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Abstract 
Analytical consideration of uni-axial single-domain ferromagnet during the first 

order phase transition induced by a magnetic field is performed. Field is directed along 
the symmetry axis antiparallel to initial magnetization direction. For samples of the flat 

shape, besides the known change of the magnetization direction on o180 , at definite 
relations between values of magnetic field, the magnetization and the anisotropy of a 
crystall, there is continuous spectrum of states with intermediate magnetization 
directions. In these states, a precession frequency 0=ω . For samples of spherical 
shape, a process of the phase transition does not depend on the demagnetization field. At 
addition action of high frequency field perpendicular to the main magnetic field, there 
are dynamic equilibrium states, i.e. "self-organizing states" of ferromagnet, when the 
entropy increase connected with dissipation is compensated by the negative entropy 
flow due to the periodic field. It is shown that under these conditions, by varying the 
frequency of the periodic field, we can control the self-organising system, i.e. decrease 
or increase the system energy and, correspondingly, change the direction of 
magnetisation in ferromagnet. 
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1. Introduction 
 

A very large number of phenomena and processes are known, which can be classified as 

"self-organizing systems" or "dissipative structures" [1-4]. Processes belonging to this 

category are, for example, sounding of wind and stringed musical instruments, a whistle 

sound, existence of proteins, development of plants, functioning of animals and humans. 

Generally, the life itself in all its forms is an example of such "self-organizing systems". It 

may seem surprising that, unlike nature, the man himself was able to invent so limited number 

of such systems. This could include such examples that can be reproduced on the laboratory 

table: the chemical "Belousov-Zhabotinsky reaction" [5, 6], “Benar cells” at liquid boiling [7]. 

Precessing ball solitons during the magnetic phase transition in ferromagnet could also be 

considered as "a self-organizing system" or "self-organizing states" (SOS) [8]. Some of these 

systems are structures periodic in space or in time. Others are more complex. But the common 
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feature of all these processes is that the loss of energy in the system associated with 

dissipation, is fully offset by the influx of energy from external sources, i.e. inflow of entropy 

due to the dissipation is compensated by the negative flow of entropy due to the coupling to 

an external source. 

In this article, the SOS arising at the first order phase transition in uni-axial single-

domain ferromagnet under the action of a magnetic field directed along the symmetry axis are 

considered.  

At first, in the second part of this article, peculiarities of the first-order phase transition in 

a single-domain ferromagnet has been analyzed. The sole purpose of the single-domain 

condition for this article is to exclude extraneous sources of nucleation of a new phase, such 

as domain walls or external boundaries of the crystal. (For example, π2 -degree boundaries 

themselves are nuclei of a new phase.) In such conditions, the phase transition under the 

action of the magnetic field is determined by the process of coherent magnetization change. 

In the third part of the article, the changes in the phase transition of ferromagnet under 

the action of additional high frequency magnetic field perpendicular to the main field have 

been considered. In such conditions, SOS of ferromagnet arise. Features of these states have 

been investigated. 

 

2. Phase transition in single-domain ferromagnet 

 
Analysis scheme of ferromagnetic is presented in Fig. 1. Initially, the sample is 

magnetized to saturation along the direction (-z) – see in Fig. 1(a). For this it is necessary that 

the applied field 0<dsatH  was in absolute value greater than arising in the sample the 

demagnetizing field, i.e. dzsat HH > . Fig. 1(b) shows the ferromagnet magnetized to 

saturation along the axis (z) under the action of the field dz HH > . Thus, Fig. 1 corresponds 

to the final states of the ferromagnet. In a given article the process of )b()a( →  transition is 

analyzed. 

 

 
 
Figure 1: Scheme of the final states of the 
ferromagnet: (a) – up to saturation under a field 

zsatH , and (b) – ferromagnet under field zH .  
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To analyse magnetic phase transition in the ferromagnet with uni-axial anisotropy, we use 

the Landau–Lifshitz equation [9] in the Gilbert form: 
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and the following expression for the density of energy: 
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Hz is an external magnetic field directed along the anisotropy axis Z ( 0>zH ); 01 >K , 

hBµ=γ 2 ; m is a non-dimensional vector of ferromagnetism equal (in the absolute value) to 

1, yx immm +=⊥ , initial magnetizaton is along the (-z) direction, in present paper 

2
1 ⊥−±= mmz ; dE  is energy of demagnezation for the sample. We consider only two 

cases: sample of the flat shape, moreover, the thickness of such sample is much smaller than 

the dimensions in other directions and the symmetry axis is perpendicular to the plane of a 

sample; in the second case the sample is of the spherical form. 

