2

3

EVALUATION OF CRUDE OIL BIODEGRADATION POTENTIALS OF SOME INDIGENOUS SOIL MICROORGANISMS ABSTRACT

This study evaluated the crude oil degradation potentials of some indigenous soil 4 microorganisms. The microbial isolates were among those obtained from crude oil contaminated 5 and uncontaminated agricultural soils of Awoye, Orioke-Iwamimo, Igodan-Lisa and Oba-Ile all 6 in Ondo State, Nigeria. The isolates were tested for crude oil degradation potentials by visual 7 turbidity, extent of shredding of overlaid oil and the optical density by spectrophotometry 8 9 method at the wavelength of 540nm. Brevundimonas diminuta, Bacillus subtilis, Flavobacterium species, Enterobacter species, Klebsiella pneumoniae, Pseudomonas aeruginosa, Alcaligenes 10 faecalis, Bacillus megaterium, Klebsiella edwardsii, Bacillus aryabhattai, Aspergillus flavus, 11 Kodamaea ohmeri, Cephalosporium species, Mucor mucedo, Paecilomyces variotii, Candida 12 parapsilopsis and Trichoderma species were among the sixteen bacterial and seven fungal 13 isolates tested. The findings in this study revealed varying optical densities of 0.324-0.647 for 14 bacteria and 0.497 -0.812 for fungi at days 11 and 17 respectively thus suggesting different 15 responses and potentials to breakdown crude oil. The highest degradative ability was shown by 16 Klebsiella edwardsii (OD 0.647) followed by Pseudomonas aeruginosa (OD 0.575) and 17 Klebsiella pneumoniae (OD 0.490). Paecilomyces variotii showed the highest degradative ability 18 (OD 0.812) among the fungi. The results also suggest that these microorganisms with high 19 degradative ability may be useful in seeding petroleum hydrocarbon polluted agricultural soils 20 for bioremediation. 21

KEY WORDS: Degradation potentials, soil microorganisms, agricultural soils, Ondo State,
 spectrophotometry, optical densities, bioremediation.

INTRODUCTION

Crude oil is a complex mixture of hydrocarbons composed of aliphatics, aromatics and asphaltene fractions along with nitrogen, sulphur and oxygen containing compounds (Jain *et al.*, 2005; Odeyemi, 2014). The release of this complex mixture into the environment consequent upon diverse human activities is a world- wide problem of pollution. Environmental pollution problems arising from crude oil spill is of greater dimension in the oil producing region of Nigeria due to negligence, sabotage and vandalisation of well heads and flow lines and the lack of effective regulatory laws.

32 Crude oil spill, no matter its quantity and size (minor, medium, major or disaster) may cause minor or severe damages to the environment and all forms of life dependent on the 33 environment. The release of crude oil into the environment causes enormous damages to the 34 environment due to the presence of many toxic compounds such as polycyclic aromatic 35 hydrocarbons, benzene and its substituted and cycloalkane rings in relatively high concentration 36 (Agarry *et al.*, 2012). Oil spill on land may lead to retardation of vegetation growth and cause 37 soil infertility for a long period of time (Onifade et al., 2007), causing alterations in soil 38 physicochemical and microbiological properties (Ijah and Antai, 2003; Odokuma and Dickson, 39 2003). The overall effects of crude oil on agricultural land may be due to nutritional imbalances 40 created by the spilled oil (Ijah et al., 2008; Chorom et al., 2010), causing reduced agricultural 41 yield and consequently adversely affecting the socio-economic lives of the people residing in the 42 affected area due to high unemployment and poverty rates. 43

The negative impact of crude oil pollution have necessitated the exploration of several physicochemical and biological strategies in order to return contaminated sites to their precontamination status(Jain *et al.*, 2011; Onuoha *et al.*, 2014). Biodegradation as a method of

47 petroleum hydrocarbon degradation and removal have been adjudged by several researchers as having advantage over the physicochemical techniques for the restoration of polluted sites 48 because it is inexpensive, environmentally friendly and simple (Jain et al., 2011; Odeyemi, 2014; 49 Onuoha et al., 2014). This method also known as bioremediation which involves the use of 50 microorganisms to remove or reduce the complexity of organic pollutants can occur on its own 51 without human intervention (natural attenuation or intrinsic bioremediation) or can be enhanced 52 through the addition of appropriate microbial nutrients (fertilizers) to increase bioavailability and 53 stimulate the indigenous microflora to enhance pollutant degradation within the polluted site 54 (biostimulation). Bioremediation can also be enhanced via the addition of matched strains to the 55 site or medium to enhance the resident microbes population's ability to breakdown the 56 contaminant(bioaugmentation). 57

58 The microbial biodegradation of crude oil and other aliphatic and aromatic hydrocarbons can be carried out by both autochthonous and allocthonous species that brings about 59 biotransformation, reducing the complex mixture of harmful materials to simple nutrients in soil 60 or aquatic ecosystem (Burland and Edward, 1999). Salam et al., (2011) reported that 61 authochtonous microorganisms in the polluted environment has been widely accepted as a 62 formidable approach for biodegradation and bioremediation owing to the high degree of success 63 recorded by researchers. Ikuesan, (2015) also reported that intrinsic soil microorganisms were 64 responsible for 53.08-58.74% crude oil removal by natural attenuation in soils polluted with 5% 65 of crude oil. When natural ecosystems are contaminated with petroleum hydrocarbons, the 66 indigenous microbial population are likely to contain microbial populations of different 67 taxonomic characteristics which are capable of degrading the contaminating hydrocarbon (Ijah 68 69 and Abioye, 2003). Bioremediation especially by indigenous microbial population is a very

70 attractive strategy of returning hydrocarbon polluted site to its pristine state. The process relies upon diverse microbial enzymatic activities to degrade and utilize different hydrocarbons 71 pollutants from the environment as a source carbon and energy (Das and Chandran, 2011; Nduka 72 et al., 2012). The ability to degrade petroleum hydrocarbon substrate is exhibited by a wide 73 variety of bacteria genera which are widely distributed in oil polluted as well as pristine soils 74 (Bogan et al., 2003; Hamamura et al., 2006; Cappello et al., 2007; Van Beilen and Funhoff, 75 2007; Chikere et al., 2009). Several general of fungi have also been implicated in crude oil 76 biodegradation (Odevemi, 2014) 77

