1

2 3

Antibacterial and Antifungal Effect of Cinnamon

4 5 6 **A b**

6 Abstract:

Cinnamon (*Cinnamomum zeylanicum*, and *Cinnamon cassia*), the eternal tree of tropical
medicine, belongs to the Lauraceae family. Cinnamon is one of the most important spices
used daily by people all over the world. Cinnamon primarily contains vital oils and other
derivatives, such as cinnamaldehyde, cinnamic acid, and cinnamate. Traditional uses of
Cinnamon throughout Asia, Africa, and Europe have been recorded, where it has been
used as a medicine.

13

14 Key words: Antibacterial, Antifungal, Cinnamon.

15

16 Introduction:

Spices are one of the most commonly used natural antimicrobial agents in foods and 17 18 have been used traditionally for thousands of years by many cultures for preserving foods 19 and as food additives to enhance aroma and flavour [1]. As concern over the safety of 20 chemical additives has risen in recent years, consumer interest in the use of natural products 21 as alternative food preservatives has increased [2]. Consequently, natural antimicrobials are 22 receiving a good deal of attention for a number of microorganism control issues. Due to the 23 increasing demand for natural food additives, herbs and spices have emerged as popular 24 ingredients to replace synthetic antimicrobial and antioxidant agents [3, 4]. 25 26 The bark of various cinnamon species is one of the most important and popular spices used 27 worldwide not only for cooking but also in traditional and modern medicines. Overall, 28 approximately 250 species have been identified among the cinnamon genus, with trees being 29 scattered all over the world [5,6]. Cinnamon is one of the oldest herbal medicines, mentioned 30 in Chinese texts as far back as 4,000 years ago, and it is also one of the most frequently 31 consumed spices [7-9]. 32 Food borne illness can cause symptoms that ranged from an upset stomach to more serious symptoms such as diarrhea, fever, Vomiting, abdominal cramps and dehydration 33

34 despending on the etiological agents. Food borne illnesses not only affects the health of

35 individuals, but it can also have dramatic economic impact. The economic losses from

36 various factors, such as medical treatment, lost wages and productivity, loss of

1

- 37 business, recall and destruction of products, and investigation of the outbreaks, can be
- 38 very high. [10].
- 39 Methodology:
- 40 The current review was conducted using a complete and organized search of the available
- 41 literature on the medicinal plant cinnamon. The searches were performed using various
- 42 databases, including PubMed (<u>http://www.ncbi.nlm.nih.gov/pubmed</u>), Science Direct
- 43 (<u>http://www.sciencedirect.com/</u>), Scopus (<u>http://www.scopus.com/</u>), Scirus
- 44 (<u>http://www.scirus.com/</u>), and Google Scholar (<u>http://www.scholar.google.com/</u>).

45 **Traditional uses:**

- 46 In addition to being used as a spice and flavoring agent, cinnamon is also added to flavor
- 47 chewing gums due to its mouth refreshing effects and ability to remove bad breath [11].
- 48 Cinnamon can also improve the health of the colon, thereby reducing the risk of colon cancer
- 49 [12].
- 50 Cinnamon is a coagulant and prevents bleeding [13]. Cinnamon also increases the blood
- 51 circulation in the uterus and advances tissue regeneration [14]. This plant plays a vital role as
- 52 a spice, but its essential oils and other constituents also have important activities, including
- antimicrobial [15-18], antifungal [19], antioxidant [20-24], and antidiabetic [25-31].
- 54 Cinnamon has been used as anti-inflammatory [32-34], antitermitic [34], nematicidal [35-36],
- 55 mosquito larvicidal [37], insecticidal [38], antimycotic, [38-41] and anticancer agent [42-45].
- 56 Cinnamon has also been traditionally used as tooth powder and to treat toothaches, dental
- 57 problems, oral microbiota, and bad breath [46, 47].

