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2 APROXIMATIONS IN DIVISIBLE GROUPS: PART II

3
4 ABSTRACT
5 We verify some assertions in the prequel to this paper, in which certain functions
6 which are referred to as proximity functions were introduced in order to study
7 Dirichlet-type approximations in normed divisible groups and similar groups that
8 enjoy a form of divisibility, for instance p-divisible groups.
9
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11
12
13
14 1.0 INTRODUCTION
15 A divisible group (G, .) is defined as a group such that for every g € {G} and

16  natural number 7 there is an h € {G} suchthat g = h™: = h. h""1; informally, we say
17  that G has n-th roots for all n. A foremost example is the group of rational numbers
18  Qunder addition. Similarly, p-divisible group is a group with p-th roots. Now let @
19  denote a subset of the prime numbers {2,3,5,7, ... }. In the prequel [1] to this paper,
20 we studied the w-divisible groups, which are groups with p-th roots for all p € @.
21 Archetypal examples are the additive subgroups of Q given by Q{w} =
22 {q € Q:p|D(q) = p € w}where D(q) is the denominator of g. We say a group is
23 uniquely w-divisible if it is a @w-divisible group with unique roots. We recall the
24 following definitions given in [1]:

25 DEFINITION 1.1 (Norm on @-Divisible Groups): For a set of primes @, let (G,)
26  be a w-divisible group with identity element e and let |-|: Q{@w} — R be an absolute
27  value function. Then a function ||-||: G = R is a norm on G if it satisfies:

28 i. lgll =0onlyifg =e

29 ii. lghll < ligll + IRl

30 ii. — lg"ll =Irlligll, r € Q{w}

31 The absolute value|'|: Q{w} — R, essentially via Ostrowski's Theorem [2], is the

32 usual one on the real numbers or on the p-adic numbers.We denote by (G,-, ||*]|) a @-
33  divisible group with a norm ||-||.

34

35 DEFINITION1.2(Proximity Function on Groups): Let G be a group with identity

36  e. Then a function g: G\{e} — R is a proximity function on G if for all g # h:

37 i. o(g#e)=0(g™H>0
38 ii. o(gh™) < Co(g)e(h)
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iii.  e(gh™) < Co(g) if o(g) = o(h)

whereC > 0 is an absolute constant. If in (ii) we have the stronger bound g(gh™1) <
C max{o(g),o(h)}, then we say o is an ultra-metric proximity function.
Furthermore, if o is integer-valued with C =1 and that (ii) and (iii) read
e(gh™")|1em(o(g), e(h)) and e(gh™H|e(g) if e(g) = o(h) respectively, then we
say g is an order function.

For Abelian torsion groups G, the function g(.) = ord(.) is an orderfunction
(seeExample 1.4 in [1] for more examples).

DEFINITION1.3(Proximity Function on Normed w-Divisible Groups): Let
(G, |I)]l) be a normed w-divisible group with identity e and let ¢ be a proximity
function on G. Then p is said to be a close proximity function on G if there exists a
Uo > 0 such that inf{o(g,)*||g.|l} = 0 for some null sequence {g,}n=q € G\{e} if
and only if u < pg; otherwise, then g is an openproximity function on G.We shall
say that the elements in G are in close proximity (andin close order) to each other;
else, where necessary, we shall say the elements are in open proximity (resp. in open
order) to each other.

We typify a close proximity function on Gby (g; C, ito). The main result proved in
[1] is the following theorem.

THEOREM 1.4: Let (0; C, o) be a close proximity function on (G, ||*||) and let g € G.
Then for every u > uy and Cauchy sequence {gn}n=1 € G\{g, e}converging to g,
there exists N such that ||ggytll = 0(e(gn)™") if and only if n < N, where the
implied constant is independent of n or g; moreover, this is also true for u = U,
if ois ultra-metric and  the implied  constant  is  less than

s infyg, {09 g g ga I}

Theorem 1.4 implies that there can be only finitely many elements ofG in close
proximity to any element in G with respect to the given estimates; or equivalently,
Cauchy sequences in G do not converge insideG with respect to the given estimates.
A converse to this theorem,would give a Dirichlet-type approximation for
(incomplete) w-divisiblegroups. In the present paper, we verify some assertions on
examples ofproximity functions given in [1].

