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 5 

ABSTRACT 6 
 7 
By using a Coulomb potential, modified by the interaction between the magnetic moments of the electron and proton, 8 
we have calculated the energy levels of a hydrogen atom. We have obtained fine and hyperfine structure as well as 9 
Lamb shift. All these are obtained from a simple formula which is a direct solution of the Schrödinger equation The 10 
obtained results are in a good agreement with experimental data For example, the hyperfine splitting between the energy 11 
levels of the states 1S1/2,1 and 1S1/2,0 ,  is of the order of  5.6×10-6 eV, which is the source of the famous “21 cm line” 12 
which is strongly useful to radio astronomers for tracking hydrogen in the interstellar medium of galaxies. The energy 13 
of the states nP1/2 is lower than those of the states nS1/2 (Lamb shift) because, in the first case, the interaction between 14 
the magnetic moments of the proton and the electron spin is canceled by the spin-orbit coupling. 15 
 16 
Keywords: Magnetic moments;; fine and hyperfine structure; Lamb shift of hydrogen atom. 17 

 18 

1. INTRODUCTION 19 

 20 

      With the usual Hamiltonian for the hydrogen-like atom we have the n
2
-fold degeneracy of states 21 

with the same principal quantum number, or 2n
2
-fold once the spin degree of freedom is included. 22 

In this real world, however, the degeneracy is lifted by corrections that arise due to the special 23 

relativity. These corrections (known as fine structure) derive from three (superficially) different 24 

sources: (a) relativistic corrections to the kinetic energy, (b) coupling between the spin and  orbital 25 

degree of freedom, (c) and a contribution knowing as a Darwin term. Relativistic corrections split 26 

degenerate multiplets leading to small shift in energy, ca 10
-4

 – 10
-5

 eV. In addition, nucleus has a 27 

spin which leads to a nuclear magnetic moment. Interaction of electronic magnetic moment with 28 

field generated by nuclear magnetic moment leads to further splitting of multiplets (hyperfine 29 

structure), ca. 10
-7

 – 10
-8

 eV.  In 1947, an experimental study by W. Lamb discovered that 2P1/2 state 30 

is slightly lower than 2S1/2 state- Lamb shift [1]. The effect is explained in the theory of quantum 31 

electrodynamics[2], in which the electromagnetic interaction itself is quantized. Some of the effects 32 

of this theory which cause the Lamb shift are as follows: vacuum polarization, electron mass 33 

renormalization, anomalous magnetic moment. On  the basis of this theory, we have studied in a 34 

previous paper [3], the Lamb shift without taking into account the electron charge. Famous fine 35 

structure was first gotten by Bohr-Sommerfeld model in 1916[4]. The fine structure used formally 36 

now is the hydrogen solution by Dirac equation[5]. Surprisingly, these solutions by Dirac equations 37 

are just equal to those of Sommerfeld model. However, Dirac's hydrogen includes a lot of wrong 38 

states (= 1P1/2, 2D3/2, 3F5/2,...). The interpretation of very tiny Lamb shift depends completely on the 39 

interpretation that Dirac's hydrogen is right. Quantum electrodynamics Lamb shift is much more 40 

complicated and filled with artificial tricks. Lamb shift measurements is too difficult and vague in 41 

respect of accuracy. We cannot see what is really happening in the key small effect  ( = 42 

0.000004372 eV , 1068 MHz) hyperfine level. Though the Lamb shift is very small, the author tried 43 

to measure this value believing 2S1/2 state is “metastable” and the collision between excited 44 

hydrogen atom and plates is a precise method for Lamb shift. In this experiment there is no 45 

guarantee that modified Zeeman effect is always linearly effective, and excited metastable states 46 

really mean 2S1/2. There are only assumptions. And, of course, the collision method is rough and not  47 

precise to measure this very tiny value. Even the latest optic methods, cannot confirm these states 48 

really express the energy difference between 2S1/2 and 2P1/2. They just estimate it. Considering 49 

Lamb shift is almost same as nuclear hyperfine structure some nuclear or electron's vibrations may 50 

influence very tiny data. In this paper we calculate the hydrogen energy levels by solving 51 

Schrödinger equation with a modified Coulomb potential by interaction between magnetic moments 52 
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of nucleus and electron's respectively, as we have proceed to study ferromagnetism [6]. Also, we 53 

have used this modified Coulomb potential to evaluate high excitation energy levels of helium [7], 54 

deuteron energy states [8], and energy levels of a pionic atom[ 9]. As we will see below, Lamb shift 55 

appears as a natural result for the energy eigenvalues of Schrödinger equation . 56 