58 Chemical Constituents:

- 59 Cinnamon consists of a variety of resinous compounds, including cinnamaldehyde,
- 60 cinnamate, cinnamic acid, and numerous essential oils [48] (Table 1). [49] studied the
- 61 qualitative and quantitative composition of cinnamon (bark) essential oil (Table 2). Singh et
- al. [50] reported that the spicy taste and fragrance are due to the presence of cinnamaldehyde
- and occur due to the absorption of oxygen. As cinnamon ages, it darkens in color, improving
- 64 the resinous compounds [50].
 - Part of the plantCompoundLeavesCinnamaldehyde: 1.00 to 5.00%
Eugenol: 70.00 to 95.00%BarkCinnamaldehyde: 65.00 to 80.00%
Eugenol: 5.00 to 10.00%Bark rootCamphor: 60.00%Fruittrans-Cinnamyl acetate (42.00 to 54.00%)
and caryophyllene (9.00 to 14.00%)
- Table 1 Chemical constituents of different parts of cinnamon (Vangalapati et al., 2012)

<i>C. zeylanicum</i> buds	Terpene hydrocarbons: 78.00%
	alpha-Bergamotene: 27.38%
	alpha-Copaene: 23.05%
	Oxygenated terpenoids: 9.00%
C. zeylanicum flowers	(E)-Cinnamyl acetate: 41.98%
	trans-alpha-Bergamotene: 7.97%
	Caryophyllene oxide: 7.20%

66

- 67 Table 2 Qualitative and quantitative composition of cinnamon (bark) essential oil (Abd El-
- 68 Baky et al,2013)

Component	%
α-Thafone	0.37
α-pinene	1.12
Benzaldehyde	0.25
Heptanol	0.79
Sabinene	0.52
1-octen-3-ol	0.68
β-pinene	0.77
Myrcene	0.39
p-cymene	0.66
Limonene	1.48
β-phellandrene	0.37
1,8-cineole	1.01
γ-terpinene	0.99
Octanol	0.33
Linalool	0.54
terpinen-4-ol	0.38
α-terpineol	0.51
trans-carveol	0.51
Nerol	1.06
Neral	1.16
Geraniol	0.78
Geranial	1.79
neryl acetate	0.89
Trans- Cinnamaldehyde	45.13
Cinnamyl alcohol	5.13
Eugenol	7.47
Dihyroeugenol	3.31

Ethylcis-cinnamate	3.68
t-Methyl cinnamate	2.19
Methyl eugenol	5.23
Isoeugenol	1.59
Cis-Caryophyllene	Tr
t-Cinnamic acid	0.41
Cinnamyl actate	0.21
α-Caryphyllene	Tr
E-ethyl cinnamate	0.73

69

70 Antibacterial effect of cinnamon:

Cinnamon and cinnamon oil have been used for bacteria caused skin infection and food bornediseases.

73 Effect of cinnamon extract and cinnamon oil for bacteria cause skin infection:

74 Several studies on medicinal plants and their components have indicated the effect of

cinnamon for bacteria cause skin infection. *Staphylococcus aureus* [51, 52], *Staphylococcus*

76 epidermidis [53,54] Staphylococcus aureus, Staphylococcus epidermidis and Streptococcus

77 pyogenes,[55]

78

79 Effect of cinnamon extract and cinnamon oil for foodborne bacteria:

Cinnamon is one of the most spices commonly used as natural antimicrobial agents in foods and have been used traditionally for thousands of years by many cultures for preserving foods and as food additives to enhance aroma and flavor [1] The most common bacteria causing food borne illness are *Escherichia coli*, *Staphylococcus aureus*, *Salmonella* spp., *Listeris monocytogenes*, *Clostridium botulinus*, *Vibrio parahaemolyticus* and others [56].The antimicrobial properties of cinnamon have been documented [57] *Salmonella*, [58-63] *E. coli*, [64] reported two gram negative, *Escherichia coli*, *Salmonella typhi*, and two

- 87 gram positive *Staphylococcus aureus* & *listeria monocytogens*, [65] studied *Bacillus*
- 88 cereus.

89 Antibacterial effect of cinnamon for oral pathogens:

90 [66] reported the effect of cinnamon oil to oral bacterial pathogens Streptococcus mutans, S.

91 mitis, S. salivarius, Aggregatibacter actinomycetemcomitans, Porphyromonas gingivalis

and Fusobacterium nucleatum. [67] discussed the effect of cinnamon extract to Streptococcus

93 mutans and Streptococcus sanguinis.