78 The ubiquitous nature of microorganisms and their ease of isolation from crude oil polluted environment confirm that they play important role in crude oil degradation (Onifade, 79 2007). The success of bioremediation technologies applied to hydrocarbon polluted 80 81 environments highly depends on the biodegrading capabilities of native microbial populations or exogenous microorganisms used as inoculants. The communities which are exposed to 82 hydrocarbons become adapted exhibiting selective genetic changes (Al- Wasify and Hamed, 83 2014; Odeyemi, 2014). Although, crude oil degrading microorganisms are ubiquitously 84 distributed in soil and water environments, they may not be present in sufficient number to 85 warrant effective removal of hydrocarbon pollutant, hence, it may be necessary to bioaugment 86 the degradation process with highly efficient strain for effective crude oil removal(Joo et al., 87 2008). Therefore, the overall objective of this research is to evaluate the crude oil biodegradation 88 potentials of some intrinsic soil microorganisms from crude oil contaminated and 89 uncontaminated agricultural soil samples that may be useful in seeding polluted sites in 90 bioremediation. 91

93

MATERIALS AND METHODS

94 Sample Collection

The microbial isolates used in this study soil were collected from the stock obtained by Ikuesan, 95 (2015) from crude oil contaminated soils of Awove (5° 59' 0'' N, 4° 55' 0''E) and Orioke-96 Iwamimo (6°11' 0"N. 4°41 '0" E) and the uncontaminated soil samples of Igodan- Lisa (6°27' 97 0"N, 4° 47'0"E) and Oba-Ile (7° 16' 0"N, 5° 15' 0"E), all in Ondo State, Nigeria. Bacteria and 98 fungi isolates used for this study were Brevundimonas diminuta (1A), Pseudomonas aeruginosa 99 (1B), Klebsiella pneumoniae (1B2), Bacillus subtilis (1C), Enterobacter species (1E), Klebsiella 100 pneumoniae (2A), Pseudomonas aeruginosa (2B), Bacillus aryabhattai (2C), Klebsiella 101 pneumoniae (2E), Pseudomonas aeruginosa (2G), Klebsiella edwardsii (3A), Bacillus subtilis 102 (3C), Alcaligenes faecalis (3C2), Bacillus megaterium (4A), Klebsiella edwardsii(4C), 103 104 Klebsiella pneumoniae (4F), Cephalosporium species, Aspergillus flavus, Candida parapsilopsis, Kodamaea ohmeri, Paecilomyces variotii, Trichoderma species and Mucor mucedo 105

106 Microbiological analysis of samples

107 (i) Purity of microbial isolates and crude oil degradation

The isolates were confirmed for purity by repeated streaking on molten nutrient agar (NA) and 108 malt extract agar (MEA) respectively for bacteria and fungi. The identities of the isolates were 109 also confirmed using colonial characteristics, microscopic and standards biochemical tests using 110 Holt et al. (1994) as reference for bacteria and Onions et al. (1981) and Barnett and Hunter, 111 (1983) were used for the identification of fungi. Isolates were also confirmed to be crude oil 112 degraders by cultivation on Mineral Salt Medium (MSM). The NA plates for bacteria were 113 incubated at 35°C for 48 hours while MEA plates (for fungi) after gelling were incubated at 114 28±2°C for 7 days. The MSM used was Bushnell-Hass broth incorporated with 1.5% agar (for 115

bacteria), 1.2% agar (for fungi). Crude oil (2%) sterilized using 0.45µm Millipore filter served
as carbon source. The MS-oil medium for crude oil degrading bacteria and crude oil degrading
fungi were then incubated at 28°C±2°C respectively for 14 and 21 days.

119 (ii)Evaluation of crude oil degradation capabilities of microbial isolates: Microbial growth by utilization of crude oil as sole source of carbon and energy was determined by measurement 120 of optical density (OD) using the spectrophotometry method. The crude oil degradative ability of 121 Sixteen bacteria species belonging to six genera and seven genera of fungi were investigated 122 using the modified method of Omotayo et al., (2012). The mineral salt medium (Bushnell-Hass) 123 used for this experiment was dispensed into culture tubes in 49.5ml amount and sterilized by 124 autoclaving at 121°C for 15 minutes. These tubes were allowed to cool and 0.5ml crude oil 125 (sterilized using 0.45µm Millipore filter) which served as source of carbon and energy was added 126 127 to make a final volume of 50ml. Each isolate (0.5ml) in nutrient broth was subsequently inoculated in separate tube containing the liquid medium. Culture tubes were agitated daily to 128 provide oxygen required by the aerobes for crude oil utilization. Triplicate samples were 129 130 incubated at $28^{\circ}C \pm 2^{\circ}C$ for 15 and 21 days respectively for bacteria and fungi. The optical density (OD) of growth in culture tubes were also taken at a wavelength of 540nm (Ekpenyong 131 and Antai, 2007) at 2 days interval and observed for turbidity and shredding, scored as high 132 (+++), moderate (++), low growth (+) for turbidity and high (H), moderate (M) and low (L) for 133 the degree of shredding or breakdown of overlaid oil. Control liquid culture containing the liquid 134 MS medium and crude oil but without organism was also prepared to standardize the 135 spectrophotometer. The most efficient microbial isolates were identified base on measurement of 136 optical density and extent of breakdown of overlaid oil. 137

138 Statistical analysis

Data obtained were analyzed by one way Analysis of Variance (ANOVA) using SPSS version 18.0 (2010) while the mean were compared by Duncan's Multiple Range Test (DMRT) at 95% confidence level values. Differences were considered significant at $P \le 0.05$.

142

143 **RESULTS**

144 Crude oil degradation potentials of microbial isolates.

Tables 1(a- b) and 3 respectively show the crude oil degradative abilities of the 16 bacterial and 145 7 fungal isolates on the basis of their optical densities at 2 days interval until day 15 and 21 for 146 147 bacteria and fungi respectively. Tables 2 and 4 show the optical density, turbidity and extent of shredding of crude oil at the peak of degradation. The isolates exhibited varying degrees of crude 148 oil utilization and growth, showing extensive shredding i.e breakdown of over laid oil in tubes. 149 The results revealed that apart from Bacillus subtilis (1C) and B. subtilis (3C) which exhibited 150 151 highest potentials at day 13, all the bacterial isolates showed highest ability to utilize crude oil at day 11(tables 1a - b) while all the fungi except Aspergillus flavus were best at day 17 of growth 152 (table 2). Klebsiella edwardsii and Paecilomyces variotii exhibited the highest activity 153 154 respectively among the bacteria and fungi tested for crude oil biodegradation. Assessment of degradation potentials by measurement of optical density (OD) values at 540nm revealed OD 155 values of 0.647 and 0.575 for Klebsiella edwardsii and Pseudomonas aeruginosa respectively 156 among the bacteria. The optical density for fungi was 0.812 > 0.763 > 0.742 for *Paecilomyces* 157 variotii, Kodamaea ohmeri and Cephalosporium species respectively among the fungi. 158 Paecilomyces variotii showed leading potential to degrade crude oil from day 5 – 19 of growth. 159

