1	Original Research Article			
2	APROXIMATIONS IN DIVISIBLE GROUPS: PART II			
3 4	Abstract			
5 6 7 8 9	We verify some assertions in the prequel to this paper, in which certain functions which are referred to as proximity functions were introduced in order to study Dirichlet-type approximations in normed divisible groups and similar groups that enjoy a form of divisibility, for instance <i>p</i> -divisible groups.			
10 11 12	Keywords: Divisible Groups, Cauchy Sequences, Group Norms, Proximity Functions			
13 14	1.0 INTRODUCTION			
15 16 17 18 19 20 21 22 23 24	A divisible group $(G, .)$ is defined as a group such that for every $g \in \{G\}$ and natural number <i>n</i> there is an $h \in \{G\}$ such that $g = h^n := h \cdot h^{n-1}$; informally, we say that G has <i>n</i> -th roots for all <i>n</i> . A foremost example is the group of rational numbers Qunder addition. Similarly, <i>p</i> -divisible group is a group with <i>p</i> -th roots. Now let ϖ denote a subset of the prime numbers $\{2,3,5,7,\}$. In the prequel [1] to this paper, we studied the ϖ -divisible groups, which are groups with <i>p</i> -th roots for all $p \in \varpi$. Archetypal examples are the additive subgroups of Q given by $Q\{\varpi\} =$ $\{q \in Q: p D(q) \Rightarrow p \in \varpi\}$ where $D(q)$ is the denominator of <i>q</i> . We say a group is uniquely ϖ -divisible if it is a ϖ -divisible group with unique roots. We recall the following definitions given in [1]:			
25 26 27	DEFINITION 1.1 (Norm on ϖ -Divisible Groups): For a set of primes ϖ , let (G, \cdot) be a ϖ -divisible group with identity element <i>e</i> and let $ \cdot : \mathbb{Q}\{\varpi\} \to \mathbb{R}$ be an absolute value function. Then a function $ \cdot : G \to \mathbb{R}$ is a <i>norm</i> on <i>G</i> if it satisfies:			
28 29 30	i. $ g = 0$ only if $g = e$ ii. $ gh \le g + h $ iii. $ g^r = r g , r \in \mathbb{Q}\{\varpi\}$			
31 32 33 34 35	The absolute value $ \cdot : \mathbb{Q}\{\varpi\} \to \mathbb{R}$, essentially via Ostrowski's Theorem [2], is the usual one on the real numbers or on the <i>p</i> -adic numbers. We denote by $(G, \cdot, \ \cdot\)$ a ϖ -divisible group with a norm $\ \cdot\ $. DEFINITION 1.2 (Proximity Function on Groups): Let <i>G</i> be a group with identity			
36 37 38	<i>e</i> . Then a function $\varrho: G \setminus \{e\} \to \mathbb{R}$ is a <i>proximity function</i> on <i>G</i> if for all $g \neq h$: i. $\varrho(g \neq e) = \varrho(g^{-1}) > 0$ ii. $\varrho(gh^{-1}) \le C\varrho(g)\varrho(h)$			

iii. $\varrho(gh^{-1}) \le C\varrho(g)$ if $\varrho(g) = \varrho(h)$

40 where C > 0 is an absolute constant. If in (ii) we have the stronger bound $\varrho(gh^{-1}) \leq C \max\{\varrho(g), \varrho(h)\}$, then we say ϱ is an *ultra-metric proximity function*. 42 Furthermore, if ϱ is integer-valued with C = 1 and that (ii) and (iii) read 43 $\varrho(gh^{-1})|\operatorname{lcm}(\varrho(g), \varrho(h))$ and $\varrho(gh^{-1})|\varrho(g)$ if $\varrho(g) = \varrho(h)$ respectively, then we 44 say ϱ is an *order function*.

45

39

46 For Abelian torsion groups G, the function $\rho(.) = \text{ord}(.)$ is an orderfunction 47 (seeExample 1.4 in [1] for more examples).

48

49 DEFINITION1.3(Proximity Function on Normed ϖ -Divisible Groups): Let $(G_{i}, \|\cdot\|)$ be a normed $\overline{\omega}$ -divisible group with identity e and let ϱ be a proximity 50 function on G. Then ρ is said to be a *close proximity* function on G if there exists a 51 $\mu_0 > 0$ such that $\inf\{\varrho(g_n)^{\mu} || g_n ||\} = 0$ for some null sequence $\{g_n\}_{n=1}^{\infty} \subset G \setminus \{e\}$ if 52 and only if $\mu < \mu_0$; otherwise, then ρ is an *openproximity* function on G.We shall 53 say that the elements in G are in close proximity (and in close order) to each other; 54 else, where necessary, we shall say the elements are in open proximity (resp. in open 55 order) to each other. 56

We typify a close proximity function on *G*by $(\varrho; C, \mu_0)$. The main result proved in [1] is the following theorem.