94 Phytochemical analysis of cinnamon:

- 95 Many studies showed that C. *verum* is an effective antioxidant and antibacterial spice. They
- 96 attributed these activities of this plant to its phytochemicals as shown in table (3) reported
- 97 by [68].
- 98 Table-3

Component	Cinnamomum verum
Carbohydrates	+
Proteins	+
Glycosides	+
Steroids	++
Alkaloids	++
Flavanoids	++
Saponins	+
Anthraquinones	++
Tannins	++
Terpenoids	+
Anthocyanins	-
Leucoanthocyanins	-
Coumarins	+
Emodins	-

99

[69] documented that An important characteristic of plant extracts and their components is
their hydrophobicity, which enable them to partition the lipids of the bacterial cell membrane
and mitochondria and rendering them more permeable. Extensive leakage from bacterial cells
or the exit of critical molecules and ions will lead to death. [70] certified the antibacterial
activity to the presence of some phytochemicals in the extracts and recommended
that it was possibly due to their major component cinnamaldehyde.
Antifungal effect of cinnamon and cinnamon oil:

107 [71-75] studied the effect of cinnamon for *Candida albicans*[76] evaluated the inhibitory

108 effects of cinnamonon the growth of mycelial of various spoilage pathogens (Aspergillus.

- 109 *niger*, *Fusarium sambucinum Pythium sulcatum* and *Rhizopus stolonifera*. [77] reported the
- 110 effect against Aspergillus niger, Aspergillus flavus, Aspergillus fumigatus, Penicillium
- 111 chrysogenum, Penicillium notatum and Rhizopus oryzae. [73] Cryptococcus species, [78]
- 112 Aspergillus niger, Alternaria alternata, Colletotrichum gloeosporioides, Lasiodiplodia

113 theobromae, Phomopsis viticola and Rhizopus stolonifera, [79] Aspergillus fumigatus [80]

114 Phaeomoniella chlamydospora, [81] Penicillium italicum, [82] Mucor species, [83]

115 Microsporum gypseum, Trichophyton rubrum and T. mentagraphytes

116 Mechanism of cinnamon oil against fungi:

117 [84] Investigated the mechanism of how cinnamon oil affect the cell morphology, cell 118 membrane and the activities of the key enzymes in scanning electron microscope (SEM) 119 observations revealed that the mycelia morphology alterations of fungi were the markedly 120 shriveled and collapsed hypha, even flatted empty hyphae, swelled cell wall, disrupted 121 plasma membrane, with cytoplasmic matrix leakage. Furthermore, cinnamon oil 122 inhibited the biosynthesis of ergosterol significantly damaging the cell membrane 123 structure, causing the leakage of intracellular ions, protein and the higher absorbance at 124 260nm. Moreover, cinnamon oil affected the energy metabolism of fungi by decreasing the 125 activities of succinate dehydrogenase (SDH) and malate dehydrogenase (MDH) in

126 tricarboxylic acid (TCA) cycle.

127128 References:

129	1-	Snyder O P. Antimicrobial effects of spices and herbs. Hospitality Institute of
130		Technology and Management. St. Paul, Minnaesota. http://www.
131		hitm.com/Documents/Spices.html. 1997.
132	2-	Govaris A N, Solomakos A, Pexara, Chatzopoulou PS (). The antimicrobial effect
133		of oregano essential oil, nisin and their combination against SalmonellaEnteritidis
134		in minced sheep meat during refrigerated storage.Int. J. Food Microbiol.
135		2010;137:175–180.
136	3-	Mayachiew P and Devahastin S. Antimicrobial and antioxidant activities of Indian
137		gooseberry and galangal extracts. LWT Food Sci. Technol.2008; 41:1153-1159.
138	4-	Nychas G J E. Natural antimicrobials from plants. In G. W. Gould (ed.). New
139		methods of food preservation. Blackie Academic and Professional, London.1995;
140		58–89.
141	5-	. Sangal A. Role of cinnamon as beneficial antidiabetic food adjunct: a review.
142		Advan in Appl Sci Res. 2011;2(4):440-450.
143	6-	Vangalapati M, Sree Satya N, Surya Prakash D, Avanigadda S. A review on
144		pharmacological activities and clinical effects of cinnamon species. Res J of
145		Pharmaceut, Biolo and Chem Sci. 2012;3(1):653-663.