161

Table 1a:

Optical Density (OD) at 540nm of bacterial isolates from Awoye and Orioke-Iwamimo crude oil contaminated soil samples (Day 1-15)

162

ORGANISM	DAY 1	DAY 3	DAY 5	DAY 7	DAY 9	DAY 11	DAY 13	DAY 15
Brevundimonas diminuta 1A	0.0003 ± 0.0006^{a}	0.0093 ± 0.0006^{ab}	0.0250 ± 0.0036^{a}	0.0927 ± 0.0012^{a}	0.2286 ± 0.0042^{b}	$0.3620 \pm 0.0020^{\circ}$	$0.3070 \pm 0.0045^{\circ}$	0.2686 ± 0.0041^{d}
Pseudomonas aeruginosa 1B	0.0010 ± 0.0010^{ab}	$0.0130 \pm 0.0026^{\circ}$	0.0393 ± 0.002^{b}	0.1400 ± 0.0035^{d}	0.3477 ± 0.0052^{d}	0.4293 ± 0.0023^{e}	0.3893 ± 0.0031 ^e	$0.3233 \pm 0.0030^{\circ}$
Klebsiella pneumoniae 1B2	0.0000 ± 0.0000^{a}	0.0083 ± 0.0006^{a}	0.0360 ± 0.0020^{b}	0.1093 ± 0.0006 ^c	0.2313 ± 0.0031 ^b	0.3856 ± 0.0045^{d}	0.2870 ± 0.0043^{b}	$0.2340 \pm 0.0010^{\circ}$
Bacillus subtilis 1C	0.0023 ± 0.0012^{b}	0.0106 ± 0.0006^{ab}	$0.0587 \pm 0.0042^{\circ}$	0.1507 ± 0.0042 ^e	$0.3673 \pm 0.0050^{\circ}$	0.3656 ± 0.0040°	0.4706 ± 0.0023^{g}	0.4136 ± 0.0035^{g}
Enterobacter sp. 1E	0.0003 ± 0.0006^{a}	0.0097 ± 0.0015^{ab}	0.0360 ± 0.0036^{b}	0.1030 ± 0.0036^{b}	0.2106 ± 0.0031^{a}	0.3873 ± 0.0041^{d}	0.3290 ± 0.0010^{d}	0.2720 ± 0.0020^{d}
Klebsiella pneumoniae 2A	$0.0010 \ \pm 0.0010^{ab}$	0.0157 ± 0.0015^{d}	0.0680 ± 0.0040^{d}	$0.1627 \pm 0.0012^{\rm f}$	$0.2920 \pm 0.0072^{\circ}$	$0.4900 \pm 0.0036^{\rm f}$	$0.3960 \pm 0.0040^{\rm f}$	0.3313 ± 0.0035^{f}
Pseudomonas aeruginosa 2B	0.0010 ± 0.0010^{ab}	0.0093 ± 0.0006^{ab}	$0.0407 \pm 0.0023^{\mathrm{b}}$	0.1063 ± 0.0012^{bc}	0.2100 ± 0.0060^{a}	0.3520 ± 0.0040^{b}	$0.2890 \pm 0.0020^{\mathrm{b}}$	0.2126 ± 0.0037^{b}
Bacillus aryabhattai 2C	0.0000 ± 0.0000^{a}	$0.0110 \pm 0.0000^{\mathrm{bc}}$	$0.0363 \pm 0.0040^{\mathrm{b}}$	0.0940 ± 0.0020^{a}	0.2183 ± 0.0040^{a}	0.3243 ± 0.0494^{a}	0.2450 ± 0.0043^{a}	0.1943 ± 0.0025^{a}

163

164 Legend: isolates 1A, 1B, 1B2, 1C and 1E were obtained from Awoye soil

isolates 2A, 2B and 2C were obtained from Orioke Iwamimo soil

169

Table 1b:

Optical Density (OD) at 540nm of bacterial isolates from Igodan -Lisa and Oba-Ile soil samples (Day 1-15)

169									
	ORGANISM	DAY 1	DAY 3	DAY 5	DAY 7	DAY 9	DAY 11	DAY 13	DAY 15
	Klebsiella pneumoniae 2E*	0.0000 ± 0.0000^{a}	0.0083 ± 0.0005^{a}	0.0313 ± 0.0011^{a}	0.1183 ± 0.0005^{ab}	0.2526 ± 0.0047^{b}	$0.3920 \pm 0.0040^{\circ}$	0.2570 ± 0.0030^{b}	0.2156 ± 0.0020^{b}
	Pseudomonas aeruginosa 2G *	0.0020 ± 0.0000^{cd}	0.0146 ± 0.0015^{b}	$0.0750 \pm 0.0030^{\rm f}$	$0.1813 \pm 0.0030^{\rm f}$	0.3786 ± 0.0061^{e}	$0.5750 \pm 0.0060^{\rm f}$	0.4876 ± 0.0005^{g}	0.4073 ± 0.0030^{e}
	Klebsiella edwardsii 3A	0.0023 ± 0.0011^{d}	0.0166 ± 0.0025^{bc}	0.0593 ± 0.0023^{d}	0.1910 ± 0.0036^{g}	$0.4086 \pm 0.0020^{\rm f}$	0.6466 ± 0.0050^{g}	$0.4696 \pm 0.0015^{\rm f}$	$0.4203 \pm 0.0011^{\rm f}$
	Bacillus subtilis 3C	0.0000 ± 0.0000^{a}	$0.0183 \pm 0.0028^{\circ}$	$0.0513 \pm 0.0025^{\circ}$	0.1370 ± 0.0030^{d}	0.2796 ± 0.0077^{d}	0.4263 ± 0.0047^{d}	$0.5010 \ \pm 0.0036^{h}$	0.4280 ± 0.0036^{g}
	Alcaligenes faecalis 3C2	0.0013 ± 0.0005^{bc}	0.0103 ± 0.0015^{a}	0.0413 ± 0.0030^{b}	0.1213 ± 0.0041^{b}	0.2386 ± 0.0041^{a}	$0.3940 \pm 0.0026^{\circ}$	0.3633 ± 0.0041^{e}	0.3360 ± 0.0036^{d}
	Bacillus megaterium 4A	0.0000 ± 0.0000^{a}	0.0100 ± 0.0026^{a}	0.0343 ± 0.0015^{a}	0.1133 ± 0.0040^{a}	0.2743 ± 0.0040^{d}	0.4353 ± 0.0035^{e}	0.3180 ± 0.0036^{d}	$0.2616 \pm 0.0040^{\circ}$
	Klebsiella edwardsii 4C	0.0000 ± 0.0000^{a}	0.0083 ± 0.0015^{a}	0.0313 ± 0.0030^{a}	$0.1303 \pm 0.0015^{\circ}$	0.2383 ± 0.0066^{a}	0.3780 ± 0.0052^{b}	$0.2836 \pm 0.0030^{\circ}$	0.2126 ± 0.0015^{b}
	Klebsiella pneumoniae 4F	0.0010 ± 0.0000^{b}	0.0140 ± 0.0010^{b}	0.0670 ± 0.0030^{e}	0.1456 ± 0.0023^{e}	$0.2623 \pm 0.0015^{\circ}$	0.3626 ± 0.0011^{a}	0.2463 ± 0.0020^{a}	0.1816 ± 0.0025^{a}