 57 

2. EFFECTS OF THE INTERACTION BETWEEN THE MAGNETIC 58 

MOMENTS ON THE COULOMB'S POTENTIAL 59 

 60 

     In a previous paper [10] we have found the following expression for the energy of interaction 61 

between two electrons via bosons 62 

 63 �� = �ℏ���
�	
���(
������ )�

∑�,�,�� (���)��������
�	 | ∑� ������|	 � �� �!���� "#"#��("� + 1)("�& + 1)     (1) 64 

 65 

where D is a coupling constant, m is the mass of an electron, R is the distance between the two 66 

electrons, ρo is the massive density of the interacting field, DR/c
2
 is the “mass less density” of the 67 

interacting field, ωq = cq is the classical oscillation frequency of the interacting field, ωqo is the 68 

oscillation frequency of an electron, q is the wave vector of the interacting field, qo is the wave 69 

vector of the boson associated with the electron, k is the wave vector of the electron , 70 

εκ = ℏ'	 2⁄ *, nq is the occupation number of the bosons associated with the magnetic field, nqo is 71 

the occupation number of the bosons associated with the electrons, and nk is the occupation number 72 

of the electrons. When the interacting field is a photon field, then ρο = 0. For a quasi free electron εk  73 

- εk-q =0,  ωqo = ћq o
2
/2m. The Coulomb interaction occurs via photons, so that we may assume that 74 

the interacting electron oscillate with ωqo. By using that nq, nqo  = 0, nk, nk-q = 1, Eq. (1) becomes 75 

 76 �� = ℏ+,-�	
��-
∑�,�,�� (���)���+����

�	 | ∑� ������|	                                    (2) 77 

 78 ∑# 1 = 1. Further, 79 

 80 ∑� (..&)	ω��ω�&	 = (2*ℏ )	 1.&	0� Ω(2π)	 3
4

5
(cos(α))	sin(α)<α3

�&

5
.<. = (2*ℏ )	 =�
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 81 

For qo1 = qo2 = qo and R2 – R1 = R, we have 82 

 83 ∑�& | ∑� ������|	 = ∑�& 2(1 + 0?@(A)) = 2B [1 + cos(.&=)]�& =
2 + 2 E(	4)� F5.HI4 J⁄5 .&	<.& F45 0?@(.&=0?@K)@L"K<K = 3.3                       (3) 84 

 85 

where  Γ = qoR2 – qoR1, for n = 1,2. The interaction energy becomes 86 

 87 �� = 0.00729 ℏ,� = α ℏ,�                         (4) 88 

 89 

Taking the upper limit of qo as 0.94π/R, which is with 6% lower than π/R, one obtains the value of 90 

α just as for experimental value. The relation (4) represents the Coulomb's law, which now is 91 

obtained without taking into account the electron charge concept. It was shown[10] that for charges 92 

of opposite sign the interaction energy (4) has the sign minus. 93 

     In presence of a magnetic field in the above equation we introduce and thus we substitute qoR by    94 
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qoR - 
Pℏ, ∮ R<=and 95 

 96 | ∑�S�,	 ������|	 = 2[1 + 0?@(A)]A = .&TTTTU=	 − .&=� − Pℏ, (∮ R(=	)<=	 − ∮ R(=�)<=�)                         (5) 97 

 98 

We consider the potential vector A= (µµµµ × R)/R
3
 where µµµµ is the magnetic dipole moment and R is a 99 

vector from the middle of the loop to the observation point. The theory and experiment demonstrate 100 

that the free electron has a magnetic moment equal to the Bohr magneton µB and a spin momentum 101 

s, the projection of which on a specified direction are sz = ±ħ/2 = ħms where ms = ±1/2 is the spin 102 

quantum number. For µz
(s)

 = µBgms, with g = 2, we obtain 103 

 104 A = �	 (.� + .	)(=	 − =�) + �	 (.	 − .�)(=	 + =�)
�Pℏ,� P�I4
 WP ∮ 2
X�×��Z��Z+ <=	� − Pℏ,� P�I4
 WP ∮ 2
XZ×�Z��Z�+ <=�	       (6) 105 

 106 
where (h/e)ms2 and (h/e)ms1  are the flux vectors. For q1 = q2 = qo, one obtains 107 