146	7- Qin B, Nagasaki M, Ren M, Bajotto G, Oshida Y, Sato Y. Cinnamon extract
147	(traditional herb) potentiates in vivo insulinregulated glucose utilization via
148	enhancing insulin signaling in rats. Diabetes Res. Clin. Pract.2003; 6:139–148.
149	8- Qin B, Nagasaki M, Ren M, Bajotto G, Oshida Y, and Sato Y. Cinnamon extract
150	prevents the insulin resistance induced by a high-fructose diet. Horm. Metab. Res.
151	2004; 36:119–125
152	9- Ranasinghe L, Jayawardena B, Abeywickrama K. Fungicidal activity of essential
153	oils of Cinnamomum zeylanicum(L.) and Syzygium aromaticum(L.) Merr et L.M.
154	Perry against crown rot and anthracnose pathogens isolated from banana. Lett.
155	Appl. Microbiol. 2002; 35:208–211.
156	10-Doors S. Food Safety: Current Status and Future Needs, American Academy
157	of Microbiologists, Washington, D.C. 1999.
158	11-Jakhetia V, Patel R, Khatri P. Cinnamon: a pharmacological review. J of Advan
159	Scient Res. 2010;1(2):19–12
160	12-Wondrak GT, Villeneuve NF, Lamore SD, Bause AS, Jiang T, Zhang DD. The
161	cinnamon-derived dietary factor cinnamic aldehyde activates the Nrf2-dependent
162	antioxidant response in human epithelial colon cells. Molecules.
163	2010;15(5):3338–3355.
164	13- Hossein N, Zahra Z, Abolfazl M, Mahdi S and Ali K. Effect of Cinnamon
165	zeylanicum essence and distillate on the clotting time. J of Med Plants Res.
166	2013;7(19):1339–1343.
167	14- Minich St, Msom L. Chinese Herbal Medicine in Women's Health. Women's
168	Health; 2008.
169	15- Chang ST, Chen PF, Chang SC. Antibacterial activity of leaf essential oils and
170	their constituents from Cinnamomum osmophloeum . J of Ethnopharmacol.
171	2001;77(1):123–127.
172	16- Hili P, Evans CS, Veness RG. Antimicrobial action of essential oils: the effect of
173	dimethylsulphoxide on the activity of cinnamon oil. Lett in Appl Microbiol.
174	1997;24(4):269–275.
175	17-Matan N, Rimkeeree H, Mawson AJ, Chompreeda P, Haruthaithanasan V, Parker
176	M. Antimicrobial activity of cinnamon and clove oils under modified atmosphere
177	conditions. Int J of Food Microbiol. 2006;107(2):180-185.

