Original Research Article 1 2 **Bidimensional spatial distortion in** 3 quadrantanopia depends on the cortical 4 damage and not on the deprived region in the 5 visual field 6 7 8 19 ABSTRACT Aims: To assess whether the spatial distortion underlying the so-called "thin man phenomenon" Methodology: Spatial relationship perception, that is the function able to discriminate the extent of a Results: Spatial relationship perception was not affected by the simulated scotoma in the normal

Conclusion: This finding suggests that the cortical impairment and not the scotoma itself is responsible for the spatial distortion in presence of homonymous visual field defects.

Keywords: Stroke; Quadrantanopia; Visual Distortion; Spatial Relationship Perception; Thin Man Phenomenon, Anisotropy.

16 17 18

> 19 20

> 14 15

1. INTRODUCTION

21 22 In evaluating the integrity of the visual field after cerebral accidents, the degree of perceptual impairment is judged as a 23 function of the width and depth of the perimetric loss. So, within the clinical practice, hemianopic or quadrantanopic patients are defined as those suffering from binocular loss of vision in correspondent half or guadrants of their visual field. 24 25 On the contrary, the function in the contralateral (spared) regions is considered intact. Yet, even if differential light sensitivity (as measured by perimetric testing) is within the normative range, studies show that in some respects abnormal 26 27 perception is likely to affect even the spared visual field. For example, delay in visual categorization and detection has 28 been reported in the (presumably) intact central visual field of left and right hemianopic patients [1]. An abnormal function 29 would not be limited to a sluggish response to a visual stimulus but involves the retinocortical mapping. Indeed, in

12 13

> experienced by cortically impaired patients with homonymous defects depends on the cortical damage or on the scotoma itself.

Study Design: Analysis of a representative case.

Place and Duration of the Study: Service of Neuro-Ophthalmology, University of Turin, Italy, from January 2017 to July 2017.

shape along the cardinal coordinates, has been estimated in the visual field of a patient with left inferior quadrantanopia due to cerebral stroke at different eccentricities. The threshold as a function of the distance from the border of the scotoma was compared with two normal subjects after the same defect has been simulated.

subjects, as shown by the lack of correlation between this variable and the distance from the upper border vs the nasal border of the deprived region. On the contrary, in the patient spatial relationship perception was anisotropic close to the boundary of the scotoma, and the effect decreased as a function of the distance from the blind region ($R^2=0.77$, *P*: .04).

hemianopia spatial distortion has been documented close to the borders of the scotoma. Such distortion would explain the occurrence of the so-called Hemianopic Line Bisection Error (HLBE), that is the bisection of lines biased toward the blind

32 hemifield (see for example [2-5]), or an illusory shorter perception of lines crossing a scotoma of cortical origin [6].

33 There is evidence that in presence of visual field defects of cortical origin the perceptual distortion is not restricted to a 34 single spatial dimension, but extends to more complex, bidimensional configurations: as a matter of fact, patients with 35 small paracentral homonymous scotomas or showing a quadrantanopia are reported to perceive the face of their interlocutors as smaller and thinner on the side of the scotoma (the so-called "thin man phenomenon" [7-10]; moreover, 36 37 systematic overestimation of the height of rectangles presented close to the border of a guadrantanopia has been 38 documented by Dilks et al [11]. A solution for this (bidimensional) spatial distortion has been provided by the authors in 39 terms of a perceptual "stretch" of the proximal stimulus towards the scotoma: the stretch would be due to a reorganization 40 of the receptive fields in the spared regions of the visual space [7,8,10].

