1 SDI Paper Template Version 1.6 Date 11.10.2012 **REGULATED** EFFECTS OF CAPSICUM FRUTESCENS SUPPLEMENTED 2 DIET (C.F.S.D) ON FASTING BLOOD GLUCOSE LEVEL AND 3 **BIOCHEMICAL PARAMETERS IN ALLOXAN INDUCED DIABETIC** 4 WISTAR RATS. 5 Ojieh, E. Anthony, ¹ Adegor, C. Ese, ², Ewhre O. Lawrence³ 6 ^{1,2}Department of Physiology, Faculty of Basic Medical Sciences, 7 Delta State University, Abraka, Nigeria. 8 ³Department of Pharmacology and Therapeutics, Faculty of Basic 9 Medical Sciences, Delta State University, Abraka, Nigeria. 10

1<u>5</u> 13 14

14 **ABSTRACT** 15

Aim of the study: Assessment of the effects of *Capsicum frutescens* supplemented diet (C.F.S.D) on <u>fasting blood glucose level and biochemical parameters in alloxan induced</u> diabetic Wistar rats.

Experimental Design: <u>130 ~ 150g healthy</u> <u>Ef</u>orty male Wistar rats <u>weighing between 130 to</u> <u>150g wewe</u>re divided into four groups <u>as following</u>:- Group 1 served as a normal control and received normal feed.-<u>__</u>Group 2 (Diabetic control) received normal feed<u>_</u>. Group 3 (Diabetic test 1) received normal feed + 1% C.F. <u>_</u>Group 4 (Diabetic test 2) received normal feed + 2% C.F.

Place and Duration of study: This study was carried out in the department of Physiology, Faculty of Basic Medical Sciences, Delta State University, Abraka and the feeding lasted for three weeks. At the end of the experiments, the animals were sacrificed, blood samples were collected, and <u>then</u> the serum was further subjected to biochemical analysis using biochemical analyzer (Reflotron Plus). Indexes investigated include;<u>ing:</u> AST, ALT, ALP, GGT, Creatinine, Uric acid, total cholesterol, high density lipoprotein cholesterol (HDL-c) and fasting blood sugar level.

Results: <u>Serum</u>-AST, ALT, ALP, GGT, Creatinine, Uric acid, total cholesterol, and fasting blood sugar level <u>in Serum</u> were increased, <u>however</u>-while the serum high density lipoprotein cholesterol (HDL-c) <u>of serum</u> was decreased in diabetic control (group 2), when compared with normal control (group 1). The <u>incorporation of administered with</u> *Capsicum frutescens* in the diet at 1% and 2 % doses significantly (P<0.05) reduced the fasting blood glucose level, as well as the serum level of AST, ALT, ALP, GGT, Creatinine, Uric acid, total cholesterol, <u>when</u> <u>compared</u> with diabetic control (<u>P<0.05</u>). <u>Serum</u>-HDL<u>-c</u> was <u>also</u>

* Tel.: +xx xx 265xxxxx; fax: +xx aa 462xxxxx.

E-mail address: xyz@abc.com.

significantly increased (P<0.05) (Table 1) when compared with diabetic control (Table 1). Decrease in body weight in diabetic control group and increased in body weight of 1% and 2% C.F.S.D groups were also observed (Table 2).

Conclusion: The observed improvement in the biochemical parameters of alloxan induced oxidative stressed Wistar rats by 1% and 2% Capsicum frutescens supplemented diet suggests Capsicum frutescens to possess, cardio-protective and anti-diabetic properties. This could be attributed to its Phytochemical constituents.

Recommendation: The incorporation of Capsicum frutescens in the diet of patients susceptible to oxidative imbalance such as diabetes mellitus is worthy of recommendation.

