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ABSTRACT 5 

We prove a general Dirichlet-type approximation theorem in the setting of Cauchy 6 

sequences in normed divisible groups. Essentially, we demonstrate thatthe concept 7 

of approximation exponents are extendable to elements belonging to the 8 

completion of a normed uniquely-divisible group, where the approximation is 9 

given in terms of quasi-order functions on the pre-complete group. 10 
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1.0 INTRODUCTION 16 

The study of group theory naturally leads to problem of finding elements of 17 

a group that belongs to cyclic subgroups of the group. It is easy to see that there are 18 

groups for which some elements do not belong to any cyclic subgroup other than 19 

those generated by the elements; for instance,a prime number does not belong to any 20 

cyclic subgroup of the multiplicative group of rational numbers other than that 21 

generated by the prime itself.Tostudythegroups for which every element belongs a 22 

cyclic group generated by some other element, the notion of divisible groups are 23 

important. To be precise, a divisiblegroup isa group ��,∙� such that for every � ∈ � 24 

and natural number n there isanℎ ∈ � such that � = ℎ
 ≔ ℎ ∙ ℎ
�
—we shall 25 

informally say that G has n-th roots for all n. Classically, divisible groups appeared 26 

in the theory of Abelian groups; in particular, every Abelian group can be naturally 27 

embedded in an Abelian divisible group and an Abelian group is divisible if and 28 

only if it is an injective object in the category of Abelian groups (Griffith (1970), 29 

Feigelstock (2006), Lang (1984)); moreover in the Abelian,or generally locally 30 

nilpotent, torsion-free case Malcev (1949), every divisible group is auniquely 31 

divisible group: that is, �
 = ℎ
 implies � = ℎ. In any case, non-trivialAbelian 32 

divisible groups are not finitely generated, which is easily demonstrable via the 33 

Fundamental Theorem of Finitely-generated Abelian groups,anduniquely divisible 34 

groupsarenecessarily torsion free. A foremost example is the group of rational 35 

numbers ℚ under addition. In another but similar vein, given a prime numberp, a p-36 

divisible group is a group with p-th roots. We extend this further to a subset � of the 37 

prime numbersby defining�-divisible groups as groups with p-throots for all pin� 38 

(this is not standard, for instance Baumslag (1958) calls these ��-groups);when � 39 

is the whole of the primes, then we get the divisible groups. The archetypal 40 

examplesare the additive subgroups of ℚ given byℚ��� = �� ∈ ℚ: �|D��� ⇒ � ∈41 
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��where D��� is the denominator of q.We say a group is uniquely �-divisible if it 42 

is a�-divisible group with unique roots. As a further example, if � is all of the 43 

prime numbers, then a vector space over a field of characteristic kisa well-defined 44 

uniquely �\���-divisible group; this latter example shows thatuniquely�-divisible 45 

groups can be cyclic groups, torsion groupsor finitely generated groups, in 46 

contradistinction to uniquely divisible Abelian groups (the finite fields, being or 47 

prime characteristics, are such examples). 48 

 49 

2.0 SALIENT EXPOSITION ON NOTATIONANDMOTIVATION 50 

Now given a �-divisiblegroup��,∙�, henceforward the notation ��, where 51 � ∈ ℚ��� and � ∈ �, shall denote (one of possibly many elements)ℎ ∈ � such that 52 �
 = ℎ� where � = �/! withgcd��, !� = 1;in particular,��represents a unique 53 

element in G if G is a uniquely �-divisible group. Now if we denote by |∙|: ℚ��� →54 ℝ an absolute value function from ℚ��� to the real numbers ℝ, then Ostrowski 55 

(1916)showed that |∙| is, up to equivalence, the usual absolute value |∙|( on the real 56 

numbers or the usual absolute value |∙|) on the p-adic numbers for a prime p. 57 

When|∙| ≔ |∙|(, we have the followingclassical elementary but important result: 58 

TTTTHEOREMHEOREMHEOREMHEOREM        2.12.12.12.1:Let 3 ∈ ℝ. Then for some 4 > 1, there is an infinite sequence 59 ��
�
6
( ∈ ℚso that3 ∈ ℝ\ℚ if and only if0 < |3 − �
| = :;;ord��
 >?! ℤ�A�BA. 60 