41 Arguably, the perceptual "stretch" responsible for these cases of dysmorphopsia can be explained in terms of abnormal spatial relationship perception. We have defined spatial relationship perception (SRP) as the visual function able to 42 43 discriminate the different extent of a shape, namely of an ellipse, along the vertical and horizontal coordinates (i.e. the aspect ratio [12]). The minimum difference between the vertical and horizontal focal axis needed to discriminate an ellipse 44 45 from a circle reflects the spatial relationship sensibility along the y- and x-coordinates, respectively [13]: so, spatial relationship anisotropy (SRA) can be estimated as the difference in spatial relationship sensibility along the two cardinal 46 47 references. Dilks et al studied the visual distortion close to a guadrantanopia in a patient suffering from stroke and found 48 that at the point of subjective equivalence vertical rectangles were perceived as equal in height when rectangles on the side of the scotoma were 3 degrees shorter than the ones presented in the contralateral quadrant. This spatial 49 50 relationship anisotropy confirms the existence of a spatial distortion close to the nonresponsive region, and has been 51 explained by the authors in terms of cortical reorganization: the deafferented area of the striate cortex, corresponding to 52 the scotoma, would acquire responsiveness to the surrounding regions, so that a stimulus adjoining the blind area will 53 activate both the corresponding cortical area and the deafferented region. As a result of this double activation, the stimulus will be perceived as spatially "stretched" toward the nonresponsive region [11]. 54

Within this framework a question arises whether abnormal SRA leading to spatial distortion depends on the immediate 55 and reversible functional reorganization of the receptive fields in response to localized visual deprivation (i.e. it is a direct 56 57 consequence of the scotoma itself [3,14]), or if it is directly related to a cortical damage and requires long-term adaptation 58 [2,5,15,16]. In effect, on the one hand spatial distortion is shown to occur also in presence of an artificial scotoma [3] as 59 well as around the blind spot [17,18] (i.e. with no need of cortical damage), on the other hand it has been documented 60 after cortical impairment but in absence of an evident perimetric defect [9,15]. According to this last evidence, therefore, a visual distortion would occur only if a cerebral lesion inducing a cortical reorganization takes place, whereas the presence 61 62 of a well detectable scotoma would not be a necessary condition.

To shed light on this issue, in this paper spatial relationship perception, namely abnormal spatial relationship anisotropy, has been measured in a patient suffering from homonymous quadrantanopia due to occipital stroke at different distances from the borders of the scotoma. Interestingly, she complained of a slightly distorted perception close to the blind region, a symptom suggestive of dysmorphopsia. Results have been compared with those obtained in two normal subjects after the same perimetric defect has been simulated.

According to our working hypothesis, increased SRA at the borders of the pathological scotoma and normal SRA close to the simulated area of visual deprivation will support the hypothesis that an occipital brain injury is necessary for the occurrence of the spatial distortion responsible for the thin man phenomenon. Otherwise, the theory that the spatial distortion is a direct consequence of the scotoma itself will gain evidence.

74 2. METHODOLOGY

73

75

76 2.1 Spatial Relationship Perception

577 78 Spatial relationship perception has been assessed by using the paradigm described in a previous investigation [13]. In 79 brief, the test is performed on a flat LCD 15" screen and makes use of a staircase psychophysical algorithm (accelerated 80 stochastic approximation [19]) to estimate the discrimination threshold between circles and ellipses horizontally- or 81 vertically-oriented. Trial after trial the observer was required to identify the stimulus (2.8 deg wide) either as a circle or as 82 a horizontal or vertical ellipse, according to a three alternative forced choice response procedure (3AFC).

The threshold is expressed as Interaxis Ratio (IR), that is the percent difference between the focal axis *fa* and the perpendicular axis *pa* of the elliptical stimuli, according to the formula:

85

86

IR(%) = 100 [fa(x,y) - pa(y,x)] / fa(x,y)

87

88 Evidently, the smallest fa(x,y) - pa(y,x) that makes an ellipse barely recognizable reflects the spatial relationship 89 sensitivity of the subject under examination. Under this perspective, we consider the visual system as isotropic if the 90 spatial relationship sensitivity is the same along the horizontal and vertical axis (i.e. if SRP is independent of the stimulus 91 orientation: fa(x) - pa(x) = fa(y) - pa(y)). Otherwise, spatial relationship anisotropy (SRA) takes place, and its amount is 92 computed as the difference between the discrimination threshold along the x, y cardinal axis (Horizontal Threshold, HT 93 and Vertical Threshold, VT, respectively). The test assesses HT and VT independently by using two interleaved tracks.