16

20

21

24 25

- E-mail: tonniojie@yahoo.com, tonniojie@gmail.com 17
- Tel: +234-803700697 18
- Postal address: P.O Box 91, Abraka, Delta State, Nigeria. 19

Keywords: Capsicum Frutescens, Fasting Blood Glucose, Liver enzymes, Capsaicin, Thermogenesis. 22 23

- **1. INTRODUCTION**
- 26 27 Diabetes mellitus (DM) has been described as a multifactorial disease that is characterized 28 by hyperglycemia and lipoprotein disorders [1], increased basal metabolic rate [2], defect in 29 reactive oxygen species scavenging enzymes, as well as altered intermediary metabolism of 30 major food substances [2]. Diabetes is a major degenerative disease in the world today [3], 31 affecting at least 15 million people and having complications which include hypertension, 32 atherosclerosis and microcirculatory disorders. 33 At least 80% of Africans rely on plant medicine for their healthcare [4]. Today, medicinal 34 plants are increasingly being used in most parts of the world as: hypolipidemic [5];
- antihypertensive [6]; treatment for skin diseases [7] and hypoglycemic [8]. 35
- For the past 25 years, epidemiological studies have revealed a diminished risk of chronic 36
- 37 diseases in populations consuming diets fortified with fruits and vegetables, [9]. It has been
- suggested that antioxidants found in large quantities in fruits and vegetables may be 38
- 39 responsible for this protective effect, [10]. In the past three decades, it has been
- 40 experimentally documented that several common spices can also exert health beneficial
- 41 physiological effects, [11; 12]. These physiological effects of spices in most instances have
- 42 been traced to the bioactive chemicals in them. Among these physiological effects of spices

* Tel.: +xx xx 265xxxxx; fax: +xx aa 462xxxxx. E-mail address: xyz@abc.com.

Comment [微软用户1]: How did the authors conclude the conclusion? Please revise the conclusion in accordance with the results.

Comment [微软用户2]: Revise.

43	documented are -hypolipidemic and antioxidant properties with beneficial health implications,	
44	[13].	Comment [微软用户3]: ? ?
45	One of such phytomedicine is Capsicum frutescens, a short lived evergreen shrub that	
46	usually grows from 1 to 1.5m in height and 1 to 3cm in basal stem diameter. It is commonly	
47	recognized by its fruit, the large red, orange, or yellow chili peppers that the plant produces.	
48	Capsicum frutescens fruits grow as long pods, and when ripe they develop their	
49	characteristic warm coloring. Its species likely originated in south or Central America. It	
50	spread quickly throughout the subtropical regions in the area and still grows wild today. The	
51	plant grows in tropical climates, because it needs a warm, humid climate to survive. It had	
52	been reportedly used in the treatment of various ailments such as dDiabetes, bBlood	
53	pressure [high/ low], <u>b</u> Bronchitis, <u>b</u> Burning feet, <u>a</u> Arthritis, among others,<u>etc</u> [14].	
54	A accumulating evidencesnumber of studies have shown multiple pharmacological effects of	
55	Capsicum on a variety of physiological systems such as cardiovascular system, gastro-	
56	intestinal tract, metabolic rate, and pain relief, [15].	
57	Previous research had shown the Chemo-Protective effect of spices among which are;	
58	Turmeric, Capsicum frutescens, Cloves and Cardamom on Correcting Iron Overload-	
59	Induced Liver Injury, Oxidative Stress and Serum Lipid Profile in Rat Model. The	
60	incorporation of chili (Capsicum frutescens) in the diet at 2 % significantly restored the	
61	enzyme activities of the liver AST, ALT, and ALP to normal level. The mean values of lipid	
62	profile, the MDA and serum total bilirubin were also reduced, [16].	
63	The <u>bio</u> active <u>ingredients substance in</u> <i>Capsicum frutescens</i> that gives the hot and spicy	
64	flavor was identified as capsaicin, [15]. Red chili (RC) (Capsicum frutescens) is widely used	
65	as a spice for flavoring foods, particularly in South- East Asian and Latin-American countries.	
66	Several studies indicate t hat capsaicin (red pepper) is an appetite suppressant <u>which</u> that	
67	can slightly increase metabolism. Spicing up one's foods with capsaicin-containing spices	
68	and using red pepper as a condiment can aid in increasing the rate of fat burning or	
69	thermogenesis. In an article published in the British Journal of Nutrition, Yoshioka et al	
70	(2001) ¹⁷ concluded that the consumption of red pepper and caffeine can induce a	Comment [微软用户4]: ??
71	considerable change in energy balance when individuals are given free access to foods.	
72	Pungent capsaicinoids (capsaicin, dihydrocapsaincin), antioxidant vitamins (ascorbic acid,	
73	vitamin E), carotenoids (β -carotene, β - cryptoxanthine) and several organic acids and	
74	minerals are the major active ingredients of Capsicum frutescens, [18]. Capsaicin (8-methyl-	
75	N-vanillyl-6-nonenamide) is an irritant for mammals, including humans, and produces a	
76	sensation of burning in any tissue with which it comes into contact. Capsaicin and several	
77	related compounds are called capsaicinoids and are produced as a secondary metabolite	