178	18- Gende LB, Floris I, Fritz R, Eguaras MJ. Antimicrobial activity of cinnamon
179	(Cinnamomum zeylanicum) essential oil and its main components against
180	paenibacillus larvae from argentine. Bull of Insectol. 2008;61(1):1-4.
181	19- Wang SY, Chen PF, Chang ST. Antifungal activities of essential oils and their
182	constituents from indigenous cinnamon (Cinnamomum osmophloeum) leaves
183	against wood decay fungi. Bioresour Technol. 2005;96(7):813-818.
184	20- Mancini-Filho J, van-Koiij A, Mancini DAP, Cozzolino FF, Torres RP.
185	Antioxidant activity of cinnamon (Cinnamomum zeylanicum, breyne) extracts.
186	Bollettino Chimico Farmaceutico. 1998;137(11):443-447.
187	21- Shobana S, Akhilender N K. Antioxidant activity of selected Indian spices.
188	Prostaglandins Leuko and Essen Fatty Acids. 2000;62(2):107-110.
189	22- Mathew S, Abraham TE. Studies on the antioxidant activities of cinnamon
190	(Cinnamomum verum) bark extracts, through various in vitro models. Food Chem.
191	2006;94(4):520–528.
192	23- Mathew S, Abraham TE. In vitro antioxidant activity and scavenging effects of
193	Cinnamomum verum leaf extract assayed by different methodologies. Food and
194	Chem Toxicol. 2006;44(2):198–206.
195	24- Kim N, Sung H and Kim W. Effect of solvents and some extraction conditions on
196	antioxidant activity in cinnamon extracts. Korean J of Food Sci and Tech.
197	1993;25(3):204–209.
198	25- Kim SH, Hyun SH, Choung SY. Anti-diabetic effect of cinnamon extract on
199	blood glucose in db/db mice. J of Ethnopharmacol. 2006;104(1-2):119–123.
200	26 Prabuseenivasan S, Jayakumar M and Ignacimuthu S. In vitro antibacterial
201	activity of some plant essential oils. BMC Complementary and Altern Med.
202	2006;6, article 39
203	27- Jia Q, Liu X, Wu X. Hypoglycemic activity of a polyphenolic oligomer-rich
204	extract of Cinnamomum parthenoxylon bark in normal and streptozotocin-induced
205	diabetic rats. Phytomed. 2009;16(8):744-750.
206	28- Jarvill-Taylor KJ, Anderson RA, Graves DJ. A hydroxychalcone derived from
207	cinnamon functions as a mimetic for insulin in 3T3-L1 adipocytes. J of the Am
208	College of Nutri. 2001;20(4):327–336.
209	29- Lu Z, Jia Q, Wang R. Hypoglycemic activities of A- and B-type procyanidin
210	oligomer-rich extracts from different Cinnamon barks. Phytomed.
211	2011;18(4):298–302.

UNDER PEER REVIEW

212	30- Subash Babu P, Prabuseenivasan S, Ignacimuthu S. Cinnamaldehyde—a potential
213	antidiabetic agent. Phytomed. 2007;14(1):15-22.
214	31- Onderoglu S, Sozer S, Erbil KM, Ortac R and Lermioglu F. The evaluation of
215	long-term effects of cinnamon bark and olive leaf on toxicity induced by
216	streptozotocin administration to rats. J of Pharm and Pharmacol.
217	1999;51(11):1305–1312.
218	32- Chao LK, Hua KF, Hsu HY, Cheng SS, Liu JY, Chang ST. Study on the
219	Antiinflammatory activity of essential oil from leaves of Cinnamomum
220	osmophloeum . J of Agri and Food Chem. 2005;53(18):7274-7278.
221	33- Tung YT, Chua MT, Wang SY, Chang ST. Anti-inflammation activities of
222	essential oil and its constituents from indigenous cinnamon (Cinnamomum
223	osmophloeum) twigs. Bioresour Tech. 2008;99(9):3908-3913.
224	34- Tung YT, Yen PL, Lin CY, Chang ST. Anti-inflammatory activities of essential
225	oils and their constituents from different provenances of indigenous cinnamon
226	(Cinnamomum osmophloeum) leaves. Pharm Biol. 2010;48(10):1130-1136.
227	35- Park IK, Park JY, Kim KH. Nematicidal activity of plant essential oils and
228	components from garlic (Allium sativum) and cinnamon (Cinnamomum verum)
229	oils against the pine wood nematode (Bursaphelenchus xylophilus). Nematol.
230	2005;7(5):767–774.
231	36- Kong JO, Lee SM, Moon YS, Lee SG, Ahn YJ. Nematicidal activity of cassia and
232	cinnamon oil compounds and related compounds toward Bursaphelenchus
233	xylophilus (Nematoda: Parasitaphelenchidae). J of Nematol. 2007;39(1):31-36.
234	37- Cheng SS, Liu JY, Tsai KH, Chen WJ , Chang ST. Chemical composition and
235	mosquito larvicidal activity of essential oils from leaves of different Cinnamomum
236	osmophloeum provenances. J of Agri and Food Chem. 2004;52(14):4395-4400.
237	38- Cheng SS, Liu JY, Huang CG, Hsui YR, Chen WJ, Chang ST. Insecticidal
238	activities of leaf essential oils from Cinnamomum osmophloeum against three
239	mosquito species. Bio Reso Tech. 2009;100(1):457-464.
240	39- Dhulasavant V, Shinde S, Pawar M, Naikwade NS. Antihyperlipidemic activity
241	of Cinnamomum tamala Nees. on high cholesterol diet induced Hyperlipidemia.
242	Int Journal of PharmTech Res. 2010;2(4):2517–2521.
243	40- Amin KA, El-Twab TMA. Oxidative markers, nitric oxide and homocysteine
244	alteration in hypercholesterolimic rats: role of atorvastatine and cinnamon. Int J of
245	Clin and Exp Med. 2009;2(3):254–265.