94 Spatial relationship perception has been measured at a distance of 2,4,6,8, and 10 degrees from the superior boundary of 95 the blind quadrant, 6 deg from the vertical meridian passing through the fixation point. In addition, it has been estimated 96 2,4,6, and 8 degrees from the nasal boundary of the quadrantanopic defect, 6 deg from the horizontal meridian passing 97 through the fixation point.

98 To compare the effect of the scotoma on spatial relationship perception, the corresponding loci in the contralateral upper 99 quadrant have been tested according to the same modality. The estimation of HT and VT in the selected loci was 100 randomized, as it occurs in conventional perimetry.

101 The thresholds obtained in the two spared adjoining quadrants have been compared with the references estimated at the 102 corresponding loci in the right superior quadrant (figure 1).

103 104

105 106

107 Fig. 1. Locations of SRP estimates in the three spared quadrants

108

In addition to the within-individual comparison, a between-individual comparison has been performed relative to the 109 normalized threshold functions obtained in the two patients and the correspondent normalized functions measured in two 110 normal observers. In order to make the perceptual condition of the two normal subjects as much like that of the patient 111 (including the risk of unstable fixation as a potential drawback able to reduce the precision of the threshold estimate in the 112 latter) in the two controls left inferior quadrantanopia has been simulated by applying a triangular sector made of black 113 paper to the inferior left portion of the lenses of a pair of glasses. Before starting the examination the operator made sure 114 115 the lenses with the sector were as close as possible to the eve of the subject. To obtain confirmation that this way a left 116 inferior guadrantanopia was correctly simulated, a preliminary binocular visual field was performed using kinetic perimetry [20] before the subject underwent the experimental session. 117

The observer sat on a chair with the head firmly placed on a chinrest 60 cm from the monitor. She was asked to look steadily at a fixation cross in the center of the monitor. Fixation stability was continuously monitored by the operator. In

case of fixation loss, the session was discarded and repeated a few minutes later. The illuminance of the dimmed room
 chosen for the experiments was 0.15 lux.

123 **2.2 Subjects** 124

122

Two normal subjects (the co-author FP, and SF, females, age 24) and a 74 years old woman affected from an absolute and well localized post-stroke perimetric defect involving the entire left inferior temporal quadrant of the visual field were examined. The two control subjects did not suffer from any ophthalmological as well as systemic disease, and their natural visual acuity was 60/60.

129 In the patient the ischemic lesion involved the gray and white matter of the left occipital lobe. The quadrantanopia was 130 confirmed by using the Humphrey visual field analyzer (program 30-2). The patient, who did not suffer from cognitive 131 deterioration, was pseudophakic and her visual acuity was 60/60 (right eye: no correction, left eye: mild astigmatism) in 132 absence of other ophthalmological diseases like glaucoma or age-related macular degeneration. Her fixation was stable.

After preliminary ophthalmological and orthoptic examination, spatial relationship perception was tested in the two simulated conditions of quadrantanopia, as well as in the real case. The operator FP conducted the experiment in a darkened room (illuminance: 0.15 lux).

The two authors hereby declare that the experiment has been examined and approved by the ethics committee and has therefore been performed in accordance with the ethical standards laid down in the 1964 declaration of Helsinki. Informed consent for publication was obtained from the subjects who underwent the experiment after explanation of the aims of the study.

140 141

142 **3. RESULTS**

143

In table 1 the HT and VT estimates in the three spared quadrants of the visual field of subject FP are reported. Spatial relationship perception along the x/y axis in the quadrants adjoining the simulated scotoma and in the reference region was similar (HT: Kruskal-Wallis, KW: 0.77, P=.67; VT: KW:0.16; P=.92). The amount of anisotropy, expressed by the difference between the sensitivity along the vertical and the horizontal meridian, is negligible (and comparable to the normal population [13]).