78	probably as deterrents against certain herbivores and fungi. The burning and painful		
79	sensations associated with capsaicin result from its chemical interaction with sensory		
80	neurons. Capsaicin, as a member of the vanilloid family, binds to a receptor called the		
81	vanilloid receptor subtype 1 (VR1), [19].		
82	Diabetes mellitus which arise as a result of insulin insufficiency is associated with altered		
83	activity of various biochemical parameters such as alkaline phosphatase (ALP), alanine		
84	transaminase (ALT), aspertate transaminase (AST), serum electrolyte, lipid profile, among		
85	other biochemical parameters, [20; 21].		
86	Because the liver plays a critical role in the maintenance of carbohydrate		
87	homeostasis, glucoregulation, and insulin degradation, it is not surprising that its functions	C	
88	may be affected as a result of diabetes mellitus.	1	Comment [微软用户5]: Why?
89	However, there are not enough scientific information on the effects of <i>Capsicum</i>		
90 01	rrutescens supplemented diet on biochemical parameters of alloxan induced diabetic wistar	C	
91	rais is lacking. It is against this background that this sludy was designed.	1	Comment [微软用尸6]: It is very difficult to understand.
92 93	2. MATERIAL AND METHODS		
94			
95	Chemicals and equipments:		
96 07	All chemical used in the research were procured as follows:	C	
97	Red Chill (Capsicum Indescens), purchased from Abraka market in Ethiope East local		Formatted: Normal, Left, Don't adjust space between Latin and Asian text, Don't adjust
98	government area, Delta State, which was authenticated by Dr. (Mrs). N.E. Edema in the	l	space between Asian text and numbers
100	department of Boldny, Faculty of Science, Delta State Oniversity, Abraka. It was then all-		
100	when the blonded with the aid of a grinding machine and stored in an airtight container for		
102	was then blehold with the aid of a ghilding machine and stored in an antight container for		
102	CAS:2244-11-3 Cotton wool Hand doves Dissecting kit Centrifuge Pipettes Growers		
104	mash Beakers, Electronic weighing balance. Svringes and needles. Marker pen, Opcall		
105	Bedii Glucometer and Beflorton plus ^(R) reflectance photometer (Boch Diagnostic GmbH D-		
106 L			Comment [微软田白7]: Provide the reagent
107	COLLECTION AND IDENTIFICATION OF CAPSICUM FRUTESCENS		Formatted: Font: (Default) Arial, Bold
108	The plant <i>Capsicum frutescens fruit</i> was purchased from Abraka market in Ethiope East	C	
109	Local Government of Delta sate were most people usually get it from and was authenticated		
110	by Dr. (Mrs). N.E. Edema in the department of Botany, Faculty of Science, Delta State		
111	University, Abraka. It was then air-dried at room temperature (22±1°C) for 14 days until a		
112	constant weight was attained and was then blended with the aid of a grinding machine and		
113	stored in an airtight container for use in the experiment.		