170 Legend ; isolates 3A, 3C and 3C2 were obtained from Igodan - Lisa soil

171 isolates 4A, 4C and 4F were obtained from Oba - Ile soil

172

173

*isolates were from Orioke Iwamimo crude oil contaminated sample

174 175 176	Tabl	e 2: Growth and	l extent of crud	le oil utiliz	ation by the tes	st bacteria	ll isolates at the Pe	eak (da	y 11)	1
	~	•	-					<u> </u>		

Organisms	Turbidity	Extent of Shredding	Optical density
Brevundimonas diminuta 1A	+	L	0.3620±0.0020 ^c
Pseudomonas aeruginosa1B	++	Н	0.4293±0.0023 ^e
Klebsiella pneumoniae 1B2	+	L	0.3856 ± 0.0045^{d}
Bacillus subtilis 1C	++	Н	* 0.3656±0.0040 ^c
Enterobacter specie. IE	++	М	0.3873 ± 0.0041^{d}
Klebsiella pneumoniae2A	+++	Н	0.4900±0.0036 ^f
Pseudomonas aeruginosa 2B	++	М	0.3520±0.0040 ^b
Bacillus aryabhattai 2C	+	L	0.3243±0.0043 ^a
Klebsiella pneumoniae 2E	++	М	0.3920±0.0040 ^c
Pseudomonas aeruginosa 2G	+++	Н	0.5750 ± 0.0060^{f}
Klebsiella edwardsii 3A	+++	Н	0.6466±0.0050 ^g
Bacillus subtilis 3C	++	Н	$* 0.4263 \pm 0.0047^{d}$
Alcaligenes faecalis 3C ₂	++	М	0.3940±0.0026 ^c
Bacillus megaterium 4A	++	Н	0.4353±0.0035 ^e
Klebsiella edwardsii 4C	++	М	0.3780±0.0052 ^b
Klebsiella pneumoniae 4F	++	М	0.3626±0.0011 ^a

178	Legend: Isolates 1A,1B,1B2 1C and 1E were obtained from Awoye soil
179	Isolates 2A,2B, 2C, 2E and 2G were obtained from Orioke Iwamimo soil
180	Isolates 3A,3C,3C2 were obtained from Igodan - Lisa soil
181	Isolates 4A,4C and 4F were obtained from Oba- Ile soil
182	*values obtained at day thirteen of growth
183	
184	
185	
186	