149 150

152

151 Table 1. Spatial relationship threshold along the x- and y-axis in the three quadrants. Subject FP

Quadrant	HT median (IQR)	VT median (IQR)
SUP TEMP	4 (4)	4 (5.5)
INF NAS	2.5 (3.5)	5.5 (5)
SUP NAS (reference)	3 (3.25)	6 (2.25)

153

Figure 2 depicts SRP as a function of the distance from the occluded region and from the horizontal midline in the reference quadrant. No correlation was found between spatial relationship sensitivity along the vertical as well as the horizontal coordinate and the distance from the simulated blind quadrant (Pearson R²= 0.22, P= .41 and R²= 0.05, P= .69).

158

159 160

Fig. 2. Threshold referred to spatial relationship perception as a function of the distance from the simulated blind region of subject FP

163 Right panels: references

164

165 In summary, in subject FP spatial relationship perception is substantially constant across the central visual field and is not 166 affected by a simulated quadrantanopic defect.

167 In subject SF, too, spatial relationship threshold along the y-axis did not differ in the quadrants adjoining the simulated 168 scotoma compared to the reference region (Kruskal-Wallis, KW: 3.98, P=.13). On the contrary, the horizontal threshold in 169 the superior temporal quadrant was higher compared to the reference region of the visual field (Kruskal-Wallis, KW: 7.70, 170 P= .02; table 2).

Table 2. Spatial relationship threshold along the x- and y-axis in the three quadrants. Subject SF.

173 174

171 172

Quadrant	HT median (IQR)	VT median (IQR)
SUP TEMP	10 (1.75)	1 (2.25)
INF NAS	8 (3.5)	1.5 (4)
SUP NAS (reference)	6 (2)	6 (3)

175

Like in subject 1, no correlation was found between spatial relationship sensitivity along the vertical as well as the horizontal coordinate and the distance from the simulated blind quadrant (Pearson R²= 0.03, P= .75 and R²= 0.12, P= .55: figure 3). In this case, too, the amount of anisotropy in the superior temporal quadrant is not influenced by the proximity of the simulated scotoma (Pearson R²=0.45, P= .21).

- 180
- 181
- 182

183 184

Fig. 3. Threshold referred to spatial relationship perception as a function of the distance from the simulated blind region of subject SF.

187 Right panels: references

188

In summary, in subject 2 spatial relationship perception along the vertical coordinate is substantially constant across the central visual field. Despite the quadrants adjoining the simulated scotoma showed lower sensitivity along the horizontal axis compared to the reference region, the lack of correlation between spatial relationship sensitivity and distance from the border of the deprivation area does not support the putative influence of the latter on the former.

As shown in table 3, spatial relationship sensibility of the patient was lower compared to the two controls. Even if the averaged vertical threshold was higher in the two quadrants adjoining the scotoma compared to the reference quadrant, such difference did not reach statistical significance (Kruskal-Wallis, KW: 0.96, P=.61). On the contrary, the median horizontal threshold was higher in the superior temporal quadrant compared to the reference (Kruskal-Wallis, KW: 6.7, P=.03).

199 200 Table 3. Spatial relationship threshold along the x- and y-axis in the three quadrants in the quadrantanopic 201 patient.

- 202
- 203

198

Quadrant	HT median (IQR)	VT median (IQR)
SUPTEMP	19 (3.25)	17 (6)
INF NAS	13.5 (7)	15.5 (6)
SUP NAS (reference)	15 (2.25)	14 (4.25)

204 By inspecting figure 4, a difference can be noted between the horizontal and the vertical threshold in the two guadrants 205 close to the border of the scotoma (panels a and c, 2 deg from the deprived area), but not in the reference quadrant 206 (panels b and d). Spatial relationship sensitivity, in fact, is lower along the horizontal and higher along the vertical coordinate (i.e. higher threshold along the horizontal, lower threshold along the vertical) in the ipsilateral superior 207 quadrant, while the opposite takes place in the contralateral inferior region. Such anisotropy tends to disappear as the 208 distance from the boundary of the blind region increases (Pearson: R2=0.77, P=.04); since it does not take place in the 209 210 reference region, it could be argued the blind region of the visual field affects spatial relationship perception across the 211 neighboring visual space (panel e).

