
 

 

Original Research Article 1 

APROXIMATIONS IN DIVISIBLE GROUPS: PART II 2 

 3 

ABSTRACT 4 

We verify some assertions in the prequel to this paper, in which certain functions  5 

which are referred to as proximity functions were introduced in order to study 6 

Dirichlet-type approximations in normed divisible groups and similar groups that 7 

enjoy a form of divisibility, for instance p-divisible groups. 8 
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1.0 INTRODUCTION 14 

A divisible group (�, . ) is defined as a group such that for every � ∈ {�} and 15 

natural number n there is an ℎ ∈ {�} suchthat � = ℎ�: = ℎ. ℎ���; informally, we say 16 

that G has n-th roots for all n. A foremost example is the group of rational numbers 17 

ℚunder addition. Similarly, p-divisible group is a group with p-th roots. Now let � 18 

denote a subset of the prime numbers {2,3,5,7, … }. In the prequel [1] to this paper, 19 

we studied the �-divisible groups, which are groups with p-th roots for all � ∈ �. 20 

Archetypal examples are the additive subgroups of ℚ given by ℚ{�} =21 

{� ∈ ℚ: �|D(�) ⇒ � ∈ �}where D(�) is the denominator of q. We say a group is 22 

uniquely �-divisible if it is a �-divisible group with unique roots. We recall the 23 

following definitions given in [1]: 24 

DEFINITION 1.1 (Norm on �-Divisible Groups): For a set of primes �, let (�,∙) 25 

be a �-divisible group with identity element e and let |∙|: ℚ{�} → ℝ be an absolute 26 

value function. Then a function ‖∙‖: � → ℝ is a norm on G if it satisfies: 27 

i. ‖�‖ = 0 only if � = 6 28 

ii. ‖�ℎ‖ ≤ ‖�‖ + ‖ℎ‖ 29 

iii. ‖�9‖ = |:|‖�‖, : ∈ ℚ{�} 30 

The absolute value|∙|: ℚ{�} → ℝ, essentially via Ostrowski's Theorem [2], is the 31 

usual one on the real numbers or on the p-adic numbers.We denote by (�,∙, ‖∙‖) a �-32 

divisible group with a norm ‖∙‖. 33 

 34 

DEFINITION1.2(Proximity Function on Groups): Let G be a group with identity 35 

e. Then a function @: �\{6} → ℝ is a proximity function on G if for all � ≠ ℎ: 36 

i. @(� ≠ 6) = @(���) > 0 37 

ii. @(�ℎ��) ≤ D@(�)@(ℎ) 38 
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iii. @(�ℎ��) ≤ D@(�) if @(�) = @(ℎ) 39 

whereD > 0 is an absolute constant. If in (ii) we have the stronger bound @(�ℎ��) ≤40 

D max{@(�), @(ℎ)}, then we say  @ is an ultra-metric proximity function. 41 

Furthermore, if @ is integer-valued with D = 1 and that (ii) and (iii) read 42 

@(�ℎ��)| lcmF@(�), @(ℎ)G and @(�ℎ��)|@(�) if @(�) = @(ℎ) respectively, then we 43 

say @ is an order function. 44 

 45 

For Abelian torsion groups G, the function @(.) = ord(.) is an orderfunction 46 

(seeExample 1.4 in [1] for more examples). 47 

 48 

DEFINITION1.3(Proximity Function on Normed �-Divisible Groups): Let 49 

(�,∙, ‖∙‖) be a normed �-divisible group with identity e and let @ be a proximity 50 

function on G. Then @ is said to be a close proximity function on G if there exists a 51 

IJ > 0 such that inf{@(��)L‖��‖} = 0 for some null sequence {��}�M�N ⊂ �\{6} if 52 

and only if I < IJ; otherwise, then @ is an openproximity function on G.We shall 53 

say that the elements in G are in close proximity (andin close order) to each other; 54 

else, where necessary, we shall say the elements are in open proximity (resp. in open 55 

order) to each other. 56 

We typify a close proximity function on Gby (@; D, IJ). The main result proved in 57 

[1] is the following theorem. 58 

 59 

THEOREM 1.4: Let (@; D, IJ) be a close proximity function on (�,∙, ‖∙‖) and let � ∈ �. 60 

Then for every I > IJ and Cauchy sequence {��}�M�N ⊂ �\{�, 6}converging to g, 61 

there exists N such that ‖�����‖ = V(@(��)�L) if and only if W ≤ X, where the 62 

implied constant is independent of n or g; moreover, this is also true for I = IJ 63 

if @is ultra-metric and the implied constant is less than 64 

�
YZ[ inf\]\^{@(�����)L[‖�����‖}. 65 

Theorem 1.4 implies that there can be only finitely many elements ofG in close 66 

proximity to any element in G with respect to the given estimates; or equivalently, 67 

Cauchy sequences in G do not converge insideG with respect to the given estimates. 68 

A converse to this theorem,would give a Dirichlet-type approximation for 69 

(incomplete) �-divisiblegroups. In the present paper, we verify some assertions on 70 

examples ofproximity functions given in [1]. 71 

 72 

 73 

2.0 PRELIMINARIES 74 

We require the following definitions and results. A norm ‖. ‖ on an arbitrary group G 75 

with identity e is said to be discrete if 76 

(1) ‖. ‖: � → ℝ_J 77 

(2) ‖`a‖ ≤ ‖`‖ + ‖a‖, ∀`, a ∈ � 78 

UNDER PEER REVIEW



3 

 

