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Original Research Article
APROXIMATIONSIN DIVISIBLE GROUPS:PART |

ABSTRACT

We prove a general Dirichlet-type approximatiorotieen in the setting of Cauchy
sequences in normed divisible groups. Essentiaydemonstrate thatthe concept
of approximation exponents are extendable to el&néelonging to the
completion of a normed uniquely-divisible group, esa the approximation is
given in terms of quasi-order functions on the goaiplete group.

KEYWORDS: Divisible Groups, Cauchy Sequences, Group NoRmimity Functions

1.0INTRODUCTION

The study of group theory naturally leads to problef finding elements of
a group that belongs to cyclic subgroups of theigrdt is easy to see that there are
groups for which some elements do not belong to @mjic subgroup other than
those generated by the elements; for instancay@eprumber does not belong to any
cyclic subgroup of the multiplicative group of @al numbers other than that
generated by the prime itself. Tostudythegroupswhbich every element belongs a
cyclic group generated by some other element, tiem of divisible groupsare
important. To be precise, a divisiblegroup isa @ro@,-) such that for every € G
and natural numben there isah € ¢ such thatg = h™ := h- k" 1—we shall
informally say thaG hasn-th roots for alln. Classically, divisible groups appeared
in the theory of Abelian groups; in particular, gvAbelian group can be naturally
embedded in an Abelian divisible group and an Admelgroup is divisible if and
only if it is an injective object in the category Abelian groups (Griffith (1970),
Feigelstock (2006), Lang (1984)); moreover in thbekan,or generally locally
nilpotent, torsion-free case Malcev (1949), eveiyisible group is aniquely
divisible group that is, g™ = h™ implies g = h. In any case, non-trivialAbelian
divisible groups are not finitely generated, whisheasily demonstrable via the
Fundamental Theorem of Finitely-generated Abeliamugs,anduniquely divisible
groupsarenecessarily torsion free. A foremost exanmp the group of rational
numbersQ under addition. In another but similar vein, giveeprime numbex, ap-
divisiblegroup is a group witp-th roots. We extend this further to a sulsetf the
prime numbersby definirg-divisible groups as groups with-throots for allpine
(this is not standard, for instance Baumslag (12%8s these:-groups);wheno
is the whole of the primes, then we get the dilgsigroups. The archetypal
examplesare the additive subgroupsQofjiven byQ{w} = {q € Q:p|D(q) = p €
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w}whereD(q) is the denominator af.We say a group igniquelyw-divisibleiif it

is aw-divisible group with unique roots. As a further exae, if @ is all of the
prime numbers, then a vector space over a fielchafacteristidisa well-defined
uniquely w\{k}-divisible group; this latter example shows thatumilyw-divisible
groups can be cyclic groups, torsion groupsor dlgitgenerated groups, in
contradistinction to uniquely divisible Abelian giyms (the finite fields, being or
prime characteristics, are such examples).

2.0 SALIENT EXPOSITION ON NOTATIONANDM OTIVATION

Now given aw-divisiblegroudG,"), henceforward the notatiog”, where
r € Q{w} andg € G, shall denote (one of possibly many eleménts); such that
g" = h% where r = n/d withgcd(n,d) = 1;in particularg”represents a unique
element inG if G is a uniquelyw-divisible group. Now if we denote hy: Q{w} —
R an absolute value function fro@{w} to the real numberR, then Ostrowski
(1916)showed thdt| is, up to equivalence, the usual absolute va|yeon the real
numbers or the usual absolute valdg on the p-adic numbers for a primp.
Whernl-| := ||, we have the followingclassical elementary butam@nt result:

THEOREM 2.1:Leta € R. Then for somg > 1, there is an infinite sequence
{2, € Qso thatr € R\Q if and only id < |a — r,| = 0((ord(r, mod 7)) ™).