 108 A = .&=0?@K − Γ&Γ& = P�
,� (I4
X�� − I4
XZ� )                                   (7) 109 

 110 

We have used the relation .&\ = .& − P�	
,� 	
X�� ]where x is a unit vector which is perpendicular to R 111 

and µµµµ. The interaction energy between the two electrons when we take into account their magnetic 112 

moments is given by the expression 113 

 114 �^ = ℏ,�II4� [2 + 1.3cos(Γ&)]                               (8) 115 

 116 

where Γo is given by Eq. (7). For ms1 = ms2 = ½, one obtains Γo = 0 so that Eq. (8) reduces to Eq. 117 

(4), that is when the spins of the two electrons are oriented in the same direction there is not a 118 

modification of the Coulomb's potential. When ms1 = ½, ms2 = -1/2, one obtains Γo = 2πe
2
/mc

2
R, so 119 

that for a certain value of R results Γo = π, and the interaction energy between the two electrons is 120 

reduced by a factor of 0.7/3.3 ~ 1/5. 121 

     However, like the electron, the proton has spin angular momentum with sp = ½, and associated 122 

with this angular momentum is an intrinsic dipole moment 123 

 124 μ` = γ`�b0 @` 

 125 

where M is the proton mass and γp is a numerical factor known experimentally to be 2.7928. The 126 

magnetic moment of the electron moving around the proton is 127 

 128 μP = �2b0 (c + 2d) 
 129 

where L is the orbital angular momentum and S is the spin angular momentum. For the hydrogen 130 

atom 131 

 132 
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Γ& = Pℏ, ∮ (ef�eg)×hh+ <i = Jh
j = 4P�
,� (	
k γ`@` −*l − 2*m)

                  (9) 133 

 134 

sp = ±1/2 is the proton quantum number, ms = ±1/2 is the electron spin quantum number and ml is 135 

the magnetic quantum number. In Table I are given the values of parameter a for different states of 136 

the electron in hydrogen atom. 137 

 138 

                                            Table I 139 

The values of the parameter a for the hydrogen atom energy states 140 

___________________________________________________________ 141 

 142 

State          ml         ms        sp              a, 10
-15

m 143 

___________________________________________________ 144 

 145 

nS1/2,1        0           ½        ½              8.83910580399 146 

 147 

nS1/2,0       0          ½        -1/2            8.86601104677 148 

 149 

nP1/2            1          -1/2      ±1/2        0.01345262138974 150 

 151 

nP3/2,2        1          ½          ½              17.69166422937 152 

 153 

nP3/2,-1         1          ½         -1/2           17.718569447215 154 

 155 

nD3/2,2        2         -1/2         ½             8.83910680399 156 

 157 

nD3/2,1         2         -1/2        -1/2          8.86601104677 158 

 159 

nD5/2,3         2          ½           ½             26.54422265475 160 

 161 

nD5/2,2         2          ½          -1/2           26.57112789753 162 

 163 

nF5/2,3                 3         -1/2         ½             17.69166422937 164 

 165 

nF5/2,2           3         -1/2        -1/2          17.718569447215 166 

 167 

nF7/2,4           3           ½          ½             35.39678392921 168 

 169 

nF7/2,3            3          ½          -1/2          35.42368632291 170 

 171 

 172 

3 THE ELECTRON ENERGY LEVELS IN THE HYDROGEN ATOM   173 

 174 

     For the radial wave function Ψ = R(r)Yl
m
exp(-iEt/ħ), the non-relativistic Schrödinger equation 175 

for the hydrogen atom becomes 176 

 177 ( ℏ�	
 (�n�
nh� − 	h nnh + l(l��)h� ) − o,(p))= = �=                           (10)178 
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Now we write R(r) = r
lρ(r) where ρ(0) = 0. Eq. (10) is now 179 

 180 (�ℏ�	
 ( n�
nh� + 	(l��)h nnh) − 	ℏ,�II4h (1 + 0.650132cos(Jh)))ρ = �ρ        (11) 181 

 182 

We are interested in the bound state solutions and therefore ρ(r) ~e
-β r

 for r→∞, so that we try the solution ρ(r)=f(r)exp(-183 

βr[1+0.65013266cos(a/r)+0.65013266sin(a/r)]), Eq. (4) becomes 184 

 185 

t\\ − 2u[1 + 0.650132660?@(j p⁄ ) + 0.65013266@L"(j p⁄ )]t\ + 1.30026532βjp (−@L"(j p⁄ ) + 0?@(j p⁄ ))t\
+0.65013266 βjp	 (0?@(j p⁄ ) − @L"(j p⁄ ))t + β	[1 + 0.65013266cos(j p⁄ ) + 0.65013266sin(j p⁄ )]	t