114			Formatted: Font: (Default) Arial, Bold, Do not check spelling or grammar
116			Formatted: Font: (Default) Arial, Bold, Do not check spelling or grammar
117	FRESH AND DRIED CAPISCUM FRUTESCENS FRUITS		Formatted: Font: Arial Narrow, 9 pt
118	A		Formatted: Font: Arial Narrow, 9 pt, (Asian)
119			Chinese (Simplified, PRC)
120	PREPARATION OF PEPPER SUPLEMENTED DIET	×	Formatted: Font: Arial Narrow
121		1.1	Formatted: Font: 9 nt
122	1% and 2% Capsicum frutescence supplemented diet were prepared weighing 1g and 2g of		Formatted: Indent: First line: 0.49 ch
123	powdered Capsicum frutescence and mixing them with 99g and 98g of animal feed		
124	(growers mash) respectively.		
125	COMPOSITION OF THE GROWERS MARSH		
126	Protein-19.0%		
127	Fat -2.85%		
128	Fibre – 6.00%		
129	Calcium – 1.00%		
130	Available phosphate – 0.45%		
131	Energy – 2875 KGC		
132	(Animal Care Services Konsult (NIG) LTD).		
133			
134	HANDLING OF EXPERIMENTAL ANIMALS		
135	Forty (40) healthy Male Wister rats weighing 130-150g were procured from the International		
136	institute of tropical agriculture, (IITA), Ibadan Nigeria. They were acclimatized for 14-days at		

137 in the animal house unit in the Department of Pharmacology, Faculty of Basic Medical

Science, Delta State University Abraka before commencement of the experiment. The rats 138 139 were kept in well ventilated wooden cages. They were exposed to 12 hours of natural 140 daylight and darkness and fed standard rat feed and water ad libitum. Procedures followed in raising the experimental animals were in accordance with the ethical standards of the 141 Institutional Animals Ethics Committee (IAEC). And permission for the use of animals and 142 animal protocol was obtained from the Research Ethics Committee of Delta State University, 143 144 Abraka. 145 Induction of diabetes Thirty (30) animals were food fasted deprived for 24hours (but with free access to water) and 146 147 later then the diabetic model was reproduced by injected rendered diabetic by a single 148 intraperitonial dose of alloxan monohydrate (150mg/kg) prepared in stock of 1500mg/50ml 149 and a concentration of 30mg/ml. After tThree days after induction of diabetes, rats with 150 fasting blood glucose concentration above 200mg/dl were confirmed diabetic-and were 151 randomly selected for the study. Diabetic state was maintained for three days for well 152 establishment of diabetes.

153 EXPERIMENTAL PROCEDURE

 154
 Rats with evidence of diabetes_Diabetes_mellitus_rats
 were randomizedly allotted_-into 3

 155
 different groups_and non diabetic rats as normal control (Group 1) as following:-alongside

- 156 with non diabetic rats as follows;
- 157 Group 1: Non diabetic rats received normal diet (normal control)
- 158 Group 2: Diabetic rats received normal diet (diabetic control)
- 159 **Group 3**: Diabetic rats received 1% *Capsicum frutescens* supplemented diet (test 1 group)
- 160 **Group 4**: diabetic rats received 2% *Capsicum frutescens* supplemented diet (test 2 group).
- 161

162 Animal feed was formulated with 1% and 2% *Capsicum frutescens* and treatment was done 163 twice daily for twenty one days. Rats' initial body weight prior to commencement of treatment 164 was recorded. Inclusion criteria in this study were; non diabetic that were not induced with 165 diabetes (which served as positive control), and animals with evidence of diabetes. 166 Exclusion criteria include those animals that died during the maintenance of diabetes. Thus

higher numbers of animals were allocated to groups 1, 2 and 3.

168 BLOOD COLLECTION AND BIOCHEMICAL ASSAY

169 After twenty one days of treatment, all overnight fasted rats were anaesthetized using

170 chloroform and then sacrificed. Blood samples collected by cardiac puncture were delivered

- 171 into lithium heparin bottles. The tubes were then centrifuged at 4000rpm for ten minutes to
- 172 obtain clear serum which were later subjected to biochemical evaluation for ALT, AST, ALP,

173 GGT, URIC ACID, CREATININE, HDL, and TOTAL CHOLESTEROL using Reflotron plus174 kit.

Fasting blood glucose level was determined with the aid of glucose analyzer machine
(Oncall- Redii glucometer) by collecting blood samples from tail vains of overnight fasted
animals. Values were expressed in mg/dl.