Hereℝ\ℚ is the complement of ℚ in ℝ—that is, the irrational numbers; the 61 

notationC = :�D� implies |C| ≤ FD for some absolute constant F > 0; 62 

also,ord�ℎ ∈ G� denotes the order (or period) of an element h in the group Hand ℤ 63 

denotes the set ofintegers(thus, ord��
 >?! ℤ� gives denominator of �
). 64 

Dirichletproved that in fact with the implied constant being F = 1, the theorem 65 

holds with 4 ≥ 2; the optimal situation occurs when F = 1/√5 (see Hurwitz 66 

(1891)) still with 4 ≥ 2. An important remark is that the sequence ��
�
6
(  in the 67 

Theorem above is a Cauchy sequence, therefore Theorem 2.1 equally states that 68 

there are no Cauchy sequences converging inside ℚ withthe given estimate. The 69 

object of this paper is to extend the “if” part of the above theorem to uniquely �-70 

divisible groupsG and their completionsvia norms,with the estimatesmeasured in 71 

termsofquasi-order functions on G.We address the “only if” part in a sequel to this 72 

paper. First, we define our main functions: 73 

DDDDEFINITIONEFINITIONEFINITIONEFINITION    2.2.2.2.2222�Norm on �-Divisible Groups�: For a set of primes �, let ��,∙� 74 

be a �-divisible group with identity elemente and let |∙|: ℚ��� → ℝ be an absolute 75 

value function. Then a function ‖∙‖: � → ℝ is a normon G if it satisfies: 76 

i. ‖�‖ = 0only if� = Z 77 

ii. ‖�ℎ‖ ≤ ‖�‖ + ‖ℎ‖ 78 

iii.  ‖��‖ = |�|‖�‖, � ∈ ℚ��� 79 
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We denote by ��,∙, ‖∙‖� a�-divisible group with a norm ‖∙‖.IfG is Abelian, then it is 80 

just a normed linear space but over the integraldomainℚ���. Indeed if ��, +, ‖∙‖� is 81 

a normed vector space over a field \, then |∙| is the well-defined absolute value 82 

function induced by the absolute value function on \ over the vector space. 83 

DDDDEFINITIONEFINITIONEFINITIONEFINITION    2.2.2.2.3333    �Proximity Function on Groups�:Let G be agroup with identity 84 

e. Then a function b: �\�Z� → ℝ is aproximity function on G iffor all � ≠ ℎ: 85 

i. b�� ≠ Z� = b���
� > 0 86 

ii. b��ℎ�
� ≤ db���b�ℎ� 87 

iii.  b��ℎ�
� ≤ db��� if b��� = b�ℎ� 88 

where d > 0 is an absolute constant. If in (ii) we have the stronger bound 89 b��ℎ�
� ≤ d max�b���, b�ℎ��, then we say b is an ultra-metric proximity 90 

function.Especially, if b is integer-valued with d = 1and that (ii) and (iii) 91 

readb��ℎ�
�| lcm;b���, b�ℎ�A and b��ℎ�
�|b��� if b��� = b�ℎ� respectively, 92 

then we say b is an order function. 93 

We shall typify a proximity function by bwith the constantC understood. Obviously 94 

the product of two proximity functions is a proximity function; and also if b is a 95 

proximity function, then so isbB for any real number 4 > 0;thus we say two 96 

proximity functions b
,bf are equivalent if b
=bfB for some 4 > 0. 97 

ExampleExampleExampleExamplessss    2.2.2.2.4444: 98 

• For Abelian torsion groupsG, the function b�∙� ≔ ord�∙� is anorder function 99 

with d = 1. 100 

 101 

• For groups with ultra-metric norms‖∙‖, the functions b�∙� ≔ ‖∙‖andb�∙� ≔102 3‖∙‖, where 3 ≥ 1 is real,are ultra-metric proximity functions with d = 1. 103 

 104 

• For groups with bounded norms—that is, ‖∙‖ ≤ F with M fixed—the 105 

functionb�∙� ≔ 3‖∙‖�h, where 3 ≥ 1 is real, is a proximity function with 106 d = 3h. 107 

 108 

• If � is the additive group of an algebraic number field, then the absolute 109 

Weil height ℎ�∙� ≔ ∏ max�1, |∙|j�j )klmn  is a proximity function with d = 2. 110 

We shall be interested in those proximity functionsbon ��,∙, ‖∙‖�such that for 111 

some 4o > 0 the function b�∙�Bp‖∙‖: �\�Z� → ℝ is, in essence, discontinuous at the 112 

identitye; precisely, 113 

DDDDEFINITIONEFINITIONEFINITIONEFINITION    2.2.2.2.5555    �Proximity Function on�-Divisible Groups�: Let ��,∙, ‖∙‖� be a 114 

normed�-divisiblegroup with identity e and let b be a proximity function on G. 115 