DAY 1	DAY 3	DAY 5	DAY 7	DAY 9	DAY 11	DAY 13	DAY 15	DAY 17	DAY 19	DAY 21
0.0036 ± 0.00058^{bc}	0.0143 ± 0.0015^{bc}	0.0900 ± 0.0017^{g}	$0.1750 \pm 0.0030^{\circ}$	0.2783 ± 0.0037^{g}	0.3913 ± 0.0040^{h}	0.4896 ± 0.0025^{I}	0.5933 ± 0.0012^{g}	$0.7416 \pm 0.0005^{\rm h}$	0.7096 ± 0.0021^{J}	0.6113 ± 0.0031^{J}
0.0010 ± 0.0010^{a}	0.0140 ± 0.0020^{abc}	$0.0643 \pm 0.0025^{\circ}$	0.1250 ± 0.0020^{b}	0.2300 ± 0.0030^d	$0.3003 \pm 0.0021^{\circ}$	$0.3950 \pm 0.0034^{\circ}$	$0.4650 \pm 0.0036^{\circ}$	$0.5206 \pm 0.0015^{\circ}$	$0.5210 \pm 0.000^{\circ}$	0.4473 ± 0.0025^{d}
0.0007 ± 0.0012^{a}	0.0100 ± 0.0017^{a}	0.0503 ± 0.0032^{b}	0.1076 ± 0.0006^{a}	0.1867 ± 0.0030^{a}	0.2786 ± 0.0058^{b}	0.3703 ± 0.0021^{b}	0.4320 ± 0.0017^{b}	0.4970 ± 0.0055^{b}	0.4399 ± 0.0021^{b}	0.3643 ± 0.0025^{b}
0.0043 ± 0.0012^{bc}	0.0156 ± 0.0015^{bcd}	0.0990 ± 0.0026^{h}	0.2123 ± 0.0025^{g}	0.3060 ± 0.0020^{I}	0.4210 ± 0.0000^{I}	$0.5470 \pm 0.0017^{\rm J}$	0.6456 ± 0.0032^{h}	0.7633 ±0.0040 ^I	0.6956 ± 0.0047^{1}	$0.6183 \pm 0.0035^{\text{K}}$
0.0010 ± 0.000^{a}	0.0150 ± 0.0030^{bc}	$0.1240\ \pm 0.0020^{ij}$	$0.2450\ \pm 0.0030^{h}$	$0.3706 \pm 0.0081^{\rm J}$	0.4646 ± 0.0035^{J}	0.6113 ± 0.0012^{K}	0.7096 ± 0.0025^{J}	0.8120 ± 0.0030^{J}	0.7476 ± 0.0006^{K}	0.5716 ± 0.0015^{I}
0.0013 ± 0.0012^{a}	0.0123 ± 0.0006^{abc}	$0.0696\ \pm 0.0025^d$	0.1346 ± 0.0023°	$0.2216 \pm 0.0025^{\circ}$	$0.3286 \pm 0.0015^{\circ}$	$0.4240 \pm 0.0017^{\circ}$	$0.5430 \pm 0.0017^{\circ}$	$0.6366 \pm 0.0035^{\circ}$	0.5733 ± 0.0023 ^e	$0.4793 \pm 0.0045^{\rm f}$
0.0043 ± 0.0019^{bc}	0.0126 ± 0.0012^{abc}	$0.0736 \pm 0.0006^{\circ}$	0.1696 ± 0.0425^{d}	$0.2600 \pm 0.0020^{\rm f}$	0.3326 ± 0.0031^{e}	$0.4310 \pm 0.0036^{\rm f}$	$0.5440 \pm 0.0024^{\rm e}$	0.6460 ± 0.1106^{d}	$0.5950 \pm 0.0026^{\rm f}$	$0.4700 \pm 0.0020^{\circ}$
-	DAY 1 0.0036 ± 0.00058 ^{bc} 0.0010 ± 0.0010 ^a 0.0007 ± 0.0012 ^a 0.0043 ± 0.0012 ^{bc} 0.0010 ± 0.000 ^a 0.0013 ± 0.0012 ^a	DAY 1 DAY 3 0.0036 ± 0.00058 ^{bc} 0.0143 ± 0.0015 ^{bc} 0.0010 ± 0.0010 ^a 0.0140 ± 0.0020 ^{abc} 0.0007 ± 0.0012 ^a 0.0100 ± 0.0017 ^a 0.0043 ± 0.0012 ^{bc} 0.0156 ± 0.0015 ^{bcd} 0.0010 ± 0.000 ^a 0.0150 ± 0.0030 ^{bc} 0.0013 ± 0.0012 ^{ac} 0.0123 ± 0.0006 ^{abc} 0.0043 ± 0.0019 ^{bc} 0.0126 ± 0.0012 ^{abc}	DAY 1 DAY 3 DAY 5 0.0036 ± 0.00058 ^{bc} 0.0143 ± 0.0015 ^{bc} 0.0900 ± 0.0017 ^g 0.0010 ± 0.0010 ^a 0.0140 ± 0.0020 ^{abc} 0.0643 ± 0.0025 ^c 0.0007 ± 0.0012 ^a 0.0100 ± 0.0017 ^a 0.0503 ± 0.0032 ^b 0.0043 ± 0.0012 ^{bc} 0.0156 ± 0.0015 ^{bcd} 0.0990 ± 0.0026 ^h 0.0010 ± 0.000 ^a 0.0150 ± 0.0030 ^{bc} 0.1240 ± 0.0020 ^{jj} 0.0013 ± 0.0012 ^a 0.0123 ± 0.0006 ^{abc} 0.0696 ± 0.0025 ^d 0.0043 ± 0.0019 ^{bc} 0.0126 ± 0.0012 ^{abc} 0.0736 ± 0.0006 ^e	DAY 1 DAY 3 DAY 5 DAY 7 0.0036 ± 0.00058 ^{bc} 0.0143 ± 0.0015 ^{bc} 0.0900 ± 0.0017 ^g 0.1750 ± 0.0030 ^c 0.0010 ± 0.0010 ^a 0.0140 ± 0.0020 ^{abc} 0.0643 ± 0.0025 ^c 0.1250 ± 0.0020 ^b 0.0007 ± 0.0012 ^a 0.0100 ± 0.0017 ^a 0.0503 ± 0.0032 ^b 0.1076 ± 0.0006 ^a 0.0043 ± 0.0012 ^{bc} 0.0156 ± 0.0015 ^{bcd} 0.0990 ± 0.0026 ^h 0.2123 ± 0.0025 ^g 0.0010 ± 0.000 ^a 0.0150 ± 0.0030 ^{bc} 0.1240 ± 0.0020 ^{jj} 0.2450 ± 0.0030 ^h 0.0013 ± 0.0012 ^a 0.0123 ± 0.0006 ^{abc} 0.0696 ± 0.0025 ^d 0.1346 ± 0.0023 ^c 0.0043 ± 0.0019 ^{bc} 0.0126 ± 0.0012 ^{abc} 0.0736 ± 0.0006 ^c 0.1696 ± 0.0425 ^d	DAY 1 DAY 3 DAY 5 DAY 7 DAY 9 0.0036 ± 0.00058 ^{bc} 0.0143 ± 0.0015 ^{bc} 0.0900 ± 0.0017 ^g 0.1750 ± 0.0030 ^c 0.2783 ± 0.0037 ^g 0.0010 ± 0.0010 ^a 0.0140 ± 0.0020 ^{abc} 0.0643 ± 0.0025 ^c 0.1250 ± 0.0020 ^b 0.2300 ± 0.0030 ^d 0.0007 ± 0.0012 ^a 0.0100 ± 0.0017 ^a 0.0503 ± 0.0032 ^b 0.1076 ± 0.0006 ^a 0.1867 ± 0.0030 ^a 0.0043 ± 0.0012 ^{bc} 0.0156 ± 0.0015 ^{bcd} 0.0990 ± 0.0026 ^h 0.2123 ± 0.0025 ^g 0.3606 ± 0.0020 ^l 0.0010 ± 0.000 ^a 0.0156 ± 0.0015 ^{bcd} 0.0696 ± 0.0025 ^l 0.1346 ± 0.0023 ^c 0.2216 ± 0.0025 ^c 0.0043 ± 0.0019 ^{bc} 0.0126 ± 0.0012 ^{abc} 0.0736 ± 0.0006 ^c 0.1696 ± 0.0425 ^d 0.2600 ± 0.0020 ^l	DAY 1 DAY 3 DAY 5 DAY 7 DAY 9 DAY 1 0.0036 ± 0.00058 ^{bc} 0.0143 ± 0.0015 ^{bc} 0.0900 ± 0.0017 ^g 0.1750 ± 0.0030 ^c 0.2783 ± 0.0037 ^g 0.3913 ± 0.0040 ^h 0.0010 ± 0.0010 ^a 0.0140 ± 0.0020 ^{abc} 0.0643 ± 0.0025 ^c 0.1250 ± 0.0020 ^b 0.2300 ± 0.0030 ^d 0.3003 ± 0.0021 ^c 0.0007 ± 0.0012 ^a 0.0100 ± 0.0017 ^a 0.0503 ± 0.0032 ^b 0.1076 ± 0.0006 ^a 0.1867 ± 0.0030 ^a 0.2786 ± 0.0058 ^b 0.0043 ± 0.0012 ^{bc} 0.0156 ± 0.0015 ^{bcd} 0.0990 ± 0.0026 ^h 0.2123 ± 0.0025 ^g 0.3060 ± 0.0020 ^I 0.4210 ± 0.0000 ^I 0.0010 ± 0.000 ^a 0.0150 ± 0.0030 ^{bc} 0.1240 ± 0.0020 ^{JI} 0.2450 ± 0.0030 ^b 0.376 ± 0.0081 ^J 0.4646 ± 0.0035 ^J 0.0013 ± 0.0012 ^a 0.0123 ± 0.0006 ^{abc} 0.0696 ± 0.0025 ^d 0.1346 ± 0.0025 ^d 0.2216 ± 0.0025 ^c 0.3286 ± 0.0015 ^c 0.0043 ± 0.0019 ^{bc} 0.0126 ± 0.0012 ^{abc} 0.0736 ± 0.0006 ^c 0.1696 ± 0.0425 ^d 0.2600 ± 0.0020 ^I 0.3326 ± 0.0031 ^c	DAY 1 DAY 3 DAY 5 DAY 7 DAY 9 DAY 11 DAY 13 0.0036 ± 0.00058 ^{bc} 0.0143 ± 0.0015 ^{bc} 0.0900 ± 0.0017 ^s 0.1750 ± 0.0030 ^c 0.2783 ± 0.0037 ^s 0.3913 ± 0.004 ^b 0.4896 ± 0.0025 ^l 0.0010 ± 0.0010 ^a 0.0140 ± 0.0020 ^{abc} 0.0643 ± 0.0025 ^c 0.1250 ± 0.0020 ^b 0.2300 ± 0.0030 ^d 0.3003 ± 0.0021 ^c 0.3950 ± 0.0034 ^c 0.0007 ± 0.0012 ^a 0.0100 ± 0.0017 ^a 0.0503 ± 0.0032 ^b 0.1076 ± 0.006 ^a 0.1867 ± 0.0030 ^a 0.2786 ± 0.0058 ^b 0.3703 ± 0.0021 ^b 0.00043 ± 0.0012 ^{bc} 0.0150 ± 0.0030 ^{bc} 0.02123 ± 0.0025 ^a 0.3060 ± 0.0020 ⁱ 0.3706 ± 0.0021 ⁱ 0.4240 ± 0.0017 ⁱ 0.0013 ± 0.0012 ^{bc} 0.0123 ± 0.0002 ^{bc} 0.0136 ± 0.0025 ^d 0.1346 ± 0.0023 ^c 0.2216 ± 0.0025 ^c 0.3286 ± 0.0015 ^c 0.4240 ± 0.0017 ^c 0.0043 ± 0.0019 ^{bc} 0.0126 ± 0.0012 ^{abc} 0.0736 ± 0.0002 ^c 0.1696 ± 0.0425 ^d 0.2600 ± 0.0020 ^c 0.3326 ± 0.0031 ^c 0.4310 ± 0.0036 ^c	DAY 1 DAY 3 DAY 5 DAY 7 DAY 9 DAY 11 DAY 13 DAY 13 0.0036 ± 0.00058 ^{bc} 0.0143 ± 0.0015 ^{bc} 0.0900 ± 0.0017 ^s 0.1750 ± 0.0030 ^s 0.2783 ± 0.0037 ^s 0.3913 ± 0.004 ^{bb} 0.4896 ± 0.0025 ^{lb} 0.5933 ± 0.0012 ^b 0.0010 ± 0.0010 ^a 0.0140 ± 0.0020 ^{abc} 0.643 ± 0.0025 ^{cb} 0.1250 ± 0.0020 ^b 0.2300 ± 0.0030 ^d 0.3003 ± 0.0021 ^b 0.3950 ± 0.0034 ^b 0.4650 ± 0.0036 ^b 0.0007 ± 0.012 ^a 0.0100 ± 0.0017 ^a 0.0503 ± 0.0025 ^b 0.1076 ± 0.006 ^c 0.1867 ± 0.0030 ^a 0.2786 ± 0.0058 ^b 0.3703 ± 0.001 ^b 0.4320 ± 0.0017 ^b 0.0014 ± 0.0002 ^a 0.0156 ± 0.0015 ^{bcd} 0.0213 ± 0.0026 ^{bc} 0.2123 ± 0.0025 ^c 0.3600 ± 0.0021 ^c 0.4210 ± 0.0001 ^c 0.4545 ± 0.0036 ^b 0.0010 ± 0.000 ^a 0.0150 ± 0.0030 ^{bc} 0.1240 ± 0.0020 ^d 0.2165 ± 0.0036 ^b 0.3706 ± 0.0081 ^d 0.4240 ± 0.001 ^c 0.796 ± 0.0025 ^d 0.0013 ± 0.0019 ^{bc} 0.0126 ± 0.0012 ^{abc} 0.0696 ± 0.0025 ^d 0.1696 ± 0.0025 ^d 0.2600 ± 0.0026 ^d 0.3326 ± 0.0015 ^c 0.4310 ± 0.0016 ^c 0.5430 ± 0.0016 ^c 0.0043 ± 0.0019 ^{bc} 0.0	DAY 1DAY 3DAY 5DAY 7DAY 9DAY 11DAY 13DAY 15DAY 15DAY 15DAY 16DAY 16 <td>DAY1DAY3DAY5DAY7DAY9DAY1DAY13DAY15DAY15DAY17DAY16DAY170.003 ± 0.005%0.014 ± 0.001%0.090 ± 0.001?0.1750 ± 0.0030.2783 ± 0.003?0.391 ± 0.0040.4896 ± 0.00250.593 ± 0.0120.716 ± 0.0050.7096 ± 0.00210.001 ± 0.001%0.010 ± 0.001%0.663 ± 0.002%0.1250 ± 0.002%0.230 ± 0.00340.303 ± 0.0020.3950 ± 0.00340.4550 ± 0.00360.5260 ± 0.0050.520 ± 0.0050.0007 ± 0.001%0.010 ± 0.001%0.503 ± 0.002%0.125 ± 0.002%0.1867 ± 0.00360.2786 ± 0.005%0.470 ± 0.001%0.4500 ± 0.001%<</td>	DAY1DAY3DAY5DAY7DAY9DAY1DAY13DAY15DAY15DAY17DAY16DAY170.003 ± 0.005%0.014 ± 0.001%0.090 ± 0.001?0.1750 ± 0.0030.2783 ± 0.003?0.391 ± 0.0040.4896 ± 0.00250.593 ± 0.0120.716 ± 0.0050.7096 ± 0.00210.001 ± 0.001%0.010 ± 0.001%0.663 ± 0.002%0.1250 ± 0.002%0.230 ± 0.00340.303 ± 0.0020.3950 ± 0.00340.4550 ± 0.00360.5260 ± 0.0050.520 ± 0.0050.0007 ± 0.001%0.010 ± 0.001%0.503 ± 0.002%0.125 ± 0.002%0.1867 ± 0.00360.2786 ± 0.005%0.470 ± 0.001%0.4500 ± 0.001%<