 

2.1 Sample of the flat shape 

 

In this case the energy of demagnetization is  

2
04 zd mME π=   (3) 

where 0M  is the magnetization of a crystal. In such case, equation (1) can be written as: 
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Here the differentiation is carried out with respect to the dimensionless time tKB
1

12 −µ=τ h ; 

1z KH = h ; parameter of demagnetization field 104 KM hd π= . 

The solutions of Eq. (4) have the following form: 

ττω
⊥ τ=τ )()()( iepm  (5) 

From (4), the equations, which define the correspondence between zm  and ω  and the time 

changes of these parameters are the following: 

( ) )1( 2κ+ω=+ hm2h-1 zd ,  (6) 

(here 12 <<κ , therefore we neglect this value.) 

( )21 z
z m

d

dm −κω=
τ

. (7) 
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For the energy density relative to initial state we have: 

)1(
2

)1(
)21(

2

z
z

dfl mh
m

he +−−−= , (8) 

and 

( )22 1 zm
d

de −κω−=
τ

. (9) 

In what follows we consider the process of changing of parameters of a ferromagnet in the 

transition from the initial state when 1−=zm . In this process, the energy decreases, 

respectively zm  increases from the initial value, and precession frequency also changes. The 

character of changes in a ferromagnet during the phase transition depends strongly on the 

shape of the sample. 

In Figs. 2 for the sample of flat form, limit values of main parameters are given as 

functions of dh  value for different values of acting field h . Initial energy is 01 =e , final 

energy is 2e . Correspondingly, we have initial 11 −=zm  and final 2zm , initial 1ω  and final 

2ω . These limiting values are determined from equations (6) and (8). 

If 0>h , there are two ranges for limit values of the parameters. In the first of them, a 

completed reorientation (CR) takes place if  

)12(0 −≤≤ dhh : 12 +=zm , )21(1 dhh −−=ω , )21(2 dhh −+=ω , he 22 −= .  (10) 

In the second range, the transitions into intermediateie states , where )1(2 +<zm , occur if  

)12( −≥ dhh : )21(2 dz hhm −−= , )21(1 dhh −−=ω , 02 =ω , 
)21(2

)21( 2

2
d

d

h

hh
e

−
−−= . (11) 

If 0≤h , there is not completed phase reorientation, but only the transitions into 

intermediate states. In latter case, the limit parameters, as in (11), are the following: 

)21(2 dz hhm −−= , )21(1 dhh −−=ω , 02 =ω , 
)21(2

)21( 2

2
d

d

h

hh
e

−
−−= . (12) 

As can be seen, for a given value of a field, completed phase reorientation occurs only at 

sufficiently small value of dh . At a higher value of dh , the final value 02 =ω  and as can be 

seen in these Figs. 2, the values )1(2 +<zm . The field value becomes insufficient to overcome 

the demagnetizing fields. Fig. 2(e) corresponds to 0=h , i.e. when the field 0<zsatH , which 

magnetizes the sample to saturation, is simply removed. In this case 02 =zm . In this case the 

magnetization in final state is perpendicular to the axis of anisotropy. Note that for multi-

domain sample, zero magnetic field corresponds to the state, when the magnetic moments of 
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domains are directed with equal probability along or against the anisotropy axis and averaged 

0=zm , as 2zm  in our case.  

 

 

 

 

 

 

 

 

 

 
 
 
 
 
 
 
 
 
 
 
 

 
Figures 2: Limit values of main parameters for flat sample vs demagnetisation field 
(energy is denoted by filled circles, zm  value – empty rectangle, frequency – 
continuous line): (a) 5.1=h , (b) 1=h , (c) 5.0=h , (d) 1.0=h , (e) 0=h , (f) 5.0−=h . 
 