HereR\Q is the complement of) in R—that is, the irrational numbers; the
notationt = O(y) implies |x| <My for some absolute constan¥ > 0;
alsoprd(h € H) denotes the order (or period) of an elenteint the groupHandZ
denotes the set ofintegers(thusrd(r, mod Z) gives denominator ofr,).
Dirichletproved that in fact with the implied coast beingM = 1, the theorem
holds with u > 2; the optimal situation occurs wheM = 1/v/5 (see Hurwitz
(1891)) still withu > 2. An important remark is that the sequefeg,—-; in the
Theorem above is a Cauchy sequence, therefore dine@rl equally states that
there are no Cauchy sequences converging ir@idgththe given estimate. The
object of this paper is to extend the “if” parttbe above theorem to uniquedy-
divisible group& and their completionsvia norms,with the estimaessared in
termsofquasi-order functions @aWe address the “only if” part in a sequel to this
paper. First, we define our main functions:

DEFINITION 2.2(Norm on w-Divisible Groups): For a set of primes, let (G,")
be aw-divisible group with identity elemeatand let||: Q{w} — R be an absolute
value function. Then a functidh||: G —» R is anormon G if it satisfies:

. llgll = Oonly ifg = e
i. lghll < ligll + ||l
. g™l = Irlligll, r € Q{w}
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We denote byG,, ||-||) aw-divisible group with a nornji-||.IfG is Abelian, then it is
just a normed linear space but over the integratdo@{@}. Indeed if(G, +, [|]]) is

a normed vector space over a fidldthen|-| is the well-defined absolute value
function induced by the absolute value functiorFoover the vector space.

DEFINITION 2.3 (Proximity Function on Groups):Let G be agroup with identity
e. Then a functio: G\{e} — R is groximity functioron G iffor all g # h:

I o(g#e)=0(g™H>0
i, o(gh™) < Co(g9)e(h)
ii. — o(gh™) < Co(g) if 0(g) = o(h)

whereC > 0 is an absolute constant. If in (i) we have theorsger bound
o(gh™) < Cmax{o(g),e(h)}, then we sayp is an ultra-metric proximity
functionEspecially, if o is integer-valued withC = 1and that (i) and (iii)
reacb(gh™)|lem(e(g), e(h)) and o(gh ")le(g) if o(g) = o(h) respectively,
then we say is anorder function

We shall typify a proximity function bywith the constai@ understood. Obviously
the product of two proximity functions is a proxtgnifunction; and also ip is a
proximity function, then so @' for any real numbeu > 0;thus we say two
proximity functionsp, 0, areequivalentf o;=p4 for someu > 0.

Examples 2.4:
» For Abelian torsion grouis the functiono(-) := ord(-) is anorder function
with € = 1.
e For groups with ultra-metric norrd|, the functionso(*) := ||-|landb (") :=

al'l wherea > 1 is real,are ultra-metric proximity functions with= 1.

e For groups with bounded norms—that ig)| < M with M fixed—the
functiono(*) == al'l=", wherea > 1 is real, is a proximity function with
C =aM.

* |If G is the additive group of an algebraic number figlten the absolute
Weil heighth(-) := [1, pigce max{1, |-|,,} is a proximity function witfC = 2.

We shall be interested in those proximity funct@ms (G, ||:||)such that for
somey, > 0 the functiong(-)#o||-||: G\{e} = R is, in essence, discontinuous at the
identitye; precisely,

DEFINITION 2.5 (Proximity Function onw-Divisible Groups): Let (G, ||-]|) be a
normedo-divisiblegroup with identitye and leto be a proximity function orG.
Then g issaid to be a&lose proximityfunction onG if there exists g, > Osuch



117 thatnf{o(g,)*|lg,ll} = Ofor some null sequencgg,}n-; © G\{e}if and only if
118  u < uy; otherwise, themis said to be anpenproximityfunction onG.

119  REMARKS: Otherwise statednf{o(g,)*|lgxll} > 0 for all null sequencég, }r-, <
120 G\{e} if and only ifu > p,. We typify a close proximity function oG by
121 (o; C, up)and in that case we shall say that the elemen® amein close proximit
122 y(or in close orde)y to each other; else, where necessary, we shathsaelements
123 aren open proximit{resp.in open ordento each other.

124 Our interest in close proximity functions on norm@edivisible groups is
125  the following result, which is the main theorentluf paper:

126 THEOREM 2.6 Let (p; C, u,) be a close proximity function did,-, ||-||) and
127 let geG. Then for everyu >y, and Cauchy sequencédg,},—; € G\
128  {g, e}converging to g, there exists N such tiay; |l = 0(e(g,)*) if and only if
129 n < N, where the implied constant is independent of g;amoreover, this is also
130 true for u =y, ifpis ultra-metric and the implied constant is lessarth

1 . — _
131 —=infy.g, fo(ggn ) llggn 113
132 In other words, there are only finitely many eletsensf G in close proximity to any

133  element inG with respect to the given estimates;or equivayer@auchy sequences
134  in G do not converge insid8 with respect to the given estimates.

