F for some absolute constantI, then multiplying 

through by ?���������EFp gives us 

�����F�Fp?���������EFp‖����	‖ ≤ I����Fp 

But ������	� ≤ ����������, hence�����F�Fp������	�Fp‖����	‖ ≤ �FpI����Fp. 
Since � ∉ �����;	/ , then for some infimumL we have � ≤ ������	�Fp‖����	‖; 
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thus �����F�Fp ≤ �FpI����Fp/�and as suchfor : > :o it follows that ����� is 

bounded above by ��FpI����Fp/��Fp/�F�Fp�.Hence Lemma 4.1 tells us that there 
is no distinguished Cauchy sequence �����;	/  converging to g and satisfying the 

estimate in the lemma,so we can choose x ≔ max�*: ����� ≤ ��FpI����Fp/��Fp/�F�Fp��. Nowlet: = :o with�beingultra-metric andsuppose����� >����suchthat ‖����	‖ ≤ I������Fp. Here,note 
that������	� ≤ � max������, ����� =  ������ and consequently we have 

� ≤ ������	�Fp‖����	‖ ≤ �Fp�����Fp‖����	‖ ≤ �FpI 

implying thatI ≥ �/�Fp; hence if we require that I < �/�Fp, then necessarily we 
must have the bound ����� ≤ ����. It thus follows from Lemma 4.1 that there is no 
distinguished Cauchy sequence �����;	/  converging to g and satisfying the estimate 
in the Lemma;in this case we can choose x ≔ max�*: ����� ≤ �����.QEDQEDQEDQED    
REMARKS: In conclusion, we note that if a close proximity function exhibits the 
extra property of being uniform—that is, if there is some absolute constant �� > 0 

such that �����Fp‖��‖ ≥ �� for every null sequence �����;	/ ⊂ �\���—then the 

latter parts of Theorems 4.2 and 4.3 would have
	fyzp �� and 

	yzp �� respectively 

instead of 
	fyzp inf{|{}�������	�Fp‖����	‖� and 

	yzp inf{|{}�������	�Fp‖����	‖�. 
In this way, the implied constants in the theorems above would be independent of n 
or Gwhen : = :o. We make use of this uniformity in the sequel to this paper. 

. 
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