If the current field is negative, i.e. 0<h , the value 02 <zm , as is shown in Fig. 2(f). 
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So there are continuous spectrum of intermediate states, as though frozen states of a 

ferromagnet. System tends in each of these “frozen states” (FS) asymptotically, wherein the 

precession frequency 0→ω .  

In Fig. 3, in dependence of the critical field on the parameter of demagnetization field, the 

boundaries of considered above areas are shown.  

 

 

Figure 3: The dependence of the critical field on the parameter 
of demagnetization field showing the boundaries between areas 
with different characters of the phase reconstruction in the case of 
the thin flat sample.  

 

 

Note that the expressions (10), (11) and (12) are also valid for the phase transition in the 

case of a ferromagnet with the easy magnetization plane, i.e. at 01 <K . 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figures 4: The time dependences of fle , zm  and ω  for flat sample: (a) 5.0=h , 6283.0=dh  

( 05.010 =KM ); (b) 1.0=h , 6336.1=dh  (0.13); (c) 0=h , 5655.0=dh  (0.045); (d) 

2566.1,4.1 =−= dhh  (0.1). 
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Let us consider the time dependence of parameters during the phase transition. In 

correspondence with equations (6) and (7), the time dependence of zm  can be obtained: 

[ ]∫ −+−κ
=τ z

z

m

m
zdz

z

mhhm

dm
0 )21()1(

1
2

. (13) 

In Figs. 4, the time dependences of main parameters for flat sample are presented, 

according to (13) and (6), (8). In all these and in subsequent examples, the dissipation 

parameter is 4105 −×=κ . These time changes correctly correspond to dependences of the type 

shown in Figs. 2. 

For a given dh  value, a minimum field, in which a change in orientation occurs, is: 

dhh 21min −= . If for flat sample 2566.1=dh , i.e. 1.010 =KM , this field equals to 

513274.1min −=h  (an approach to this value can be seen in Fig. 4(d)). 

In Fig. 5, field dependences of energy and zFSm  parameter of FS for flat sample at 

2566.1=dh  are presented. 

 

 
 
 
Figure 5: Field dependences of energy (full circles) 
and zm  parameter (empty rectangles) of FS for flat 

sample at 2566.1=dh . Here, the frequency for all 

states is 0→ω . 
 

 

 

 

2.2 Sample of a spherical shape 

In this case  
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i.e. for spherical shape of the sample, the parameters zm , ω  and e  and their time changes do 

not depend on the dh  value, but the value of energy contains a constant component 
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)1(
2

)1( 2

z
z

sph mh
m

e +−−= . (16) 

In Fig. 6, dependences of energy and frequency on zm  at three field values, 

1.5and0.1,5.0=h , for spherical sample are presented, in correspondence with (15) and (16). 

Of course, the transition from 1−=zm  to 1+=zm  is possible only if 1≥h . 

 

 

 
 
Figure 6: Dependences of energy and frequency on 

zm  at three field values for spherical sample.  
 

 

 

 

In the case of spherical sample, according to (7) and (14): 

∫ +−κ
=τ z
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z
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dm
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. (17) 

In Fig. 7, the time dependences of energy and zm  value are shown at 5.1and1.1,1=h  for 

spherical sample. In these cases the change of zm  is from )999.0(−  to )999.0(+ . 

 

Figures 7: Time dependences of energy and zm  for spherical sample: (a) 1=h , (b) 

1.1=h , (c) 5.1=h . All changes are from 999.01 −=zm  to 999.02 +=zm . 
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of Landau-Lifshitz. It takes into account the different direction of the external magnetic field, 

but was not considered the symmetric case, when the field is acting along the symmetry axis 

of the crystal with uniaxial symmetry. Moreover, calculations were made at conditions 

corresponding to high values of dissipation parameter 1≈κ  in equation Landau-Lifshitz, i.e. 

in the area of Stoner-Wohlfatrth limit [10]. In this region, the time by coherent switching 

takes a minimum value in the range near to 10-9s.  