135
136 3.0PRELIMINARYRESULTS
137 We establish here some elementary but notewortbpepties of normedo-

138  divisiblegroups endowed with close proximity furcts. We also state some close
139  proximity functions on certaiw-divisible groups butfirst, we prove the following:

140 COROLLARY 3.1: Every normedw-divisibleAbelian group is a uniquely-
141  divisible group

142 Proof: Indeed, for somg # h supposeg™ = h" wheren > 1 is a natural number
143 whose prime divisors belongao Theng™h™ = (gh™!)" = e, thus

Inlllgh™ Il = I(gh" "]l = llell = 0
144  But|n| # 0 and sd|gh™|| = 0, implyinggh™! = e org = h, a contradictionQED
145 COROLLARY 3.2:Any normedwo-divisible group is hon-cyclic and torsion-free

146  Proof: Let{g # e} generate the group. Thgi/? = g" for somep € @ and integer
147 nand sog?™ ! = e, implying thatg is a torsion element. But K # e is a torsion
148 element withh" = e for somer # 0, then0 = |le|| = ||h"|| = |r|l|h]|. It follows
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that ||h|]| = 0or h =e, which is a contradiction. Thus there are no itors
elementQED

COROALLRY 3.3: Let (G, ||I-|) be a normedw-divisible group and let; be
itscompletion with respect tffr||. ThenG 3 lim,_. g™ where{r,}>.; c Q{w}
converges in the completioaf Q{w} with respect to the absolute valyd
associated tdi-||.

Proof: First,let{r, },—, € Q{w}, then for anyy € G we have{g'™},_; c G. Thus

g™ - (g™~ I = llg™ ™l = llgllin — 1l

Consequently, the sequenfg™}>_, converges i with respect to (the natural
metric induced by) the noti¥|| ifthe sequencér, };--, converges in the completion
of Q{w} with respect to (the natural metric induced by) divsolute valug|. QED

COROLLARY 3.4: Let (o; C,u,) be a close proximity function of@,, ||]]).
Then there exists an absolute constignt> 0 such thalim inf,,_, 0(g,)*°llgnll =

L, for every null sequendg,}n-; © G\{e}.

Proof: Suppose to the contrary that there exists no sumdolute constant,.
Indeed, then for every integer > 1, there is a null sequen€g,(m)};-, c G\{e}

such thatim inf,_,c, Q(gn(m))”"llgn(m)ll < 1/m. It follows that for everynthere
are infinitely many, € {g,(m)}y-,sothat o(h,)*°||hy,|l < 1/m.But since
{g.(m)};~; and {g,(m + 1)};>~, are null sequences,then we can chobgg,
suchthat ||h,, 1]l < llhpll. 1t then implies thdh,};—; is a null sequence
withinf{o#0 (h,,)||h,,||} = 0, whichis acontradiction to the fact thats a close
proximity function.QED

COROLLARY 3.5:A close proximity function on a-divisible group induces
close proximity functionsoQ{w}.

Proof:Indeed fix a non-identity elementbelonging to thew-divisible groufs.
Now given any null sequende, },—; c Q{w}\{0}and a close proximity functiom
on G, then{g™};’ is a null sequence i@ and thumf{o(g™)||g™||} > 0. But then
inflo(g™)lg™ I} = llgllinf{e(g™)Ir.|}. Hence ifo,(17,) == 0(g™) then we have
inf{gg(rn)lrnl} > 0, implying thap, is a close proximity function oQ{w}. Since
we can do same for every non-identity elenteim G, the conclusion followsQED

As per examples we state, without verificationghreloseproximity
functions, which we puttogether in the followingrima. We shall verify these,
alongside other close proximity functions, in awssdo this paper

LEMMA 3.6: The following are close proximity functions on thspective groups
defined:



183 @) Suppose the absolute value function associatedhéo normedo-

184 divisible group(G,, |I-|]) is the usual one on the real numbers. Assume S
185 is a normal subgroup of G such that the quotiemugrG /S is Abelian
186 and torsion, and that the notfl| is a discrete norm on S—i.e., there is
187 anabsolute constant | suchthdliy € S\{e}|| = (. Then the function
188 06/s(g) = ord(g- S) =min{n € Z,,:g" €S} is a close order
189 function on G withyy, = 1, € = 1; moreover, ifw is a singleton set then
190 o is ultra-metric. (We refer to this asaary order function on G).