UNDER PEER REVIEW

246	41- Bandara T, Uluwaduge I and Jansz ER. Bioactivity of cinnamon with special
247	emphasis on diabetes mellitus: a review. Int J of Food Sci and Nutri.
248	2012;63(3):380–386.
249	42- Lu J, Zhang K, Nam S, Anderson RA, Jove R, Wen W. Novel angiogenesis
250	inhibitory activity in cinnamon extract blocks VEGFR2 kinase and downstream
251	signaling. Carcinogenesis. 2010;31(3):481-488.
252	43- Kwon HK, Jeon WK and Hwang JS. Cinnamon extract suppresses tumor
253	progression by modulating angiogenesis and the effector function of CD8^+ T cells.
254	Cancer Lett. 2009;278(2):174–182.
255	44-Kwon HK, Hwang JS, So JS. Cinnamon extract induces tumor cell death through
256	inhibition of NF κ B and AP1. BMC Cancer. 2010;10(1), article 392.
257	45-Koppikar SJ, Choudhari AS, Suryavanshi SA, Kumari S, Chattopadhyay S, Kaul-
258	Ghanekar R. Aqueous Cinnamon Extract (ACE-c) from the bark of Cinnamomum
259	cassia causes apoptosis in human cervical cancer cell line (SiHa) through loss of
260	mitochondrial membrane potential. BMC Cancer. 2010;10(1), 210.
261	46- Aneja K, Joshi R and Sharma C. Antimicrobial activity of dalchini (Cinnamomum
262	zeylanicum bark) extracts on some dental caries pathogens. J of Pharm Res.
263	2009;2(9):1387–1390.
264	47-Gupta C, Kumari A, Garg AP, Catanzaro R, Marotta F. Comparative study of
265	cinnamon oil and clove oil on some oral microbiota. Acta Bio-Medica: Atenei
266	Parmensis. 2011;82(3) article 197.
267	48- Senanayake UM, Lee TH, Wills RBH. Volatile constituents of cinnamon
268	(Cinnamomum zeylanicum) oils. J of Agri and Food Chem. 1978;26(4):822-824
269	49- Abdo-ElBaky HH, ElBaroty GS, Farag RS, Saleh MA. Characterization of
270	antioxidant and antimicrobial compounds of cinnamon and ginger essential oils.
271	Advan Res J of Biochem. 2013; 1 (4): 078-085
272	50- Singh G, Maurya S, deLampasona MP, Catalan CAN. A comparison of chemical,
273	antioxidant and antimicrobial studies of cinnamon leaf and bark volatile oils,
274	oleoresins and their constituents. Food and Chem Toxicol. 2007;45(9):1650-1661
275	51-Zainab AA. The antibacterial activity of aqueous extract of cinnamon and clove
276	against Staphylococcus aureus. J of Al-Nahrain Univ. 2008; 11(2): 131-135.
277	52- Oulkheir S, Aghrouch M, Mourabit FEl, Dalha F, Graich H, Amouch F, Ouzaid
278	K, Moukale A, Chadli S. Antibacterial Activity of Essential Oils Extracts from