Then b issaid to be a close proximity function on G if there exists a4o > 0such 116 
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thatinf�b��
�B‖�
‖� = 0for some null sequence ��
�
6
( ⊂ �\�Z�if and only if 117 4 < 4o; otherwise, thenb is said to be an openproximity function on G. 118 

REMARKS: Otherwise stated, inf�b��
�B‖�
‖� > 0 for all null sequences��
�
6
( ⊂119 �\�Z� if and only if4 ≥ 4o. We typify a close proximity function on G by 120 �b; d, 4o�and in that case we shall say that the elements in G are in close proximit 121 

y(or in close order) to each other; else, where necessary, we shall say the elements 122 

arein open proximity(resp. in open order )to each other. 123 

Our interest in close proximity functions on normed �-divisible groups is 124 

the following result, which is the main theorem of this paper: 125 

TTTTHEOREMHEOREMHEOREMHEOREM    2.2.2.2.6666: Let �b; d, 4o� be a close proximity function on ��,∙, ‖∙‖� and 126 

let � ∈ �. Then for every 4 > 4o and Cauchy sequence ��
�
6
( ⊂ �\127 ��, Z�converging to g, there exists N such that ‖��
�
‖ = :�b��
��B� if and only if 128 � ≤ x, where the implied constant is independent of n or g; moreover, this is also 129 

true for 4 = 4o if bis ultra-metric and the implied constant is less than 130 
yzp inf{|{}�b���
�
�Bp‖��
�
‖�. 131 

In other words, there are only finitely many elements of G in close proximity to any 132 

element in G with respect to the given estimates;or equivalently, Cauchy sequences 133 

in G do not converge inside G with respect to the given estimates. 134 

 135 

3.0 PRELIMINARYRESULTS 136 

We establish here some elementary but noteworthy properties of normed �-137 

divisiblegroups endowed with close proximity functions. We also state some close 138 

proximity functions on certain �-divisible groups butfirst, we prove the following: 139 

CCCCOROLLARY OROLLARY OROLLARY OROLLARY 3.13.13.13.1: Every normed �-divisibleAbelian group is a uniquely �-140 

divisible group. 141 

Proof: Indeed, for some � ≠ ℎ suppose �
 = ℎ
 where � > 1 is a natural number 142 

whose prime divisors belong to�. Then �
ℎ�
 = ��ℎ�
�
 = Z, thus 143 

|�|‖�ℎ�
‖ = ‖��ℎ�
�
‖ = ‖Z‖ = 0 

But|�| ≠ 0 and so ‖�ℎ�
‖ = 0, implying�ℎ�
 = Z or � = ℎ, a contradiction. QEDQEDQEDQED 144 

CCCCOROLLARY OROLLARY OROLLARY OROLLARY 3.3.3.3.2222:Any normed �-divisible group is non-cyclic and torsion-free. 145 

Proof: Let �� ≠ Z� generate the group. Then �
/) = �
 for some � ∈ � and integer 146 �and so �)
�
 = Z, implying that g is a torsion element. But if ℎ ≠ Z is a torsion 147 

element with ℎ� = Z for some � ≠ 0, then 0 = ‖Z‖ = ‖ℎ�‖ = |�|‖ℎ‖. It follows 148 
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that ‖ℎ‖ = 0or ℎ = Z,  which is a contradiction. Thus there are no torsion 149 

elements.QEDQEDQEDQED 150 

CCCCOROALLRY OROALLRY OROALLRY OROALLRY 3333.3.3.3.3: Let ��,∙, ‖∙‖� be a normed �-divisible group and let �� be 151 

itscompletion  with respect to ‖∙‖. Then �� ∋ lim
→( ��} where ��
�
6
( ⊂ ℚ��� 152 

converges in the completion of ℚ��� with respect to the absolute value |∙| 153 

associated to ‖∙‖. 154 

Proof: First,let ��
�
6
( ⊂ ℚ���, then for any � ∈ � we have ���}�
6
( ⊂ �. Thus 155 

‖��} ∙ ������
‖ = ‖��}���‖ = ‖�‖|�
 − ��| 
Consequently, the sequence ���}�
6
(  converges in�� with respect to (the natural 156 

metric induced by) the norm‖∙‖ ifthe sequence ��
�
6
(  converges in the completion 157 

of ℚ��� with respect to (the natural metric induced by) the absolute value |∙|. QEDQEDQEDQED    158 