59

60 THEOREM 1.4: Let $(\varrho; C, \mu_0)$ be a close proximity function on $(G; ||\cdot||)$ and let $g \in G$. Then for every $\mu > \mu_0$ and Cauchy sequence $\{g_n\}_{n=1}^{\infty} \subset G \setminus \{g, e\}$ converging to g, 61 there exists N such that $||gg_n^{-1}|| = O(\varrho(g_n)^{-\mu})$ if and only if $n \leq N$, where the 62 implied constant is independent of n or g; moreover, this is also true for $\mu = \mu_0$ 63 if *qis* ultra-metric 64 and the implied constant is less than $\frac{1}{C^{\mu_0}}\inf_{g\neq g_n}\{\varrho(gg_n^{-1})^{\mu_0}\|gg_n^{-1}\|\}.$ 65

Theorem 1.4 implies that there can be only finitely many elements of G in close proximity to any element in G with respect to the given estimates; or equivalently, Cauchy sequences in G do not converge inside G with respect to the given estimates. A converse to this theorem, would give a Dirichlet-type approximation for (incomplete) ϖ -divisible groups. In the present paper, we verify some assertions on examples of proximity functions given in [1].

- 72
- 73 74

2.0 PRELIMINARIES

We require the following definitions and results. A norm $\|.\|$ on an arbitrary group G with identity *e* is said to be *discrete* if

77 (1) $\|\cdot\|: G \to \mathbb{R}_{\geq 0}$

78 (2) $||ab|| \le ||a|| + ||b||, \forall a, b \in G$

79 (3) $||a^n|| = |n|||a||, a \in G, n \in \mathbb{Z}$

80 (4) $\inf_{a \in G\{e\}} ||a|| > 0$

81 Let \mathbb{K} be an algebraic number field and let $\overline{\mathbb{Q}}$ be the field of algebraic numbers.

82 The absolute Weil height $h: \mathbb{K} \to \mathbb{R}_{\geq 0}$ is given by

$$h(\cdot) \coloneqq \prod_{v} \max\{1, |\cdot|_{v}\}$$

where v runs through all places of K and $|\cdot|_{v}$ is a normalised absolutevalue, hence $\prod_{v} |\alpha|_{v} = 1$. We know (see [3]) that $h(\alpha\beta) \le 2h(\alpha)h(\beta)$ and $alsoh(\alpha^{-1}) = h(\alpha)if\alpha \ne 0$.

86 The p-adic norm $|\cdot|_p$ of a rational number $q = \frac{a}{b}$, where a, b are integers with $b \neq 0$ 87 is given by

$$|q|_p = p^{-\left(v_p(a) - v_p(b)\right)}$$

where $p^{v_p(a)}$ is the greatest power dividing *a* and similarly $p^{v_p(b)}$ is the greatest power dividing *b*.

90 91

92

3.0 MAIN RESULT

We now establish the main result of this paper, which was stated without proof in [1].

LEMMA 3.1: The following are close proximity functions on the respective groupsdefined:

96 *(i)* Suppose the absolute value function associated to the normed ϖ -divisible group $(G_{i}, \|\cdot\|)$ is the usual one on the real numbers. Assume S is a 97 98 normal subgroup of G such that the quotient group G/S is Abelian and torsion, and that the norm $\|\cdot\|$ is a discrete norm on S—i.e., there is an 99 absolute constant l such that $||g \in S \setminus \{e\}|| \ge l$. Then the function 100 $\varrho_{G/S}(g) = ord(g \cdot S) \coloneqq min\{n \in \mathbb{Z}_{>0} \colon g^n \in S\}$ is a close order 101 function on G with $\mu_0 = 1$, C = 1; moreover, if ϖ is a singleton set then 102 ϱ is ultra-metric. (We refer to this as a ϖ -ary order function on G). 103 104 Given a prime p and the group $\mathbb{Q}\{p\}$, then the function $\varrho_p(q \neq 0) =$ 105 *(ii)* $[p^{\lfloor \log(|q|_{\infty})/\log p]}]$ (where $\lfloor \cdot \rfloor$ (resp. $\lceil \cdot \rceil$) denotes the floor (resp. ceiling) 106 function and where $|\cdot|_{\infty}$ is the usual absolute value on the real numbers) 107 is a close ultra-metric proximity function on $\mathbb{Q}\{p\}$ with $\mu_0 = 1$ and C = p108 given the usual p-adic norm on \mathbb{Q} . (We refer to this proximity function as 109 110 *the p-adic proximity function on* $\mathbb{Q}\{p\}$ *).* 111 112 (iii) For an algebraic number field \mathbb{K} with the usual normalised absolute values $|\cdot|_{v}$ over all places v such that $\prod_{v} |\alpha|_{v} = 1$ for every $\alpha \in \mathbb{K} \setminus \{0\}$, 113

114 the function $\varrho_{\mathbb{K}}(\alpha) \coloneqq \prod_{v} max\{1, |\alpha|_{v}\}$ —i.e., the Weil height—is a close

115 proximity function on \mathbb{K}^+ with $\mu_0 = 1$ and C = 2 given the norm defined 116 by the usual absolute value on the complex numbers. (We shall refer to 117 this as the \mathbb{K} -proximity function).