−1.30026532βJjp ⟨0?@(j p⁄ ) − @L"(j p⁄ )⟩[1 + 0.650132660?@(j p⁄ ) + 0.65023266@L"(j p⁄ )]t
+0.65013266	β	 j	

p	 [−sin(j p⁄ ) + cos(j p⁄ )]	t − 065013266βj	p� (−0?@(j p⁄ ) − @L"(j p⁄ ))t
+2(i + 1)p t′ − 2(i + 1)p u[1 + 0.650132660?@(j p⁄ ) + 0.65013266@L"(j p⁄ )]t

+1.30026532(i + 1) βjp	 (0?@(j p⁄ ) − @L"(j p⁄ ))t + 2ℏ0144πp 2*ℏ	 [1 + 0.650132660?@(j p⁄ )]t = −2*ℏ	 �t

 

 186 

To avoid f(r) to diverge at infinity to overcome the wanted exponential suppression, we require f(r) to be a polynomial in r 187 

 188 t(p) = ∑# 0#p#                                                           (12) 189 

 190 

The differential equation then becomes 191 

 192 

U
N
D
E
R
 
P
E
E
R
 
R
E
V
I
E
W



{
#

0#'(' − 1)p#�	 − 2u[1 + 0.650132660?@(j p⁄ ) + 0.65013266@L"(j p⁄ )]{
#

0#'p#��
+1.30026532uj(0?@(j p⁄ ) − @L"(j p⁄ )){

#
0#'p#�	

+β	[1 + 0.65013266cos(j p⁄ ) + 0.65013266sin(j p⁄ )]	{
#

0#p#
−1.30026532β	j(0?@(j p⁄ ) − @L"(j p⁄ ))[1 + 0.650132660?@(j p⁄ ) + 0.65013266@L"(j p⁄ )]{

#
0#p#��

+(0.65013266)	β	j	(cos(j p⁄ ) − sin(j p⁄ ))	{
#

0#p#�	
−1.30026532uj	(−0?@(j p⁄ ) − @L"(j p⁄ )){

#
0#p#�� + 2(i + 1){

#
0#p#�	

−2(i + 1)u[1 + 0.6500?@(j p⁄ ) + 0.65013266@L"(j p⁄ )]{
#

0#p#��
+1.30026532(i + 1)uj(0?@(j p⁄ ) − @L"(j p⁄ )){

#
0#p#�	

+4*0144πℏ [1 + 0.650132660?@(j p⁄ )]{
#

0#p#�� + 2*ℏ	 �{
#

0#p# = 0

 

 193 

At this stage we assume the constraint condition that the argument of sine and cosine,  a/r = a/n
2
ao, where n = l+k + 1 is the principal quantum number 194 

and ao is the Bohr radius. 195 

   Collecting coefficients of r
k-1

 the above equation gives us the recursion relation196 

U
N
D
E
R
 
P
E
E
R
 
R
E
V
I
E
W



 197 0#��'(' + 1) + 0#��1.30026532uj(0?@(j "	⁄ j&) − @L"(j "	⁄ j&))(' + 1)+0#��0.65013266uj(0?@(j "	⁄ j&) − @L"(j "	⁄ j&)) + 0#�!2(' + 1)(i + 1)+0#��0.65013266	β	j	(−sin(j "	⁄ j&) + cos(j "	⁄ j&))	+0#��{1.30026532(i + 1)uj(0?@{j "	⁄ j&} − @L"(j "	⁄ j&))}−0#{2u[1 + 0.650132660?@(j "	⁄ j&) + 0.65013266@L"(j "	⁄ j&)]'}−0#1.30026532β	j(0?@(j "	⁄ j&) − @L"(j "	⁄ j&))[1 + 0.650132660?@(j "	⁄ j&) + @L"(j "	⁄ j&)]−0#2(i + 1)u[1 + 0.650132660?@(j "	⁄ j&) + 0.65013266@L"(j "	⁄ j&)]
+0#{ 4*0144πℏ [1 + 0.650132660?@(0?@(j "	⁄ j&)) + 0.65013266@L"(j "	⁄ j&)]}
+0#��{β	[1 + 0.650132660?@(j "	⁄ j&) + 0.65013266@L"(j "	⁄ j&)] + 2*