212 213

214 215

Fig. 4. Threshold referred to spatial relationship perception as a function of the distance from the blind region of the quadrantanopic patient. Panel e: overall SRA as a function of the distance from the border of the scotoma (continuous line), and, as a reference, from the vertical meridian crossing the fixation point in the upper nasal quadrant (dashed line). Panel f: SRA as a function of the distance from the border of the scotoma in the superotemporal (continuous line) and inferonasal quadrant (dashed line).

221

The direction of the anisotropy is opposite in the upper vs the nasal side of the scotoma: in the upper region the sensitivity is higher along the vertical axis, whereas in the nasal region it is better along the horizontal axis. In both cases the perceptual unbalancing tends toward isotropy the farther away from the blind region, with a ceiling effect at about 6 deg (panel f).

226 227 **4. DISCUSSION**

228

There is evidence that perceptual distortion occurs at the borders of a scotoma [e.g.: 4-6] and, at least at a higher (bidimensional) level, it is stated to take place in presence of a posterior cerebral damage [7-11].

Indeed, the spatial distortion like the thin man phenomenon experienced by patients with homonymous defects due to occipital stroke would depend on a neuronal network reorganization in the visual area correspondent to the affected visual field: such reorganization would consist of axonal sprouting of horizontal cells and disinhibition of long-range horizontal connections [6,21]. Yet, alongside these permanent cellular changes, rapid and reversible cortical reorganization responsible for similar (even if monodimensional) perceptual bias has been reported by Kapadia et al close to an artificial scotoma made of a dynamic random dot field [22], and by Mitra et al, [3] and Ogun et al [14] in presence of a simulated homonymous hemianopia.

Based on these findings, it remains unclear if a scotoma is sufficient to generate a consistent spatial distortion or if the spatial distortion is most strictly related to a cortical damage. Mitra estimated the occurrence of the line bisection error in normal subjects with simulated homonymous hemianopia and concluded that the visual field defect itself is enough to determine the bisection bias, irrespective of the presence of a cortical damage [3]. A similar result has been confirmed by Ogun et al [14].

243 On the contrary, Zihl et al studied the bisection error in 84 patients suffering from homonymous hemianopia and stated 244 that the bias is not the consequence of the visual field defect, but depends on an injury in the occipital-temporal areas [2]. 245 The same conclusion has been given by Schuett et al. [16].

In this paper, bidimensional spatial distortion in a patient suffering from post-stroke quadrantanopia and in corresponding conditions simulated in two normal subjects has been assessed in terms of spatial relationship perception. The simulated quadrantanopia did not seem to affect spatial relationship perception in the two normal subjects: In fact, it was substantially constant across the central visual field with a mild degree of anisotropy, well within the normality range as estimated in our previous study [13].

These findings are in contrast with the line bisection error described in simulated hemianopia by Mitra et al [3] and Ogun et al [14]. Still, it should be noted that in subject SF the sensibility along the horizontal meridian was lower in the quadrants adjoining the occluded region. Even if this finding is controversial (the threshold does not decrease as a function of the distance from the scotoma), it seems to indirectly support the monodimensional distortion found by the abovementioned authors in their simulated cases. Yet, it remains that the isotropy of the visual space is not afffected by the scotoma itself in absence of a cortical damage.

It cannot be ruled out that if a monodimensional bias may occur in absence of cerebral lesion and may involve short-term and reversible functional reorganization (despite Zihl et al are in disagreement with this solution [2]), a more complex, bidimensional distortion may require occipital cortical damage and permanent anatomical strengthening of the horizontal axonal connections [21]. As a matter of fact, the detection of a difference in the extent of stimuli along the cartesian axis is substantially a different task from the line bisection, and presumably requires more radical changes in the cortical cytoarchitecture than those caused by the temporary occlusion of a portion of the visual field.