178 STATISTICAL ANALYSIS

The result of this study were expressed as mean \pm SEM, and were analyzed by one way analyses of variance (ANOVA) using statistical package for social science (SPSS, 16). Difference between the means were tested with post Hoc- Tukey's test for multiple comparison and significance was considered when p< 0.05. Student's dependent t-test was used to analyze the significant difference between body weight before treatment and after treatment.

185 186 **3**

3. RESULTS AND DISCUSSION

187	Table 1 above depicts the effects of Capsicum frutescens on biochemical
188	parameters of alloxan induced diabetic Wistar rats.
189	From the result of serum creatinine, group 2 (0.94 \pm 0.17) significantly increased
190	serum creatinine level when compared with group 1 (0.42 \pm 0.03). Group 3 (0.40 \pm 0.3) and
191	group 4 (0.54 ± 0.07) significantly reduced (P<0.05) serum creatinine level when compared
192	with group 2.
193	From the result of serum uric acid, group 2 (7.87 \pm 0.85) significantly increased
194	serum uric acid level when compared with group 1(5.49 \pm 0.2). Group 3 (5.03 \pm 0.2)
195	significantly reduced serum uric acid level when compared with group 2. Group 4 (6.3 \pm 0.7)
196	reduced serum creatinine level when compared with group 1, but did not attain statistical
197	significance (P>0.05).
198	From the result of serum gama glutamyl transferase (GGT), group 2 (275.0 \pm 10.7)
199	significantly (P<0.05) increased serum GGT level when compared with group 1 (223.4 \pm
200	7.5). Groups 3 (221.8 \pm 6.4) and 4 (224.8 \pm 6.0) significantly (P<0.05) reduced serum GGT
201	level when compared with group 2.
202	From the result of serum aspertate transaminase (AST) group 2(325.2 \pm 26.1)
203	increased serum AST level but did not attain statistical significant (P>0.05) when compared
204	with group 1 (278.4 ± 19.6). However, group 3 (247.2 ± 10.8) significantly (P=0.030) reduced
205	serum AST level when compared with group 2. Group 4 (251.8 \pm 12.3) reduced the serum
206	level of AST when compared with group 2, but was not statistically significant (P>0.05).
207	From the result of serum alkaline phosphatase (ALP), there was an overall
208	significant difference (P<0.05) as determined by one way ANOVA. However Turkey's post