ℏ2❑ �}
−0#�	{1.30026532uj	(−0?@(j "	⁄ j&) − @L"(j "	⁄ j&))} = 0

 

 198 

We assume ck+1
 
= 0, ck+2 = 0 and 199 

 200 2u(' + i + 1) + 1.30026532β	j(0?@(j "	⁄ j&) − @L"(j "	⁄ j&))−4*0144πℏ 1 + 0.65013266cos(j "	⁄ j&)1 + 0.65013266cos(j "	⁄ j&) + 0.65013266sin(j "	⁄ j&) = 0
� = −ℏ	

2* β	[1 + 0.65013266cos(j "	⁄ j&) + 0.65013266sin(j "	⁄ j&)]	
 

 201 

whence 202 

 203 β

=
�"	 + 4*0j144πℏ × 1.30026532(cos(j "	⁄ j&) − sin(j "	⁄ )j&) 1 + 0.65013266cos(j "	⁄ j&)1 + 0.65013266(cos(j "	⁄ j&) + sin(j "	⁄ j

1.30026532j(cos(j "	⁄ j&) − sin(j "	⁄ j&))
 204 

Further, 205 

 206 � = �ℏ�	
 [1 + 0.65013266cos(j "	⁄ j&) + 0.65013266sin(j "	⁄ j&)]	
[����-���Z--�ℏ×�.�55	���	(���(J ��⁄ J�)����(J ��⁄ J�))���]�

(�.�55	���	)�J�(���(J ��⁄ J�)����(J ��⁄ J�))�� = ��5.��5��	�����(J ��⁄ J�)��5.��5��	�����(J ��⁄ J�)����(J ��⁄ J�)

   (13) 207 

 208 

The values of parameter a are given in Table I. For a → 0, one obtains the usual formula 209 

 210 � = ���
,�	��                                 (14) 211 

 212 

By using series expansions 213 

 214 
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(1 + ])� 	⁄ = 1 + ]2 − ]	
8 +. . .

0?@(]) = 1 − ]	
2! + ]I

4! −. . .
@L"(]) = ] − ]�

3! +. . .
 

 215 

Eq.(13) reduces to 216 

 217 � = ���
,�	�� [1 − �.�55	���	�.�55	���	 �
,J�+ℏ (1 − J��J�) �.��5��	���.��5��	���5.��5��	�� �����
]	      (15) 218 

 219 

where α = 2×1.65013266/144π. For hydrogen-like atoms, α is replaced by αZ.  In Table II are 220 

presented the values of the hydrogen energy levels, which are calculated by using Eq. (15). 221 

 222 

                                                   Table II 223 

              Theoretical values of the hydrogen energy levels. 224 

- 225 

 226 

State             - E eV                                    State                      -E eV 227 

                  228 

 229 

 230 

1S1/2,1       13.596644180791                    3D5/2,2                                   1.510914931481 231 

 232 

1S1/2,0       13.59663873496                      4S1/2,1                      0.8499003548622 233 

 234 

2P1/2         3.3996083257396                   4S1/2,0                      0.8499003494741 235 

 236 

2S1/2,1
             

3.3995523113018                   4P1/2                        0.8499021000549 237 

 238 

2S1/2,0       3.399552481535752                  4P3/2,2               0.8498985045103 239 

 240 

2P3/2,2        3.399496472329                        4P3/2,1                          0.8498985991906 241 

 242 

2P3/3,1        3.399496302014                        4D3/2,2              0.8499003548622 243 

 244 

3P1/2          1.5109370602835                      4D3/2,1              0.8499003494741 245 

 246 

3S1/2,1         1.5109297061228                     4D5/2,3              0.8498968542270 247 

 248 

3S1/2,0         1.5109664833516                     4D5/2,2               0.8498968489076 249 

 250 

3P3/2,2         1.5109223298343                     4F5/2,3                0.8498985045103 251 

 252 

3P3/2,1         1.5109223074163                     4F5/2,2                0.8498985991906 253 

 254 

3D3/2,2         1.5109297061228                     4F7/2,4                            0.8498951040425 255 

 256 

3D3/2,1         1.5109664833516                      4F7/2,3                          0.8498950987239 257 

 258 
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3D5/2,3         1.5109149538382 259 