2.0 PRELIMINARIES

We require the following definitions and results. A norm |[|. || on an arbitrary group G
with identity e is said to be discrete if

(M I11: 6 = Ry
) llabll < llall + 1Ibll,Va,b € G
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3) lla™|| = Inlllall,a € G,n € Z
@) infyeggllall >0

Let K be an algebraic number field and let Q be the field of algebraicnumbers.
Theabsolute Weil height h: K = R, ,is given by

hQ) = | [ max{t, 11,)

where v runs through all places of K and |-|,is a normalised absolutevalue,
hence[],|al, = 1. We know (see [3]) that h(aB) < 2h(a)h(B)and alsoh(a~1) =
h(a)ifa # 0.

The p-adic norm |-|p0f a rational number q = %, where a, b areintegers with b # 0
is given by

oy = )

wherep??@is the greatest power dividing a and similarly p*»Pis the greatest power
dividing b.

3.0 MAIN RESULT
We now establish the main resultof this paper, which was stated without proof in [1].

LEMMA 3.1: The following are close proximity functions on the respective groups
defined:

(i) Suppose the absolute value function associated to the normed @w-divisible
group (G, ||ll) is the usual one on the real numbers. Assume S is a
normal subgroup of G such that the quotient group G /S is Abelian and
torsion, and that the norm||*|| is a discrete norm on S—i.e., there is an
absolute constant | suchthat ||g € S\{e}|| = l. Then the function
06/s(g) = ord(g- S) =min{n € Z,o:g" €S} is a close order
function on G with uy = 1, C = 1; moreover, if @ is a singleton set then
o is ultra-metric. (We refer to this as a w-ary order function on G).

(ii) Given a prime p and the group Q{p}, then the function 0,(q # 0) =
[p”ogqqlw)/logpjl (where || (resp. [*]) denotes the floor (resp. ceiling)
function and where |*| is the usual absolute value on the real numbers)
is a close ultra-metric proximity function on Q{p} with uy =1 and C =p
given the usual p-adic norm on Q. (We refer to this proximity function as
the p-adic proximity function on Q{p}).

(iii)  For an algebraic number field K with the usual normalised absolute
values |-|,, over all places v such that [],|al, = 1 for every a € K\{0},
the function ok (a) = [I, max{1, |a|,}—i.e., the Weil height—is a close
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proximity function on Kt with uy = 1 and C = 2 given the norm defined
by the usual absolute value on the complex numbers. (We shall refer to
this as the K-proximity function).

Proof. For (i), it is easy to see that since gg/5(g) = ord(g-S):=min{n €
Zso:g" € S}, that is since g5 denotes the order of agroup, then straightforwardly,
it suffices for the definition of a proximity(indeed, an order function). To see that it
is a close order function, welet {g,},>1 € G\{e}be any null sequence; then we
observe that foryu = py = 1, we have

inf{e(gn)¥11gxll} = infllg,|l >0

which is so since p(g,) = 1.

For (ii), we observe that for g # rand q,r # 0, we have
Qp(q) = [pllog(lqloo)/log pJ] = [pllog(l—qloo)/long] = Qp(—q)
and
o,(q—1) = [pllog(lq—rloo)/logpj]
< [pllOQ(ICI|oo)+lOQ(|T|oo)/lopr]
< [p1+llog(lqIoo)+log(lrloo)/logpJ]

< p[p llog(Iqle)/ log pJ] [pllog(lrloo)/ log pJ]

= pep(@)ep(r)
If 0,(q) = 0,(r), we easily see that g,(q —1) < po,(q). Finally, if{q,},>; C
Q{p} is a non-zero null sequence, the we see that for allu > py= 1 and with the p-
adic norm |. |,,, we have
inf{o, (q,)*1qnl,} = 1
which is so since by definition we have the inequality ¢, (q) = |ql;*.
For (iii), we know that
ox(a) = ox(a™)
and that
ek (af™) < 2ox(@)ox (B~ = 20k (@)ok (B)
It is easy to see that ggx(aBf~1) < 20x(a)when ok(a) = ox(B). Finally,if
{an}ns1 € K is a non-zero null sequence, then for all 4 > yy= land norm |[.|, we
have

inf{g]]&(an)#lanl} =1
which is so since normalisation of absolute values implies that

anlow(@) | | lanl, =1
v

lanly<1

which completes the proof.
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