400		$(\mathbf{O}\mathbf{D})$ $(\mathbf{E}\mathbf{I}0)$		1 • 1 / • /		•• •		1 1)
189	Table 3: Optical Density	(OD) at 540nm	of fungal isolates from	i crude oil contaminate	ed and uncontaminated	soil samples	(Day	y 1-21)

- **Legend:** isolate F1; fungal isolate from Awoye isolate F2A and F2B; fungal isolates from Orioke Iwamimo isolate F3A and F3B; fungal isolates from Igodan- Lisa
- isolate F4A and F4B; fungal isolates from Oba- Ile

Table 4: Growth and extent of crude oil utilization by the test fungal isolates at the Peak (day 17)

208

Organism	Turbidity	Extent of shredding	Optical density
Cephalosporium specie	+++	Н	0.7416±0.0005 ^b
Aspergillus flavus	++	Н	*0.5210±0.0015 ^c
Candida parapsilopsis	++	М	0.4970 ± 0.0055^{b}
Kodamea ohmeri	+++	Н	0.7633 ± 0.0040^{I}
Paecilomyces variotii	+++	Н	0.8120±0.0030 ^J
Trichoderma specie	++	Н	0.6366±0.0035 ^e
Mucor mucedo	++	Н	0.6460 ± 0.1106^{d}

209

210 Legend: isolate F1; fungal isolate from Awoye
211 isolate F2A and F2B; fungal isolates from 0

- isolate F2A and F2B; fungal isolates from Orioke Iwamimo
- isolate F3A and F3B; fungal isolates from Igodan- Lisa
 isolate F4A and F4B; fungal isolates from Oba- Ile
- *value obtained at day 10 of growth
- 214*value obtained at day 19 of growth
- 215

216 The highest degradative ability was exhibited by *Klebsiella edwardsii* at OD of 0.647 followed

by *Pseudomonas aeruginosa* isolated from Orioke-Iwamimo sample at OD of 0.575.

218 DISCUSSION AND CONCLUSION

In this study, crude oil degradation potentials of Sixteen (16) bacteria species and Seven (7) fungal isolates indigenous to crude oil contaminated and uncontaminated soil were evaluated by measurement of optical density, visual turbidity and extent of breakdown of overlaid oil in tubes. The results revealed that different genera and types of microorganisms are involved in the degradation of crude oil. Many of these isolates were among those identified by several researchers like Ijah and Abioye (2003), Ajayi *et al.*, (2008), Das and Chandran (2011),

225 Omotayo et al., (2012). The findings in this study revealed that these microbes exhibited 226 different responses and potentials to breakdown crude oil and utilize as source of carbon and energy. The report of this study is in agreement with the report of Nduka et al., (2012) that 227 microorganisms have enzyme systems that degrade and utilize different hydrocarbons as source 228 of carbon and energy. This variation in crude oil utilization is reflected in the differences in 229 optical densities. The differences in optical density is suggestive that the pattern of microbial 230 growth and crude oil utilization differ from organism to organism. The different degrees of 231 response of the tested microbes to crude oil degradation could be attributed to the inherent 232 genetic abilities in utilizing hydrocarbon as substrates. This differences in response implies that 233 different microorganisms have different rates of crude oil utilization. The assertion is in line with 234 the report of Nwaogu et al., (2008) that microorganisms have different rates at which they utilize 235 236 and degrade hydrocarbons in the soil or water. Magid et al., (2008) and Onuoha et al., (2014) suggested that the differences in the rate of hydrocarbon degradation may be due to natural 237 ability of the microbes in hydrocarbon utilization. The bacterial isolates exhibited their highest 238 239 degradative abilities at days 11 and 13 while the fungal isolates showed highest ability based on optical density at days 17 and 19 of growth respectively, suggesting that crude oil utilization by 240 fungi was initially slower than bacteria. The progressive increase in optical density of the isolates 241 and the turbidity in culture tubes are suggestive of microbial growth and accumulation of 242 microbial biomass which result from degradation and utilization of crude oil as source of carbon 243 and energy. Highest degradative ability was shown by Klebsiella edwardsii (OD 0.647) followed 244 by Pseudomonas aeruginosa (OD 0.575) and Klebsiella pneumoniae(OD 0.4900). Paecilomyces 245 variotii showed the highest degradative ability among the fungi. The higher utilization of crude 246 247 oil by these microbes as sole source of carbon and energy may be attributed to the presence of

efficient hydrocarbon degradative enzymes system and the presence of catabolic genes involved in petroleum hydrocarbon degradation in the microorganisms (Kyung-Hwa *et al.*, 2006; Magid *et al.*, 2008; Abioye *et al.*, 2010). Atlas and Bartha (1981); Al-Wasify and Hamed (2014) ascribed that these microorganisms are taken as evidence that they are the most active degraders in the environment. The results also suggest that these microorganisms with high degradative ability may be useful in seeding oil polluted soils for bioremediation.

The optical densities of 0.647 and 0.575 demonstrated by Klebsiella edwardsii and 254 Pseudomonas aeruginosa among bacteria and 0.812, 0.763 and 0.74 respectively by 255 Paecilomyces variotii, Kodamaea ohmeri and Cephlosporium spp. among fungi suggests that 256 these organisms have better potentials for crude oil degradation. The result of this study also 257 revealed that Pseudomonas aeruginosa (1B), Bacillus subtilis (1C and 3C) and B. 258 259 megaterium(4A), A. Flavus, Trichoderma species, and Mucor mucedo which showed moderate growth (table 2 and 4) also exhibited high shredding of overlaid oil. This implies that the ability 260 of microorganisms to produce turbidity does not necessarily suggest efficient hydrocarbon 261 262 degradation potentials.

263

264

265 **Recommendation**

266 The efficiency of indigenous microbial population in crude oil degradation differ. Therefore,

these microbes with extensive breakdown of oil in tubes can be applied singly or as a consortium

268 for the degradation of crude oil. It is also recommended that these isolates be tested for

269 hydrocarbon specificities since crude oil is a complex mixture of hydrocarbons. Finally, future

270 research should study the effects of varying concentration of crude oil on the growth of these

271 microbes since the quantity and size of crude oil spill to be degraded vary from minor to medium272 to disaster.