Contrary to the simulated conditions, in the quadrantanopic patient affected by occipital stroke visual distortion takes place near the deprived area. Indeed, her visual perception was anisotropic close to the border of the scotoma and tended toward isotropy the farther away from the blind region.

The direction of the anisotropy is consistent with previous studies showing a shift of the visual space toward the scotoma [7,8,11]. In the region close to the superior border of the blind region the threshold along the y-axis is consistently lower than along the x-axis, determining a perceptual vertical dilation and horizontal contraction. On the contrary, in the quadrant adjacent to the nasal border of the blind region the threshold along the x-axis is consistently lower than along the y-axis, determining a perceptual horizontal dilation and vertical contraction. As a result, circular stimuli are misperceived as vertical ellipses on the superior side of the scotoma, and as horizontal ellipses on the nasal region (figure 5).

272

273 274

Fig. 5. Simulated misperception as a result of the illusory "stretching" of the visual space toward the scotomatous region. Presented stimuli: grey circles; perceived stimuli: black ellipses. See text for explanation.

277

Our result supports the finding of Fortenbaugh et al, who discovered selective horizontal expansion of the visual space close to the boundary of the quandrantanopic area in two cases of left and right hemianopia [4]. Accordingly, the vertical and horizontal components of the size distortion were reported to be differently affected in a subject with right prestriate

lesion [15]. This selective distortion of the visual space may, therefore, account for the perceptual stretching suggested to be responsible for the "thin man phenomenon" described by Safran et al. The strengthening of the long-range horizontal projections in the visual cortex (leading to enlargement of the receptive fields close to the deafferentiated area, see for example: [23, 24]), would account for the perceptual shift toward the scotoma [6], and would be achieved via synaptogenesis and by axonal sprouting [21].

Interestingly, in our patient anisotropy decreased as a function of the distance from the border of the scotoma up to about
 6-8 degrees of eccentricity from the deprived region, then it showed a ceiling effect and no further increase was observed.
 Maybe this spatial interval reflects the spatial extent of the cortical reorganization and, more specifically, of the horizontal
 axonal sprouting on the cortex.

290 291

292 5. CONCLUSION

293

In conclusion, our preliminary report supports the hypothesis that spatial relationship anisotropy presumably responsible for the bidimensional visual distortion occurs in the presence of a cortical damage, whereas the associated region of spatial deprivation in the visual field per se does not appear to be substantial. The structural changes on the striate/peristriate area would affect the retinotopic map up to a distance corresponding to 6-8 degrees from the border of the scotoma. Further investigations are needed to study the characteristics of cortical plasticity in the presence of visual field defects of cortical origin, and to understand the way it can be used to improve the visual function of patients suffering from cerebral accidents.

- 302303 REFERENCES
- 304

Cavézian C, Gaudry I, Perez C, Coubard O, Doucet G, Peyrin C et al. Specific impairments in visual processing
 following lesion side in hemianopic patients. Cortex. 2010;46:1123-31. DOI. 10.1016/j.cortex.2009.08.013.Epub 2009 Sep
 8.