191

192 (i) Given a prime p and the grou@{p}, then the functiorp,(q # 0) =
193 [pliogUal)/togPl] (where|:] (resp.[']) denotes the floor (resp. ceiling)
194 function and wher¢|,, is the usual absolute value on the real numbers)
195 is a close ultra-metric proximity function o@{p} with uyo =1 and
196 C = p given the usual p-adic norm d@. (We refer to this proximity
197 function as the p-adic proximity function @p}).

198

199 (i)  For an algebraic number field with the usual normalised absolute
200 values|-|, over all places v such th§f,|a|, = 1 for everya € K\{0},
201 the functionog (@) = [], max{1, ||, }—i.e., the Weil height—is a close
202 proximity function oriK* with 4y = 1 andC = 2 given the normdefined
203 by the usual absolute value on the complex numiféfs.shall refer to
204 this as theK-proximity function).

205 EXAMPLE 3.7: A particular example of case (i) above is given b= Q{w}and
206 S =Z, where the functiog s is a close order function d@{w} given the usual
207 norm on the real numbers. Indepde Z| > 1 and so|-| is discrete orZ. On the
208 other hand, a non-example is givenGby Qg, the multiplicative group of (the
209  positive real values of thé&{w}-powers of the positive rational numbés, := S
210 with norm||-|| := |log(:)|—that is,Q% = {q" € Rs¢: q € Qs, 7 € Q{w}}.Here the
211 so-definedw-ary order functiorps s is an open order function dg. This is so,
212 obviously, as the norm is not a discrete norn@@y,;indeed, for instance{l +

213 l}:;l c Q5o and yetllog(l + %)| - 0 asn — oo.

n
214
215
216
217 4.0 PROOF OF MAIN RESULTS

218  We now establish the main resultsof this papemmating in the proof of the main
219 theorem stated in the introduction. We start whig fiollowing lemma.
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LEMMA 4.1: Let(p; C, uo) be aclose proximity function €6, ||-||). Then for
every distinguished Cauchy sequergel},—, c G\{e} (i.e., g, # lim,_ g, for
all n) we havdim,,_,, 0(g,) = .

Proof: Given thafg,},-, is distinguished and Cauchy, then it containsrdimite
subsequence of distinct elements; thus for exery0, there existdN such that for
all m,n > Nwhere g,, # g,we have 0 < ||g,,gnll < &;in that casesinde:=
inf{o(gmgn D"l gmgn 1} > Ofor everyu = pq, then it follows that

_ info(gmgn ) Ngmgnll L L L
lgmgnl lgmgntll ™ &

(Colgm)e(gn)" = 0(gmgn " =

Butlim_o = = Llim, o7 =00,  thudimmnzn-e(Co(gm)e(gn))" = 0.  Now
Im#*gn
suppose to the contrary thiin inf,,_,., 0(g,) < o.It follows that there exists an

infinite subsequence 4y, }o=1, Say{g»}n=1, such thab(g;) < U for some upper

bound U.But since{g,}»-; is a distinguished Cauchy sequence, thei}, -, is

also a distinguished Cauchy sequence convergintpgosame limit,thus (by the

same argument as above)we hailimnzn-0(Co(gi)e(gs))" = w.But then
Im#*gn

given any disjoint partitioné andB of {g;,}n=1—i.€. AU B = {gn}m=,bUtAN B =

@—then we arrive at

lim (Colgmdegn))” =c#| | lim o(gm)* || lim_e(gn)* | < (CUP*
Im*In 9m€A 9n€B

which is a contradiction to the fact that left-haside is unbounded. Consequently,
lim inf,_ 4 0(g,) = % and sdim,,_,,, 0(g,) = . QED

THEOREM4.2: Let(p; C, u,) be a closeproximity function @&, ||-||) withGas
itscompletion. Ly, }2., c G\{e}be a Cauchy sequence converging &Gso
that0 < ||ggntll = 0(e(g,)M)for all n, whereu > u,. Thenfor all sufficiently
large m and ra(g,,) = o(g,)if and only ify,,, = g,; moreover, thisis also true for

U = Yo ifthe implied constant is less thaﬂr infy, +g {0(gmgn)*llgmgn*II}.