CCCCOROLLARY OROLLARY OROLLARY OROLLARY 3.3.3.3.4444: Let �b; d, 4o� be a close proximity function on ��,∙, ‖∙‖�. 159 

Then there exists an absolute constant �� > 0 such that lim inf
→o b��
�Bp‖�
‖  ≥160 �� for every null sequence ��
�
6
( ⊂ �\�Z�. 161 

Proof: Suppose to the contrary that there exists no such absolute constant ��. 162 

Indeed, then for every integer > ≥ 1, there is a null sequence ��
�>��
6
( ⊂ �\�Z� 163 

such that lim inf
→( b;�
�>�ABp‖�
�>�‖ < 1/>. It follows that for every mthere 164 

are infinitely manyℎ� ∈ ��
�>��
6
( sothat b�ℎ��Bp‖ℎ�‖ < 1/>.But since 165 ��
�>��
6
(  and ��
�> + 1��
6
(  are null sequences,then we can choose ℎ��
 166 

suchthat ‖ℎ��
‖ < ‖ℎ�‖. It then implies that�ℎ���6
(  is a null sequence 167 

withinf�bBp�ℎ��‖ℎ�‖� = 0, whichis acontradiction to the fact thatb is a close 168 

proximity function. QEDQEDQEDQED    169 

CCCCOROLLARY OROLLARY OROLLARY OROLLARY 3.3.3.3.5555:A close proximity function on a �-divisible group induces 170 

close proximity functionson ℚ���. 171 

Proof:Indeed fix a non-identity element� belonging to the �-divisible groupG. 172 

Now given any null sequence ��
�
6
( ⊂ ℚ���\�0�and a close proximity function b 173 

on G, then ���}�
( is a null sequence in G and thusinf�b���}�‖��}‖� > 0. But then 174 inf�b���}�‖��}‖� = ‖�‖ inf�b���}�|�
|�. Hence if b{��
� ≔ b���}� then we have 175 inf�b{��
�|�
|� > 0, implying thatb{ is a close proximity function on ℚ���. Since 176 

we can do same for every non-identity element g in G, the conclusion follows. QEDQEDQEDQED    177 

As per examples we state, without verification,three closeproximity 178 

functions, which we puttogether in the following lemma. We shall verify these, 179 

alongside other close proximity functions, in a sequel to this paper 180 

LLLLEMMA EMMA EMMA EMMA 3.63.63.63.6: The following are close proximity functions on the respective groups 181 

defined: 182 
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(i) Suppose the absolute value function associated to the normed �-183 

divisible group ��,∙, ‖∙‖� is the usual one on the real numbers. Assume S 184 

is a normal subgroup of G such that the quotient group �/� is Abelian 185 

and torsion, and that the norm‖∙‖ is a discrete norm on S—i.e., there is 186 

anabsolute constant l suchthat ‖� ∈ �\�Z�‖ ≥ �. Then the function 187 b�/���� = ?�!�� ∙  �� ≔ >���� ∈ ℤ�o: �
 ∈ �� is a close order 188 

function on G with 4o = 1, d = 1; moreover, if � is a singleton set then 189 b is ultra-metric. (We refer to this as a �-ary order function on G). 190 

 191 

(ii)  Given a prime p and the group ℚ���, then the function b)�� ≠ 0� =192 ���k�{�|�|��/ k�{ )�� (where �∙� (resp. �∙�) denotes the floor (resp. ceiling) 193 

function and where |∙|( is the usual absolute value on the real numbers) 194 

is a close ultra-metric proximity function on ℚ��� with 4o = 1 and 195 d = � given the usual p-adic norm on ℚ. (We refer to this proximity 196 

function as the p-adic proximity function on ℚ���). 197 

 198 

(iii)  For an algebraic number field � with the usual normalised absolute 199 

values |∙|j over all places v such that ∏ |3|jj = 1 for every 3 ∈ �\�0�, 200 

the function b��3� ≔ ∏ >�C�1, |3|j�j —i.e., the Weil height—is a close 201 

proximity function on �� with 4o = 1 and d = 2 given the normdefined 202 

by the usual absolute value on the complex numbers. (We shall refer to 203 

this as the �-proximity function). 204 

EEEEXAMPLEXAMPLEXAMPLEXAMPLE    3.73.73.73.7: A particular example of case (i) above is given by � = ℚ���and 205 � = ℤ, where the function b�/� is a close order function on ℚ��� given the usual 206 