209	hoc test did not reveal any significant difference between groups. However, there was an
210	increase in group 2 (316.4 \pm 37.7) serum ALP level when compared to other groups. Group
211	1 (327.6 \pm 27.6) was increased among other groups while group 4 (243.8 \pm 4.53) reduced its
212	level and group 3 (327.6 ± 27.6) increased its level its level.
213	From the result of serum alanine transaminase (ALT), a significant difference was
214	observed as determined by one way ANOVA. Turkey's post hoc test did not reveal any
215	<u>statistical significant. However, serum ALT mean value was highest in group 2 (128.2 ±</u>
216	32.97) followed by group 3(98.98 \pm 8.74), next to group 4 (87.86 \pm 8.54) and least in group 1
217	<u>(61.7 ± 1.03).</u>
218	From the result of serum high density lipoprotein cholesterol (HDL) there was no
219	significant difference as determined by one way analyses of variance (ANOVA), (P>0.05).
220	However, serum HDL level was highest in group 1 (47.98 \pm 1.8) followed by group 3 (46.8 \pm
221	1.6) next to group 4 (46.0 \pm 1.4) and least in group 2 (43.1 \pm 2.8).
222	From the result of serum total cholesterol level, there was a significant difference as
223	determined by one way ANOVA. Post hoc Turkey's test showed that the group 3 (101.6 \pm
224	3.3) significantly increased serum total cholesterol level when compared with group 2 (79.2 \pm
225	4.4). Group 4 (61.5 ± 3.4) significantly (P<0.05) reduced serum total cholesterol level when
226	compared with group 2 and 3 (101.6 \pm 3.3).
227	From the result of blood glucose level, one way ANOVA revealed an overall
228	significant difference (P<0.05) among group means. Turkeys post hoc test showed that
229	group 2 (370.0 \pm 19.81) significantly increased FBGL when compared with group 1 (94.8 \pm
230	6.18). Groups 3 (182.8 \pm 16.82) and 4 (146.6 \pm 14.8) significantly decreased FBGL when
231	compared with group 2(370.0 \pm 19.81). There was no significant difference (P>0.05) when
232	initial and final FBGL of groups 1 and 2 were compared. However, group 3 and 4
233	significantly reduced FBGL after treatment when compared with initial value.
234	From table 2 above, body weight of normal rats (group 1) was significantly (P<0.05)
235	increased after treatment period. Body weight of diabetic control rats (group 2) was
236	significantly (P<0.05) decreased after treatment. Body weight of 1% C.F.S.D treated rats
237	(group 3) was increased after treatment. Body weight of 2% C.F.S.D treated rats (group 4)
238	was increased after treatment. Percentage change in body weight (between before
239	treatment and after treatment) were expressed in percentage.
240	•
241	Table 1:
242	Effects of Capsicum frutescens supplemented diet on biochemical parameters of
243	alloxan induced diabetic Wistar.