In the present paper, for the analysis of self-organizing states in the next part of this 

article, a particular case considered when the magnetic field is directed along the axis of 

anisotropy. Such geometry allowed to enter the frequency of precession relatively to the axis 

of symmetry and make an exact analytical consideration of the phase transition (as opposed to 

numerical calculations in [10 - 16]). Moreover, some features of reorientation (see above) not 

detected in [10 - 16] manifested. 

Comparing our results with [10 - 16], we see that by taking into account 2κ  relative to a 

unit in the equation (15), we have instead of (17) the ratio (in this case for the spherical 

sample):  

∫ +−







 κ+
κ

=τ z

z

m

m
zz

z

mhm

dm
0 ))(1(

1
2

. (18) 

In Fig. 8, dependency of 
1

2 1
)1/(

−










κ
+κ≡κ+κ  on κ  is shown. It can be seen that the 

rate of change of parameters of the ferromagnet, i.e. a speed of coherent switching is 

maximum at 1=κ , in corresponding with [10]. 

 

 

 

Figure 8: Dependency of effective parameter effκ  of 

coherent switching on κ . 
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)()( nstst →µ  of the timeline, i.e. accordance with [10 - 16] about quick coherent switching in 

ferromagnets. 

 

3. Self-organizing states 

 

Using an additional external high frequency magnetic field, we can fix the precession 

frequency and thereby stabilize the intermediate states of the ferromagnet. If the added 

periodic field is perpendicular to a main field, and 

τω
⊥⊥ = 0

1
iehKH , (19) 

we can express the magnetic component of magnetization in the form 

( ) ( ) ( )( )τβ−τω
⊥ τ=τ 0iepm , (20) 

i.e. the precession phase of magnetic moments differs from the phase of periodic field. In this 

case, the equations for zm  in the case of flat sample take the following form:  

( ) ( ) β−+
τ

κ+=
















τ
β−ω−+−− ⊥ cos1211 2
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zz
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zdz mmh
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d
hmhm , (21) 








 β−








τ
β−ω−κ−=

τ ⊥ sin11 0
22 h

d

d
mm

d

dm
zz

z  (22) 

From (8), we obtain expressions for energy density relative to the initial state, together 

with the energy of interaction with the periodic field (see, for example, [8]): 

β−−+−−−= ⊥ cos1)1(
2

)1(
)21( 2

2

0 zz
z

d mhmh
m

he  (23) 

and for the change of this energy connected with dissipation and the action of external 

periodic field: 

( ) βω−+




















τ
β−ω−+









τ−
κ−=

τ ⊥ sin11
1

1
0

2
2

0
2

2

2 zz
z

z

mh
d

d
m

d

dm

md

de
. (24) 

The equations (19) – (24) constitute a complete description of the system, including its 

time transformation. However, in the present paper we consider only dynamic equilibrium 

state of ferromagnet, i.e. when the decrease of energy caused by dissipation is compensated 

by energy flow from the external periodic field, i.e. ( ) 00 =ττ dde . Furthermore, in this case 

00 =τddmz  and 00 =τβ dd . Therefore, for this equilibrium state of ferromagnet, i.e. for 

self-organizing state (SOS), we obtain the following expressions: 



 11

( ) 0sin11 0
2
00

2
0 =β−−κω−=

τ ⊥hmm
d

dm
zz

z , (25) 

( ) 0sin11 0
2
00

2
00

0 =β−−κω−ω−=
τ ⊥hmm

d

de
zz . (26) 

From these expressions, we obtain the relation: 

( )⊥−κω=β hmz /1sin 2
000 . (27) 

Correspondingly, the corrected equation for SOS takes the following form (instead of (6)): 

( )[ ] )1(211 2
0

2
0

22
000

2
0 zzzdz mhmhmhm −ωκ−=ω−+−− ⊥ . (28) 

From equations (25) and (26), it can also be seen that the energy compensation and 

consequently the origin of SOS is possible only if  

2
00min 1 zmhh −κω=≥ ⊥⊥ . (29) 

For such a system, the entropy increase connected with dissipation is compensated by the 

negative flow of the entropy, which is the result of external periodic field. It can be expressed 

as follows: 