norm on the real numbers. Indeed |� ∈ ℤ| ≥ 1 and so |∙| is discrete on ℤ. On the 207 

other hand, a non-example is given by� = ℚ�× , the multiplicative group of (the 208 

positive real values of the) ℚ���-powers of the positive rational numbers ℚ�o ≔ � 209 

with norm ‖∙‖ ≔ |log�∙�|—that is, ℚ�× ≔ ��� ∈ ℝ�o: � ∈ ℚ�o, � ∈ ℚ����.Here the 210 

so-defined �-ary order function b�/� is an open order function on ℚ�× . This is so, 211 

obviously, as the norm is not a discrete normon ℚ�o;indeed, for instance, �1 +212 



 
6

( ⊂ ℚ�o and yet ¡log ¢1 + 

£¡ → 0 as � → ∞. 213 

 214 

 215 

 216 

4.0 PROOF OF MAIN RESULTS 217 

We now establish the main resultsof this paper, culminating in the proof of the main 218 

theorem stated in the introduction. We start with the following lemma. 219 
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LLLLEMMAEMMAEMMAEMMA    4.4.4.4.1111: Let �b; d, 4o� be aclose proximity function on ��,∙, ‖∙‖�. Then for 220 

every distinguished Cauchy sequence ��
�
6
( ⊂ �\�Z� (i.e., �
 ≠ lim
→( �
 for 221 

all n) we have lim
→( b��
� = ∞. 222 

Proof: Given that��
�
6
(  is distinguished and Cauchy, then it contains an infinite 223 

subsequence of distinct elements; thus for every ¥ > 0, there exists N such that for 224 

all >, � ≥ xwhere �� ≠ �
we have 0 < ‖���
�
‖ < ¥;in that casesince� ≔225 inf�b����
�
�B‖���
�
‖� > 0for every 4 ≥ 4o, then it follows that 226 

;db����b��
�AB ≥ b����
�
�B ≥ inf b����
�
�B‖���
�
‖‖���
�
‖ = �‖���
�
‖ > �¥ 

Butlim¦→o §¦ = � lim¦→o 
¦ = ∞, thuslim�,
¨©→({�|{} ;db����b��
�AB = ∞. Now 227 

suppose to the contrary that lim inf
→( b��
� < ∞.It follows that there exists an 228 

infinite subsequence of ��
�
6
( , say ��
∗ �
6
( , such that b��
∗ � ≤ « for some upper 229 

bound U.But since ��
�
6
(  is a distinguished Cauchy sequence, then ��
∗ �
6
(  is 230 

also a distinguished Cauchy sequence converging to the same limit,thus (by the 231 

same argument as above)we have lim�,
¨©→({�∗ |{}∗ ;db���∗ �b��
∗ �AB = ∞.But then 232 

given any disjoint partitions A and B of ��
∗ �
6
( —i.e. ¬ ∪ ® = ��
∗ �
6
( but¬ ∩ ® =233 ∅—then we arrive at 234 

lim�,
¨©→({�∗ |{}∗
;db���∗ �b��
∗ �AB = dB ± lim�¨©→({�∗ ∈² b���∗ �B³ ± lim
¨©→({}∗ ∈´ b��
∗ �B³ ≤ �d«f�B 

which is a contradiction to the fact that left-hand side is unbounded. Consequently, 235 lim inf
→( b��
� = ∞ and so lim
→( b��
� = ∞. QEDQEDQEDQED    236 

TTTTHEOREMHEOREMHEOREMHEOREM4.4.4.4.2222: Let �b; d, 4o� be a closeproximity function on ��,∙, ‖∙‖� with��as 237 

itscompletion. Let��
�
6
( ⊂ �\�Z�be a Cauchy sequence converging to�µ ∈ ��so 238 

that0 < ‖�µ�
�
‖ = :�b��
��B�for all n, where 4 > 4o. Thenfor all sufficiently 239 

large m and n,b���� = b��
�if and only if�� = �
; moreover, thisis also true for 240 4 = 4o ifthe implied constant is less than 

fyzp inf{�|{}�b����
�
�Bp‖���
�
‖�. 241 

Proof:Let M be the implied constant in the estimate :�b��
��B�. Now from the 242 

sub-additivity of ‖∙‖, we have ‖���
�
‖ ≤ ‖���µ�
‖ + ‖�µ�
�
‖ = ‖�µ���
‖ +243 ‖�µ�
�
‖ ≤ Fb�����B + Fb��
��B. Let us assume thatb���� = b��
� but that 244 �� ≠ �
.Thus‖���
�
‖ ≤ 2Fb��
��Bor equivalently 245 b��
�B�Bpb��
�Bp‖���
�
‖ ≤ 2F 246 