- Zihl J, Sämann P, Schenk T, Schuett S, Dauner R. On the origin of line bisection error in hemianopia.
 Neuropsychologia. 2009;47:2417-26, DOI. 10.1016/j.neuropsychologia.2009.04.009. Epub 2009 Apr 19.
- 310 3. Mitra AR, Abegg M, Viswanathan J, Barton JJ. Line bisection in simulated homonymous hemianopia.
 311 Neuropsychologia. 2010;48:1742-9, DOI.10.1016/j.neuropsychologia.2010.02.023.
- 4. Fortenbaugh FC, VanVleet TM, Silver MA, Robertson LC. Spatial distortions in localization and midline estimation in hemianopia and normal vision. Vis. Res. 2015;111:1-12, DOI. 10.1016/j.visres.2015.03.022. Epub 2015 Apr 11.
- 5. Kerkhoff G, Schenk T. Line bisection in homonymous visual field defects Recent findings and future directions.
 Cortex. 2011;47:53-8, DOI. 10.1016/j.cortex.2010.06.014. Epub 2010 Aug.
- Mavrakanas NA, Dang-Burgener NP, Lorincz EN, Landis T, Safran AB. Perceptual distortion in homonymous
 paracentral scotomas. J. Neuroophthalmol. 2009;29:37–42, DOI. 10.1097/WNO. 0b013e318198 ca37.
- 318 7. Safran AB, Achard O, Duret F, Landis T. The "thin man" phenomenon: a sign of cortical plasticity following inferior
 319 homonymous paracentral scotomas. Br. J. Ophthalm. 1999;83:137–42.
- Safran AB, Rilliet B, De Tribolet N, Landis T. Perceptual distortion around homonymous scotomas is not restricted to defects located in the right hemifield. Br. J. Ophthalm. 2000;84:803-4.
- Scohen L, Gray F, Meyrignac C, Dehaene S, Degos JD. Selective deficit of visual size perception: two cases of
 hemimicropsia. J. Neurol. Neurosurg. Psychiatry. 1994;57:73–8.
- Ganssauge M, Papageorgiou E, Schiefer U. Facial dysmorphopsia: a notable variant of the "thin man"
 phenomenon?Graefes Arch. Clin. Ophthalmol. 2012;250:1491-7.
- 11. Dilks DD, Serences JT, Rosenau BJ, Yantis S, McCloskey M. Human adult cortical reorganization and consequent
 visual distortion. J. Neurosci. 2007;27:9585-94.

- Aleci C, Piana G, Piccoli M, Bertolini M. Developmental dyslexia and spatial relationship perception. Cortex 2012;48:
 466-76, DOI. 10.1016/j.cortex.2010.10.004.Epub 2010 Oct 28.
- Aleci C, Piana G, Anselmino F. Evaluation of spatial anisotropy by curvature analysis of elliptical targets. The Open
 Ophthalmology Journal. 2010;4:20-6.
- 14. Ogun O, Viswanathan J, Barton JJ. The effect of central (macula) sparing on contralateral line bisection bias: a study
 with virtual hemianopia. Neuropsychologia. 2011;49:3377-82, DOI. 10.1016/j.neuropsychologia 2011.08.012.
- 15. Frassinetti F, Nichelli P, di Pellegrino G. Selective horizontal dysmetropsia following prestriate lesion. Brain.
 1999;122:339-50.
- Schuett S, Dauner R, Zihl J. Line bisection in unilateral homonymous visual field defects. Cortex. 2011;47:47-52, DOI.
 10.1016/j.cortex.2010.01.008. Epub 2010 Jan 28.
- 17. Dilks DD, Baker CI, Liu Y, Kanwisher N. "Referred visual sensations": rapid perceptual enlongation after visual
 cortical deprivation. J. Neurosci. 2009;29:8960-4.
- 18. Van Baelen M, Claessens P, Stalmans P, Wagemans J. Perceptual distortion in the visual field surrounding a
 scotoma: Psychophysical measurement with a "spatial interval discrimination task. Int. Congr. Ser. 2005;1282:749–53.
- 19. Kesten H. Accelerated Stochastic Approximation. Ann. of Math. Stat. 1958, 29, 41-59.
- 20. Peli E. Field expansion for homonymous hemianopia by optically induced peripheral exotropia. Opt. Vis. Sci.
 2000;77:453-64.
- 21. Darian-Smith C, Gilbert CD. Axonal sprouting accompanies functional reorganization in adult cat striate cortex.
 Nature. 1994;21: 737-40.
- Kapadia MK, Gilbert CD, Westheimer G. A quantitative measure for short-term cortical plasticity in human vision. J.
 Neurosci. 1994;14: 451-7.
- 23. Gilbert CD, Wiesel TN. Receptive field dynamics in adult primary visual cortex. Nature. 1992;356: 150–2.
- Pettet MW, Gilbert CD. Dynamic changes in receptive-field size in cat primary visual cortex. Proc. Natl. Acad Sci.
 USA. 1992;89: 8366-70.
- 352
- 353