0=
τ

+
τ

=
τ

⊥

d

ds

d

ds

d

ds hdiss , (30) 

where 

( ) 01
1 2

2
0 <−κω−=

τ
=

τ
−=

τ
⊥

z
dissdissh m

Td

de

Td

ds

d

ds
. (31) 

Examples of the frequency dependences of energy, value of 0zm  and the change in 

entropy for the flat and spherical samples in SOS at 3102 −
⊥ ×=h are presented in Fig. 9 and 

Fig. 10. It should be noted that in the examples shown, the quantities )( 00 ωe  and )( 00 ωzm  

differ very little, not more than 1-2%, from such values in the absence of ⊥H  field.  

 
 
 

Figure 9: The frequency dependences of energy, 

0zm  value and the negative flow of the entropy 
due the external periodic field in SOS for flat 
sample, at 1.0=h , 2566.1=dh , 002.0=⊥h . In 

this case maximum of 0zm , at 00 =ω , equals 
approximately (+0.05).  
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Figure 10: The frequency dependences of 
energy, 0zm  value and the negative flow of the 
entropy due the external periodic field in SOS 
for spherical sample, if 5.1=h , 002.0=⊥h . 
 
 
 
 
 
 
 
 
Figure 11: The frequency dependences of energy, 

zm  value and minimum amplitude of periodic 

field ⊥h  for SOS in the case of flat sample, at 

1.0=h , 2566.1=dh . 
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0
2
0 cos1)( β−= ⊥⊥ zmhte  too, we can control the self-organising system, and not only reduce 

the system energy, but also increase it, decreasing 0zm  value and returning the ferromagnetic 

in direction to initial phase state. 

Further, we can compare the soliton SOS described in [8] with those presented here. 

Precessing ball solitons of paper [8] may also occur at the first-order transition in a 

ferromagnet. But their origin is spontaneous and is connected with significant fluctuations in 

the system configuration. Moreover, the probability of such SOS is strongly dependent on the 

temperature and the distance from the bifurcation point, in which their energy relative to the 

initial state is zero. 

The SOS presented here, in contrast to [8], are not localized in space, but distributed 

throughout all volume of the crystal; their appearance is not associated with fluctuations, they 

do not have a random, probability character, and do not depend on temperature. 

 
Conclusions 

 

1 A single-domain ferromagnet with uniaxial anisotropy at the first-order phase 

transition under the action of a magnetic field directed along the anisotropy axis has 

been considered. Analytical analysis of the entire process of phase transition is 

performed for two configurations of crystalline samples: a thin sample with the 

anisotropy axis perpendicular to the surface of the plate, and the spherical shape of the 

sample.  

2 Characters of phase reconstruction are significantly different in the two cases. In the 

first case the phase transition depends essentially on the relation between the sample 

magnetization and anisotropy of the crystal and thus of the demagnetisation field. 

There are two areas for the parameter of demagnetisation field. In the first of these 

areas, completed reorientation is carried out in the crystal, i.e. change in the magnitude 

zm  from 11 −=zm  to 12 +=zm . In the second area, "unfinished" phase reconstruction 

is carried out, i.e. transition in "frozen states" (FS) where 12 <zm . These states have a 

continuous spectrum, for each such state precession frequency 0→ω . 

3 Phase transition for sample of spherical form is described in the same variables as for 

flat sample, but in this case the process of transition is not dependent on the 

demagnetization field. In spherical samples, FS does not arise.  
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4 At simultaneous action of high-frequency magnetic field perpendicular to the direction 

of the main field, a self-organizing state (SOS) of a ferromagnetic arises, in which the 

ferromagnetic is in dynamic equilibrium. In this equilibrium state, the entropy increase 

connected with dissipation is compensated by the negative flow of the entropy that is 

the result of external periodic field. 

5 Relations between the main parameters of SOS, i.e. between the values of fields, 

energy, precession frequency, and the angle between ferromagnetism vector and the 

anisotropy axis, have been analysed.  

6 Changing the frequency of the alternating field, and thereby, the flow of the entropy, 

can be a continuous method to change all parameters of SOS, including reduction or 

increase of the system energy. 
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