Proof:iLet M be the implied constant in the estim&éo(g,)™*). Now from the

sub-additivity of [|-|l, we have ||gngn'll < lgmd ™l + 11397 | = lggm" Il +
1G9zl < Mo(gm)™ + Mo(gn)™". Let us assume thelgn) = o(g,) but that
Im # gn-Thud|gmgr*ll < 2Mo(gn)~*or equivalently

0(g )" *o0(g )™ lgmgntll < 2M
andsince(gmgn ) < Co(gn)thero(gn,)* #o(0(gmgn D"l gmagntll) <
2CHo M Finally, via the bound

0(Gmgn D*llgmgntll = infy, 24, {0(gmgn I lgmgn I} =L, then we arrive
ato(gp)HH < ZZC“OM and as  suag,) is  bounded  above



1 1/(pu—uo) L
251 by(z ZC“OM) ifu > poor that > By

)1/(ﬂ—#o)

wheru = u,. Henceif u > u,,

252 therg,, = gnifo(gm) = 0(gn) > (%ZC/‘OM , Which latter condition holds
253  for all sufficiently largendue toLemmad4.1; similarlyif = u, andM < L/2C*o,then

254  necessarily,, = g.ifo(gn) = 0(g,). Hence the prooED

255 THEOREM 4.3: Let (o; C, uy) be a close proximity function i, ||||) and
256 let geG. Then for everyu >pu, and Cauchy sequencdg,}n-, € G\
257 {g, e}converging to g, there exists N such thay;'|| = 0(e(g,)~*) if and only if
258 n < N, where the implied constant is independent of g;amoreover, this is also
259 true for u =, ifpis ultra-metric and the implied constant is lessarth

1 . _ —
260 mlnfgign{Q(.ggnl)uo”.g.gnlll}-

261 Proof:Given ||ggntll < Mo(g,)™* for some absolute constaftthen multiplying

262 through by(e(g)e(g,))™ gives ug(g.)* 0 (o(g)e(gn)) llggnll < Mo(g) .

263 Bute(ggn") < Co(g)e(gn), hence(g,)**o(ggn)*llggn*ll <
264  CHoMp(g)He.Sincy € {gnln=1, then for some infimumL we have L <

265 0(ggn M llggnllithu(gy)#Ho < C*oMo(g)*o/Land as suchforu >, it
266  follows thato(g,) is bounded above b§CHoMo(g)Ho/L)Ho/(H=Fo) Hence Lemma
267 4.1 tells us that there is no distinguished Caws#gnyuencdg, }n-, converging tay
268 and satisfying the estimate in the lemma,so we ataroseN = max{n:g(gn) <
269  (CHoMo(g)Ho/L)Ho/(k=Ho)}, Nowlet = p, withgbeingultra-metric
270  andsuppos#g,) > o(g)suchthat lggntll < Mo(g,) Ho. Here,note
271 thab(ggn') < Cmax{o(g,),0(9)} = Co(g,) and consequently we hdve
272 0(gga )" Nlggntll < CHoo(gn)*llggntll < C*oM, implying  thatf > L/CH;
273 hence if we require tha¥l < L/CH*o, then necessarily we must have the bound
274 o(gn) < o(g). It thus follows from Lemma 4.1 that there is nwstidguished
275 Cauchy sequencég,},-, converging tog and satisfying the estimate in the
276  Lemma. In this case we can chodse= max{n: 0(g,) < 0(g)}.QED

277
278 5.0 CONCLUSION
279 In conclusion, we note that if a close proximitynétion exhibits the extra

280 property of being uniform—that is, if there existsme absolute constahf > 0
281 such thate(gy,)H0llg,ll = L, for every null sequencly,},-1 < G\{e}—then the

282 latter parts of Theorems 1 and 2 would I;%%OeLQ andc—i0 L, respectively instead

1 . — — 1 . — —
283 of the terms~infy..4, {e(9g9, D" lggn 11} and—infy. 4, fo(g99, ) 0llggn I}

284  In this way, the implied constants in the theoretingve would be independent rof
285 or Gwhenu = uy,. We make use of this uniformity in the sequehts paper.

286
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