273	REFERENCES
274	Abioye PO, Abdul-Aziz A, Agamuthu P (2010) Enhanced biodegradation of used engine oil in
275	soil amended with organic wastes. Water, Air, Soil Pollution, 209:173-179.
276	Agarry SE, Ogunleye O (2012) Factorial designs application to study enhanced bioremediation
277	of soil artificially contaminated with weathered Bonny light crude oil through
278	biostimulation and bioaugmentation stategy. Journal of Environmental Protection 3:
279	748-759
280	Ajayi, A. O., S. A. Balogun and K. Adegbehingbe (2008) Microorganisms in the crude oil-
281	producing areas of Ondo State, Nigeria. Scientific Research and Essay 3 (5):174-179
282	Al- Wasify, R. S. and S. R. Hamed (2014).Bacterial biodegradation of crude oil using isolates.
283	International Journal of Bacteriology. 2014: 1-8
284	Atlas RM (1981) Microbial degradation of petroleum hydrocarbons: An environmental
285	perspective. Microbiol. Rev., 45:180 - 209
286	Barnett HL, Hunter BB (1983) Illustrated Genera of Imperfectii, 3rd ed. Bugress Publishing
287	Company, Mineapolis, 126-130
288	Bogan BW, Larner LM, Sullivan Beilan WR, Paterek RJ (2003) Degradation of straight chain
289	aliphatic and high molecular weight polycyclic aromatic hydrocarbons by strains
290	of Mycobacterium austroafricanum. Journal of Applied Microbiology, 94: 230 -
291	239

292	Burland SM, Edwards EA (1999) Anaerobic benzene biodegradation linked to nitrate reduction.
293	Appl. Environ. Microbiol. 65:529-533

Cappello S, Caneso G, Zampino D, Monticelli L, Maimone G, Dnearo R, Tripod B, Trousseiller,
 M, Yakimov N. and L. Giuliano (2007). Microbial community dynamics during
 assays of harbour oil spill bioremediation: A microscale stimulation study.
 Journal of Applied Microbiology. 102: 184 -194.

Chikere CB, Okpokwasili GC. Chikere BO (2009) Bacterial diversity in a tropical crude oil polluted soil undergoing bioremediation. *African Journal of Biotechnology*. 8 (II):
 2535 - 2540.

301 Chorom M, Shariffi HS, Mutamedi H (2010) Bioremediation of a crude – oil

302 polluted soil by application of fertilizers.*Iran Journal of Health Science*

303 *Engineerin* .7 (4): 319 -326

- 304 Das N, Chandran P (2011) Microbial degradation of petroleum hydrocarbon contaminants:.An
 305 overview, *Biotechnol. Res. Inter.*, 1-13
- 306 Ekpenyong MG, Antai SP (2007) Influence of pH on cadmium toxicity to *Bacillus* species (02
 307 and 12) during biodegradation of crude oil. *Inter. J. Biol. Chem.*, 1 (1):29-37

Hamamura, N., S. H. Olson, D M. Ward and W. P. Inskeep (2006) Microbial population
 dynamics associated with crude oil biodegradation in diverse soils. *Applied Environmental Microbiology*. 72: 6316 – 6324.

Holt JG, Krieg NR, Sneath PH, Stanley JJ, Williams ST (1994) Bergy's manual of determinative
bacteriology. Williams and Wilkins Company, Baltimore

313	Ijah UJJ, Abioye OP (2003) Assessment of physicochemical and microbiological properties of
314	soil 30 months after kerosene spill. J. Res.Sci. Mgt. 1(1):24-30.
315	Ijah UJJ, Antai SP (2003) Removal of Nigerian light crude oil in soil over a 12 months period.
316	International Biodeterioration and Biodegradation 51:93 - 99.
317	Ijah UJJ. Safiyanu H, Abioye OP (2008) Comparative study of biodegradation of crude oil in
318	soil Amended with chicken droppings and NPK fertilizer. Science World Journal
319	3 (2): 63 - 67.
320	Ikuesan FA.(2015) Bioremediation of selected agricultural soil samples contaminated
321	with crude oil in Ondo State, Nigeria. Ph. D. Thesis, The Federal University of
322	Technology, Akure, Nigeria
323	Jain RK, Kapur M, Labana S, Lal S, Sarma PM, Bhattacharya D, Thakur IS (2005) Microbial
324	diversity: application of microorganisms for bioremediation of xenobiotics. Curr.
325	Sci.,89:101-102
326	Jain PK, Gupta VK, Gaur RK, Lowry M, Jaroli DP, Chauhan UK (2011) Bioremediation of
327	petroleum oil contaminated soil and Water. Res. J. Environ. Toxicol 5(1): 1-26
328	Joo, H., P. M. Ndegwa, M. Shoda and Chae- Gun Phae (2008) Bioremediation of oil-
329	contaminated soil using Candida catenulate. Environmental Pollution, 156: 891 - 896
330	Kyung-Hwa, B, Byung- Dae Y, Hee- Mock O, Hee-Sik K, In-Sook L (2006) Biodegradation of
331	aliphatic and aromatic hydrocarbons by Nocardia sp. H17-1. Geo-Microbiol. J.,23(5):
332	253-259
333	Magid Z, Mnouchehr V, Sussan KA (2008) Naphthalene metabolism in Norcardia

334	Otitidis cavirum stream. TSHI, A moderately thermophilic
335	Microorganism. Chemosphere ,72: 905-90
336	Nduka JK, Umeh LN, Okerulu IO, Umedum LN, Okoye HN (2012) Utilization of different
337	microbes in bioremediation of hydrocarbon contaminated soils stimulated with
338	inorganic and organic fertilizers. Journal of Petroleum and Environmental
339	<i>Biotechnology</i> , 3 (2): 1 - 9
340	Nwaogu LA, Onyeze GOC, Nwabueze RN (2008) Degradtion of diesel oil
341	in a polluted soil using Bacillus subtilis. African Journal of Biotechnology,
342	7 (12): 1939 - 1943.
343	Odeyemi O (2014) Two centuries of oil and gas
344	(1860-2060) www.universalacacdemicservices.org
345	Odokuma LO, Dickson AA (2003). Bioremediation of crude oil polluted tropical mangrove
346	environment. J. Appl. Sci. Environ. Mgt. 7(2): 23-29.
347	Omotayo AE, Ojo OY, Amund OO (2012) Crude oil degradation by microorganisms in soil
348	composts. Res. J. Microbiol. 7(4):209-218
349	Onifade AK, Abubakar FA, Ekundayo FO (2007). Bioremediation of crude oil polluted soil in
350	the Niger Delta Area of Nigeria using enhanced natural attenuation. Res. J. Appl. Sci
351	2(4): 498 – 504.
352	Onions AHS, Allsopp D, Eggins HOW (1981) Smiths Introduction to Industrial Mycology,7th
353	ed. Edward Arnold (Publishers) Ltd, London. WCIB.3DQ
354	Onuoha SC, Chukwura EI, Fatokun K (2014) Stimulated biodegradation of spent lubricating
355	motor oil in soil amended with animal droppings. Amer. J. Bio. Sci. 2(1): 19-27
	18

356	Salam LB, Obayori OS Akashoro OS, Okogie GO (2011). Biodegradation of Bonny light crude
357	oil by Bacteria isolated from contaminated soil. Int. J. Agric. Biol. 13: 245-250.
358	Van Beilen JB, Funhoff EG (2007). Alkane hydroxylases involved in microbial degradation.

359

Applied Microbiology and Biotechnology. 74: 13 - 21