118 *Proof.* For (i), it is easy to see that since $\varrho_{G/S}(g) = ord(g \cdot S) \coloneqq min\{n \in \mathbb{Z}_{>0}: g^n \in S\}$, that is since $\varrho_{G/S}$ denotes the order of agroup, then straightforwardly, 120 it suffices for the definition of a proximity(indeed, an order function). To see that it 121 is a close order function, welet $\{g_n\}_{n\geq 1} \subset G \setminus \{e\}$ be any null sequence; then we 122 observe that for $\mu \geq \mu_0 = 1$, we have

$$\inf\{\varrho(g_n)^{\mu} || g_n || \ge \inf || g_n || > 0$$

123 which is so since $\varrho(g_n) \ge 1$.

124 For (ii), we observe that for
$$q \neq r$$
 and $q, r \neq 0$, we have

$$\varrho_p(q) = \left[p^{\lfloor \log(|q|_{\infty})/\log p \rfloor} \right] = \left[p^{\lfloor \log(|-q|_{\infty})/\log p \rfloor} \right] = \varrho_p(-q)$$

125 and

$$\begin{split} \varrho_p(q-r) &= \left[p^{\lfloor \log(|q-r|_{\infty})/\log p \rfloor} \right] \\ &\leq \left[p^{\lfloor \log(|q|_{\infty}) + \log(|r|_{\infty})/\log p \rfloor} \right] \\ &\leq \left[p^{1+\lfloor \log(|q|_{\infty}) + \log(|r|_{\infty})/\log p \rfloor} \right] \\ &\leq p \left[p^{\lfloor \log(|q|_{\infty})/\log p \rfloor} \right] \left[p^{\lfloor \log(|r|_{\infty})/\log p \rfloor} \right] \\ &= p \varrho_p(q) \varrho_p(r) \end{split}$$

126 If $\varrho_p(q) = \varrho_p(r)$, we easily see that $\varrho_p(q-r) \le p\varrho_p(q)$. Finally, if $\{q_n\}_{n\ge 1} \subset \mathbb{Q}\{p\}$ is a non-zero null sequence, the we see that for all $\mu \ge \mu_0 = 1$ and with the p-128 adic norm $|.|_p$, we have

$$\inf\{\varrho_p(q_n)^{\mu}|q_n|_p\} \ge 1$$

- 129 which is so since by definition we have the inequality $\rho_p(q) \ge |q|_p^{-1}$.
- 130 For (iii), we know that

$$\varrho_{\mathbb{K}}(\alpha) = \varrho_{\mathbb{K}}(\alpha^{-1})$$

and that

$$\varrho_{\mathbb{K}}(\alpha\beta^{-1}) \le 2\varrho_{\mathbb{K}}(\alpha)\varrho_{\mathbb{K}}(\beta^{-1}) = 2\varrho_{\mathbb{K}}(\alpha)\varrho_{\mathbb{K}}(\beta)$$

132 It is easy to see that $\varrho_{\mathbb{K}}(\alpha\beta^{-1}) \leq 2\varrho_{\mathbb{K}}(\alpha)$ when $\varrho_{\mathbb{K}}(\alpha) = \varrho_{\mathbb{K}}(\beta)$. Finally, if 133 $\{\alpha_n\}_{n\geq 1} \subset \mathbb{K}$ is a non-zero null sequence, then for all $\mu \geq \mu_0 = 1$ and norm |.|, we 134 have

$$\inf\{\varrho_{\mathbb{K}}(\alpha_n)^{\mu}|\alpha_n|\} \ge 1$$

135 which is so since normalisation of absolute values implies that

$$|\alpha_n|\varrho_{\mathbb{K}}(\alpha_n)\prod_{\substack{v\\|\alpha_n|_v<1}}|\alpha_n|_v=1$$

136 which completes the proof.

137

138

UNDER PEER REVIEW

139	References			
140 141 142	1.	Ezearn, J. and Obeng-Denteh, W., (2015): <i>Approximations in Divisible Groups:Part I</i> , Physical Sciences Journal International, 6 (2), 112-118.		
143 144 145	2.	. Ostrowski, A., (1916): \ddot{U} <i>Funktionalgleichung</i> $\varphi(x) \cdot \varphi(y) = \varphi(xy)$. Acta Mathe	<i>bereinigeLösungen der</i> matica (2nd ed.) 41 (1):271–284.	
146 147	3.	Waldschmidt, M., (2000): "Diophantine approximation on linear algebraicgroups", Grundlehren 326, Springer.		