 260 

We have used the following values of the constants:  m = 9.109389×10
-31

 kg, c = 2.997925×10
8
 m/s, 261 

ħ = 1.054572×10
-34

Js, ao = 0529177×10
-10

m. With these values of the constants one obtains E1 262 

=α2
mc

2
/2 = 13.605703346973 eV. The obtained results are in a good agreement with experimental 263 

data. 264 

For the specific case of the ground state of the hydrogen atom ( n = 1), the energy separation 265 

between the states 1S1/2,0 and 1S1/2,1 is 5.6×10
-6

 eV The photon corresponding to the transition 266 

between these states has wavelength of 21.1 cm. This is the source of the famous  “21 cm line”, 267 

which is extremely useful to radio astronomers for tracking hydrogen in the interstellar medium of 268 

galaxies. The separation between 2P3/2 and 2P1/2 is 10
-4

 eV and is generated by the spin-orbit 269 

coupling. Lamb shift appears also as a natural result in our model. The difference in energy between 270 

two energy levels 2S1/2 and 2P1/2 is 5.6×10
-5

 eV, and so on.  271 

 272 

4. CONCLUSIONS 273 

  274 

We have presented a theory which explain fine and hyperfine structure as well as the Lamb shift for 275 

the hydrogen atom. The theory is based on the modification of the Coulomb potential due to the 276 
interaction between the magnetic moments of the electron and proton, respectively. Every energy level  associated 277 
with a particular set of quantum numbers n, l, and j, is split into two levels of slightly different energy depending 278 
on the relative orientation of the proton magnetic dipole with the electron state. The obtained results are in a good 279 
agreement with experimental data. For example    280 
the separation energy between the two states of the ground state corresponds to the famous wavelength of a 281 
photon of 21.1 cm. The energy of the states nP1/2 is lower than the energy of the states nS1/2 because in the first 282 
case the contribution of the interaction between the magnetic moments of the proton and neutron is canceled by 283 
the spin-orbit coupling. 284 

 285 

 286 

REFERENCES 287 

 288 

1. Lamb E, Rutherford  RC. Fine Structure of the Hydrogen Atomby a Microwave Method Phys.     289 

Rev. 1947;72;241-243 290 

2.  Greiner W, Reinhardt J, Quantum Electrodynamics, Springer,2003 291 

3.  Dolocan V, Dolocan A,  Dolocan VO , Quantum Mechanical Treatment of the Lamb Shift 292 

without taking into Account the Electric Charge, Nonlinear and Complex Dynamic s, Eds. J A 293 

Tenreiro Machado, D Baleanu and C J Luo, pp.150, Springer, 2011 294 

4.  Sommerfeld A. Zur Quantentheorie der Spectrallinien. Annalen der Physik 1916;51;125-167. 295 

5.   Dirac PAM. The Quantum Theory of the Electron. Proc. Roy. Soc. of London 1928;A117;610-296 

624. 297 

6. Dolocan V, Dolocan VO.  Effect of the Spin-Spin Interaction on the Coulomb's Law. Application 298 

to Ferromagnetism. World Journal of Condensed Matter Physics, 2012;2;117- 123; revised verssion 299 

arXiv: 1206.0537 300 

7..Dolocan V, Evaluation of the Coulomb and Exchange Integrals for Higher Excited States of 301 

Helium Atom, taking into Account the Interaction between the Magnetic Moments of the Electrons. 302 

arXiv:1304.2988 303 

8. Dolocan V,  Dolocan VO, Dolocan A. Interaction between Fermions via Mass less Bosons and 304 

Massive Particles. Journal of Physical Science and Applications, 2013;5;332-340; revised version 305 

arXiv:1406.1311 306 

9.  Dolocan V. Effects of the Interaction between the Magnetic Moments on the Energy Levels of a 307 

Pionic Atom, arXiv:1503.09125 308 

10. Dolocan V, Dolocan A, Dolocan VO. Quantum Mechanical Treatment of the Electron-Boson 309 

Interaction viewed as a Coupling through Flux Lines.Polarons.   Int. J. Mod. Phys. 2010;B24; 479-310 

UNDER PEER REVIEW



495; On the Chemical Bindings in Solids. Rom. J. Phys.  2010;55; 153172. 311 

11. A. E.Kramida  Atomic data and nuclear data tables 96, 586(2010) 312 

 313 

UNDER PEER REVIEW