	Group 1: Normal control	<mark>Group 2: Diabetic</mark> control	Group 3: Diabetic +1% C.F.S.D	Group 4: Diabetic + <mark>2% C.F.S.D.</mark>
Creatinine (IU/L)	<mark>0.42 ± 0.03</mark>	<mark>0.94 ± 0.17ª</mark>	0.4 ± 0.3 ^b	0.54 ± 0.07 ^b
Jric acid (IU/L)	<mark>5.49 ± 0.2</mark>	<mark>7.87 ± 0.85^ª</mark>	<mark>5.03 ± 0.2^b</mark>	<mark>6.3 ± 0.7</mark>
GGT (IU/L)	<mark>223.4 ± 7.5</mark>	<mark>275.0 ± 10.7ª</mark>	221.8 ± 6.4 ^b	224.8 ± 6.0 ^b
AST (IU/L)	<mark>278.4 ± 19.6</mark>	<mark>325.2 ± 26.1</mark>	<mark>247.2 ± 10.8^b</mark>	<mark>251.8 ± 12.3</mark>
ALP (IU/L)	<mark>251 ± 6.81*</mark>	<mark>316.4 ± 37.7*</mark>	<mark>327.6 ± 27.6*</mark>	<mark>243.8 ± 4.53*</mark>
ALT (IU/L)	<mark>61.7 ± 1.03*</mark>	128.2 ± 32.97*	<mark>98.98 ± 8.74*</mark>	87.86 ± 8.54*
HDL (mg/dl)	<mark>47.98 ± 1.8 ^{ns}</mark>	<mark>43.1 ± 2.8 ^{ns}</mark>	46.8 ± 1.6 ^{ns}	<mark>46.0 ± 1.4</mark> Comment [微软用户8]: What's the me
Г. Cholesterol	<mark>85.6 ± 5.6</mark>	<mark>79.2 ± 4.4</mark>	<mark>101.6 ± 3.3[⊾]</mark>	61.5 ± 3.4^{abc}
<mark>mg/dl)</mark>				
nitial Blood	<mark>88.8 ± 6.22</mark>	<mark>380.2 ± 16.6</mark>	<mark>363.8 ± 24.3 ^d</mark>	<mark>382.2 ± 14.7^d</mark>
glucose level				
<mark>mg/dl)</mark>				
Final Blood	<mark>94.8 ± 6.18</mark>	<mark>370.0 ± 19.81^ª</mark>	182.8 ± 16.82 ^{abd}	146.6 ± 14.8 ^{bd}
glucose level	<mark>(6.8%)</mark>	<mark>(-2.63%)</mark>	<mark>(-49.8%)</mark>	<mark>(-61.6%)</mark>
<mark>mg/dl)</mark>				
Values are expres	ssed as mean ± S	tandard error of me	ean (S.E.M), n=10 *P	< <u>0.05:</u>
Significant as dete	rmined by one way	analysis of variance.	Significant difference	<mark>∌ (^{abc}P</mark>
< 0.05): (a) compa	red to group 1, (b):	to group 2, (c): to g	roup 3. ^d P<0.05: Signi	ificant
when initial and fi	nal fasting blood g	lucose level were co	mpared in groups 3 a	and 4.
Values in parenth	esis depict the per	centage change in F	BGL when initial and	f final
values were compa	ared.			
	<mark>ansaminase)</mark>			
AST- (Aspartate Tr				
AST- (Aspartate Tr ALT- (Alanine amir	<mark>lo Transaminase)</mark>			
AST- (Aspartate Tr ALT- (Alanine amir ALP- (Alkaline Pho	no Transaminase) sphatase)			
AST- (Aspartate Tr ALT- (Alanine amir ALP- (Alkaline Pho GGT- (Gamma Glut	io Transaminase) sphatase) tamyl Transpeptidas	se)		
AST- (Aspartate Tr ALT- (Alanine amir ALP- (Alkaline Pho GGT- (Gamma Glui They are all liver (o Transaminase) sphatase) tamyl Transpeptidas enzymes(biomarker	se) s) of liver damage.		
AST- (Aspartate Tr ALT- (Alanine amir ALP- (Alkaline Pho GGT- (Gamma Glut They are all liver (oo Transaminase) sphatase) tamyl Transpeptidas enzymes(biomarker)	se) s) of liver damage.		
AST- (Aspartate Tr ALT- (Alanine amir ALP- (Alkaline Pho GGT- (Gamma Glut They are all liver o	io Transaminase) sphatase) tamyl Transpeptidas enzymes(biomarkers	se) s) of liver damage.		
AST- (Aspartate Tr ALT- (Alanine amir ALP- (Alkaline Pho GGT- (Gamma Glut They are all liver o Table 2:	oo Transaminase) sphatase) tamyl Transpeptidas enzymes(biomarker	se) s) of liver damage.		
AST- (Aspartate Tr ALT- (Alanine amir ALP- (Alkaline Pho GGT- (Gamma Glui They are all liver o Fable 2: Effects of Capsicu	no Transaminase) sphatase) tamyl Transpeptidas enzymes(biomarker: um frutescens (C.F.,	se) s) of liver damage.) supplemented diet	on body weight of a	lloxan