279	Cinnamon, Thyme, Clove and Geranium Against a Gram Negative and Gram
280	Positive Pathogenic Bacteria. Journal of disease and medical plant. 2017; 3:1-5.
281	53-Daud FS, Pande G, Joshi M, Pathak R, Wankhede SA study of antibacterial effect
282	of some selected essential oils and medicinal herbs against acne causing bacteria.
283	Int pharma science inven. 2013; 2: 27-34.
284	54- Julianti E, Rajah KK and Fidrianny I .Antibacterial activity of ethanol extract of
285	cinnamon bark, honey and their combination effects against acne- causing
286	bacteria. Sci pharm. 2017; 85(2):19.
287	55- Shabani NM, Ismail Z, Ismail WI, Zainuddin N, Rosdan NH, Roslan MNF, Mohd
288	Azahar NM . Antimicrobial activity of cinnamon oil against bacteria that cause
289	skin infections. Journal of Scientific Research and Development. 2016; 3 (2): 1-6
290	
291	56-Van TTH, Moutafis G, Tran LT and Coloe PJ. Antibiotic resistance in
292	foodborne bacteria contaminants in Vietanam. Appl. Environ. Microbiol.2007;
293	73:7906-7911.
294	57- Abdel-Raouf, M, Nabil M, El-Sayed M. Antimicrobial Activities of Some Herbs
295	Extracts on Food Borne Bacteria. J of Am Sci 2014;10(11): 76-85.
296	58-Mari R, Kalirajan K, Ranjit S. Antimicrobial activity of turmeric natural dye
297	against different bacterial strains. J Appl Pharm Sci. 2012; 2(6):210-212.
298	59-Mukhtar S, Ghori I. Antibacterial Activity of Aqueous and Ethanolic Extracts
299	of Garlic, Cinnamon and Turmeric against Escherichia coli A TCC 25922
300	and Bacillus subtilis DSM 3256. Int J Appl Biol Pharm Tech. 2012;
301	3(2):131-136.
302	60-Usha M, Ragini S, S.M.A N. Antibacterial Activity of Acetone and Ethanol
303	Extracts of Cinnamon (Cinnamomum zeylanicum) and Ajowan
304	(Trachyspermum ammi) on four Food Spoilage Bacteria. Int Res J Biol Sci.
305	2012:1(4):7-11.
306	61-Hong Y, Minbae Y, Moon B and Lee S. Inhibitory Effect of Cinnamon Powder on
307	Pathogen Growth in Laboratory Media and Oriental-Style Rice Cakes
308	(Sulgidduk). Journal of Food Protection.2013; 76: 133-138
309	62-Senhaji Q, Faid M and Kalalou. Inactivation of Escherichia coli O157:H7 by
310	essential oil from Cinnamomum zeylanicum. Braz Infect Dis. 2007; 11: 234-236.
311	63-Pan X, Mak L, Nakano H. Efficacy of essential oils on inactivation of Escherichia
312	coli 0157:H7 in vegetable juice. Food Sci and Tech Res.2014; 20: 1043-1049.

313	64-Bharath M.R, Azeem MA, Sherien Basha , Keerthan H V (2016). Antimicrobial
314	Activity of Cinnamon extracts against Foodborne Pathogens E.coli, S.tyhimurium
315	and S.aureus & L.monocytogens. IOSR J of Pharma and Biol Sci.2016; 11(6):
316	66-72
317	65- Sofia PK, Prasad R, Vijay VK, Srivastava AK . Evaluation of antibacterial
318	activity of Indian spices against common foodborne pathogens. Int J of food Sci
319	Tech. 2007; 42: 910-915.
320	66-Zainal-Abidin Z, Mohd-Said S, Abdul Majid FA, Mustapha WAW, Jantan I. Anti-
321	Bacterial Activity of Cinnamon Oil on Oral Pathogens. The Open Conference
322	Proceedings Journal. 2013; 4 (2) :12-16.
323	67-Kim H Y, Park J B (2017). In vitro evaluation of anti-caries effect of cinnamon
324	extracts on oral pathogens. Biomedical Research. 2017; 28 (6): 2848-2853.
325	
326	68- Harsha N, Sridevi V, Chandana Lakshmi MVV, Rani K, Divya Satya V N
327	(2013). Phytochemical Analysis of Some Selected Spices. International Journal of
328	Innovative Research in Science, Engineering and Technology. 2013; 2:6618-6621
329	69-Rastogi RP, Mehrotra BN. Glossary of Indian Medicinal Plants. National Institute
330	of science communication, New Delhi, India. 2002.
331	70- Sharma R, Dutt R, Jadon S, Bhatia AK. Phytochemical analysis of Cinnamomum
332	zeylanicum for antibacterial activity against B.subtilis. Int J for Res in Appl Sci
333	and Engin Tech (IJRASET). 2016; 4:528-835.
334	71-Vazirian M, Alehabib S, Jamalifar H, Fazeli MR, Najarian Toosi A, Khanavi M
335	. Antimicrobial effect of cinnamon (Cinnamomum verum J. Presl) bark essential
336	oil in cream-filled cakes and pastries. Res J of Pharma (RJP). 2015; 2(4) : 11-16
337	72-Dalirsani Z, Adibpour M, Aghazadeh M, Amirchaghmaghi M, Falaki F, Mozafari
338	PM, Hamzei FM . In vitro Comparison of Inhibitory Activity of 10 Plant Extracts
339	Against Candida Albicans. Austral J of Basic and Appl Sci.2011; 5(5): 930-935.
340	73-Radwan, I A, Abed AH, Abeer MR, Ibrahim M A, Abdallah AS. Effect of
341	Thyme, Clove and Cinnamon Essential Oils on Candida albicans and Moulds
342	Isolated from Different Sources. Am J of Ani and Vet Sci. 2014; 9(4): 303.314.
343	74-Razzaq Abed A, Hussein IM. Effect of Cinnamon extract on radial growth of
344	Aspergillus ochraceus and cellular growth of Candida albicans. Euph J of Agri
345	Sci. 2015;7 (1): 23-31.