(3) ‖`�‖ = |W|‖`‖, ` ∈ �, W ∈ ℤ 79 

(4) infd∈e{f}‖`‖ > 0 80 

Let g be an algebraic number field and let ℚh  be the field of algebraicnumbers. 81 

Theabsolute Weil height ℎ: g → ℝ_Jis given by 82 

ℎ(∙) ≔ j max{1, |∙|k}
k

 

where v runs through all places of g and |∙|kis a normalised absolutevalue, 83 

hence∏ |m|kk = 1. We know (see [3]) that ℎ(mn) ≤ 2ℎ(m)ℎ(n)and alsoℎ(m��) =84 

ℎ(m)ifm ≠ 0. 85 

The p-adic norm |∙|oof a rational number � = d
p, where `, a areintegers with a ≠ 0 86 

is given by 87 

|�|o  =  ��qkr(d)�kr(p)s
 

where�kr(d)is the greatest power dividing ` and similarly �kr(p)is the greatest power 88 

dividing a. 89 

 90 

 91 

3.0 MAIN RESULT 92 

We now establish the main resultof this paper, which was stated without proof in [1]. 93 

LEMMA 3.1: The following are close proximity functions on the respective groups 94 

defined: 95 

(i) Suppose the absolute value function associated to the normed �-divisible 96 

group (�,∙, ‖∙‖) is the usual one on the real numbers. Assume S is a 97 

normal subgroup of G such that the quotient group �/w is Abelian and 98 

torsion, and that the norm‖∙‖ is a discrete norm on S—i.e., there is an 99 

absolute constant l suchthat ‖� ∈ w\{6}‖ ≥ y. Then the function 100 

@e/z(�) = {:|(� ∙  w) ≔ }~W{W ∈ ℤ�J: �� ∈ w} is a close order 101 

function on G with IJ = 1, D = 1; moreover, if � is a singleton set then 102 

@ is ultra-metric. (We refer to this as a �-ary order function on G). 103 

 104 

(ii) Given a prime p and the group ℚ{�}, then the function @o(� ≠ 0) =105 

�����\(|�|�)/ ��\ o�� (where �∙� (resp. �∙�) denotes the floor (resp. ceiling) 106 

function and where |∙|N is the usual absolute value on the real numbers) 107 

is a close ultra-metric proximity function on ℚ{�} with IJ = 1 and D = � 108 

given the usual p-adic norm on ℚ. (We refer to this proximity function as 109 

the p-adic proximity function on ℚ{�}). 110 

 111 

(iii) For an algebraic number field g with the usual normalised absolute 112 

values |∙|k over all places v such that ∏ |m|kk = 1 for every m ∈ g\{0}, 113 

the function @g(m) ≔ ∏ }`�{1, |m|k}k —i.e., the Weil height—is a close 114 
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proximity function on g� with IJ = 1 and D = 2 given the norm defined 115 

by the usual absolute value on the complex numbers. (We shall refer to 116 

this as the g-proximity function). 117 

Proof. For (i), it is easy to see that since @e/z(�)  =  {:|(� ∙ w) ≔ }~W{W ∈118 

ℤ�J: �� ∈ w}, that is since @e/z denotes the order of agroup, then straightforwardly, 119 

it suffices for the definition of a proximity(indeed, an order function). To see that it 120 

is a close order function, welet {��}�_� ⊂ �\{6}be any null sequence; then we 121 

observe that forI ≥ IJ = 1, we have 122 

inf{@(��)L‖��‖} ≥ inf‖��‖ > 0 

which is so since @(��) ≥ 1. 123 

For (ii), we observe that for � ≠ :and �, : ≠ 0, we have 124 

@o(�) = �����\(|�|�)/ ��\ o�� = �����\(|��|�)/ ��\ o�� = @o(−�) 

and 125 

@o(� − :) = �����\(|��9|�)/ ��\ o�� 
≤ �����\(|�|�)���\(|9|�)/ ��\ o�� 

≤ �������\(|�|�)���\(|9|�)/ ��\ o�� 
≤ ������\(|�|�)/ ��\ o�������\(|9|�)/ ��\ o�� 

= �@o(�)@o(:) 

If @o(�) = @o(:), we easily see that @o(� − :) ≤ �@o(�). Finally, if{��}�_� ⊂126 

ℚ{�} is a non-zero null sequence, the we see that for allI ≥ IJ= 1 and with the p-127 

adic norm |. |o, we have 128 

inf�@o(��)L|��|o� ≥ 1 

which is so since by definition we have the inequality @o(�) ≥ |�|o��. 129 

For (iii), we know that 130 

@g(m) = @g(m��) 

and that 131 

@g(mn��) ≤ 2@g(m)@g(n��) = 2@g(m)@g(n) 

It is easy to see that @g(mn��) ≤ 2@g(m)when @g(m) = @g(n). Finally,if 132 

{m�}�_� ⊂ g is a non-zero null sequence, then for all I ≥ IJ= 1and norm |. |, we 133 

have 134 

inf{@g(m�)L|m�|} ≥ 1 

which is so since normalisation of absolute values implies that 135 

|m�|@g(m�) j |m�|k
k

|�^|���

= 1 

which completes the proof. 136 

 137 

 138 
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