andsinceb����
�
� ≤ db��
�thenb��
�B�Bp�b����
�
�Bp‖���
�
‖� ≤247 2dBpF.Finally, via the bound 248 b����
�
�Bp‖���
�
‖ ≥ inf{�|{}�b����
�
�Bp‖���
�
‖� ≔ �, then we arrive 249 

atb��
�B�Bp ≤ 
§ 2dBpF and as suchb��
� is bounded above 250 
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by¢
§ 2dBpF£
/�B�Bp�
if4 > 4oor thatF ≥ §fyzpwhen4 = 4o. Henceif 4 > 4o, 251 

then�� = �
ifb���� = b��
� > ¢
§ 2dBpF£
/�B�Bp�
, which latter condition holds 252 

for all sufficiently large ndue toLemma4.1; similarlyif4 = 4o and F < � 2dBp⁄ ,then 253 

necessarily�� = �
ifb���� = b��
�. Hence the proof.QEDQEDQEDQED    254 

TTTTHEOREMHEOREMHEOREMHEOREM    4.34.34.34.3: Let �b; d, 4o� be a close proximity function on ��,∙, ‖∙‖� and 255 

let � ∈ �. Then for every 4 > 4o and Cauchy sequence ��
�
6
( ⊂ �\256 ��, Z�converging to g, there exists N such that ‖��
�
‖ = :�b��
��B� if and only if 257 � ≤ x, where the implied constant is independent of n or g; moreover, this is also 258 

true for 4 = 4o if bis ultra-metric and the implied constant is less than 259 
yzp inf{|{}�b���
�
�Bp‖��
�
‖�. 260 

Proof:Given ‖��
�
‖ ≤ Fb��
��B for some absolute constantF, then multiplying 261 

through by ;b���b��
�ABp gives usb��
�B�Bp;b���b��
�ABp‖��
�
‖ ≤ Fb���Bp. 262 

Butb���
�
� ≤ db���b��
�, henceb��
�B�Bpb���
�
�Bp‖��
�
‖ ≤263 dBpFb���Bp.Since� ∉ ��
�
6
( , then for some infimum L we have � ≤264 b���
�
�Bp‖��
�
‖;thusb��
�B�Bp ≤ dBpFb���Bp/�and as suchfor 4 > 4o it 265 

follows that b��
� is bounded above by �dBpFb���Bp/��Bp/�B�Bp�.Hence Lemma 266 

4.1 tells us that there is no distinguished Cauchy sequence ��
�
6
(  converging to g 267 

and satisfying the estimate in the lemma,so we can choose x ≔ max��: b��
� ≤268 �dBpFb���Bp/��Bp/�B�Bp��. Nowlet4 = 4o withbbeingultra-metric 269 

andsupposeb��
� > b���suchthat ‖��
�
‖ ≤ Fb��
��Bp. Here,note 270 

thatb���
�
� ≤ d max�b��
�, b���� =  db��
� and consequently we have� ≤271 b���
�
�Bp‖��
�
‖ ≤ dBpb��
�Bp‖��
�
‖ ≤ dBpF, implying thatF ≥ �/dBp; 272 

hence if we require that F < �/dBp, then necessarily we must have the bound 273 b��
� ≤ b���. It thus follows from Lemma 4.1 that there is no distinguished 274 

Cauchy sequence ��
�
6
(  converging to g and satisfying the estimate in the 275 

Lemma. In this case we can choose x ≔ max��: b��
� ≤ b����.QEDQEDQEDQED    276 

    277 

5.0 CONCLUSION 278 

In conclusion, we note that if a close proximity function exhibits the extra 279 

property of being uniform—that is, if there exists some absolute constant �� > 0 280 

such that b��
�Bp‖�
‖ ≥ �� for every null sequence ��
�
6
( ⊂ �\�Z�—then the 281 

latter parts of Theorems 1 and 2 would have

fyzp �� and 


yzp �� respectively instead 282 

of the terms 

fyzp inf{|{}�b���
�
�Bp‖��
�
‖� and 


yzp inf{|{}�b���
�
�Bp‖��
�
‖�. 283 

In this way, the implied constants in the theorems above would be independent of n 284 

or G when 4 = 4o. We make use of this uniformity in the sequel to this paper. 285 

. 286 
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