346	75-Gujjari S K, Shreeshyla HS, Sureshn J, Venkatesh, M.P. Evaluation of cinnamon
347	mouth wash on Candida albicans in type II diabetics with chronic periodontitis :
348	Apilot study. Int J of Res and Rev.2017; 4 (4):3937-3940.
349	76- Mvuemba HN, Green SE, Tsoomo A, Avis TJ. Antimicrobial efficacy of
350	cinnamon, ginger, horseradish and nutmeg extracts against spoilage pathogens.
351	Phytoprotection. 2009; 90:65–70
352	77-Doudi M, Setorki M, Rezayatmand Z. Effects of aqueous extract of
353	Cinnamomum verumon growth of bread spoilage fungi. Int J of Med Res Hlth
354	Sci. 2016; 5: 162-171.
355	78- Sukatta U, Haruthaithanasan V, Chantarapanont W, Dilokkunanant U, Suppakul
356	P. Antifungal Activity of Clove and Cinnamon Oil and Their Synergistic Against
357	Postharvest Decay Fungi of Grape in vitro. Kasetsart J. (Nat. Sci.). 2008; 42 : 169
358	- 174.
359	79-Carmo E S, Lima E O, Souza E L, Sousa F B. Effect of Cinnamomum
360	zeylanicumblume essential oil on the growth and morphogenesis of some
361	potentially pathogenic A spergillus species. Bra J of Microbiol. 2008; 39: 91-97.
362	80-Rusin C, Oliari ICR, Leite CD, Faria CMD R, Botelho RV, Almanc MAK.
363	Antifungal activity of plant extracts on Phaeomoniella chlamydospora. BIO Web
364	of Conferences7, 39 th World Congress of Vine and Wine.2016.
365	81- Anjum T and Akhtar N. Antifungal Activity of Essential Oils Extracted From
366	Clove, Cumin and Cinnamon Against Blue Mold Disease on Citrus Fruit. Int Conf
367	on Applied Life Sciences. 2012; 321:326.
368	82- Abdullah T. Al-fawwaz and Khaled A. Al-Khaza'leh. Antibacterial And
369	Antifungal Effect Of Some Natural Extracts And Their Potential Use As
370	Photosensitizers. Euro Sci J. 2016; 12 (6): 147-157
371	83-Coi LS, Li Y, Kam SL, Wang H, Ooi VE (2006). Antimicrobial Activities of
372	Cinnamon Oil and Cinnamaldehyde from the Chinese Medicinal Herb
373	Cinnamomum cassia Blume. Am. J. Chin. Med. 34, 511-522
374	84- Yaru Li Y, Ying N, Zhou L, Li S, Tang X, Ding Y, Li S. The possible mechanism
375	of antifungal activity of cinnamon oil against Rhizopus nigricans. Journal of
376	PharmTech Res. 2014;6(5):12-20.