		treatment Week 0	treatment Week 3	
		<mark>(g)</mark>	<mark>(g)</mark>	
	Group 1 (Normal control)	<mark>131 ± 9.8</mark>	<mark>195 ± 17.2</mark>	
			<mark>(48.9%)</mark>	
	Group 2 (Diabetic control)	<mark>140 ± 9.6</mark>	<mark>120 ± 7.9</mark>	
			<mark>(-16.7%)</mark>	
	Group 3 (Diabetic, 1%	<mark>125 ± 6.7</mark>	<mark>134 ± 19.2</mark>	
	C.F.S.D)		<mark>(7.2%)</mark>	
	Group 4 (Diabetic, 2%	<mark>140 ± 7.2</mark>	<mark>152 ± 16.9</mark>	
	C.F.S.D)		<mark>(8.5%)</mark>	
261	Values are expressed as m	ean ± Standard error o	of mean (SEM), n = fiv	ve animals per
262	group. C.F: Capsicum frutes	scence.		
263				
264	Table 1 above dep	picts the effects of C	apsicum frutescens (on biochemical
265	parameters of alloxan induced	I diabetic Wistar rats.		
266	From the result of se	erum creatinine, group 2	2 (0.94 ± 0.17) signific	antly increased
267	serum creatinine level when c	compared with group 1 (().42 ± 0.03). Group 3 (0.40 ± 0.3) and
268	group 4 (0.54 ± 0.07) significa	antly reduced (P<0.05) s	erum creatinine level v	when compared
269	with group 2.			
270	From the result of se	erum uric acid, group 2	(7.87 ± 0.85) signific	antly increased
271	serum uric acid level when compared with group 1(5.49 \pm 0.2). Group 3 (5.03 \pm 0.2)			
272	significantly reduced serum uric acid level when compared with group 2. Group 4 (6.3 \pm 0.7)			
273	reduced serum creatinine level when compared with group 1, but did not attain statistical			
274	significance (P>0.05).			
275	From the result of se	rum gama glutamyl trans	sferase (GGT), group 2	2 (275.0 ± 10.7)
276	significantly (P<0.05) increas	ed serum GGT level w	nen compared with gr	oup 1 (223.4 ±
277	7.5). Groups 3 (221.8 ± 6.4) (and 4 (224.8 ± 6.0) signi	ticantly (P<0.05) reduc	ed serum GGT
278	ievel when compared with gro	up 2.		
279	From the result of s	erum aspertate transar	ninase (AST) group 2	(325.2 ± 26.1)
280	Increased serum AST level bi	ut did not attain statistica	al significant (P>0.05) v	when compared
281	with group 1 (2/8.4 ± 19.6). H	owever, group 3 (247.2 :	\pm 10.8) significantly (P=	•0.030) reduced
282	serum AST level when compa	ared with group 2. Grou	p 4 (251.8 ± 12.3) redu	(D. 0.05)
283	IEVEL OF AS I when compared	with group 2, but was not	statistically significant	(۲>0.05).
284	From the result of	serum aikaline phosph	hatase (ALP), there v	vas an overall
285	significant difference (P<0.05) as determined by one	way ANOVA. Howeve	er Turkey's post
286	hoc test did not reveal any significant difference between groups. However, there was an			

287	increase in group 2 (316.4 \pm 37.7) serum ALP level when compared to other groups. Group
288	$\frac{1}{(327.6 \pm 27.6)}$ was increased among other groups while group 4 (243.8 \pm 4.53) reduced its
289	level and group 3 (327.6 ± 27.6) increased its level its level.
290	From the result of serum alanine transaminase (ALT), a significant difference was
291	observed as determined by one way ANOVA. Turkey's post hoc test did not reveal any
292	statistical significant. However, serum ALT mean value was highest in group 2 (128.2 \pm
293	32.97) followed by group 3(98.98 ± 8.74), next to group 4 (87.86 ± 8.54) and least in group 1
294	(61.7 ± 1.03).
295	From the result of serum high density lipoprotein cholesterol (HDL) there was no
296	significant difference as determined by one way analyses of variance (ANOVA), (P>0.05).
297	However, serum HDL level was highest in group 1 (47.98 \pm 1.8) followed by group 3 (46.8 \pm
298	1.6) next to group 4 (46.0 ± 1.4) and least in group 2 (43.1 ± 2.8).
299	From the result of serum total cholesterol level, there was a significant difference as
300	determined by one way ANOVA. Post hoc Turkey's test showed that the group 3 (101.6 \pm
301	3.3) significantly increased serum total cholesterol level when compared with group 2 (79.2 \pm
302	4.4). Group 4 (61.5 \pm 3.4) significantly (P<0.05) reduced serum total cholesterol level when
303	compared with group 2 and 3 (101.6 ± 3.3).
304	From the result of blood glucose level, one way ANOVA revealed an overall
305	significant difference (P<0.05) among group means. Turkeys post hoc test showed that
306	group 2 (370.0 \pm 19.81) significantly increased FBGL when compared with group 1 (94.8 \pm
307	6.18). Groups 3 (182.8 ± 16.82) and 4 (146.6 ± 14.8) significantly decreased FBGL when
308	compared with group 2(370.0 ± 19.81). There was no significant difference (P>0.05) when
309	initial and final FBGL of groups 1 and 2 were compared. However, group 3 and 4
310	significantly reduced FBGL after treatment when compared with initial value.
311	From table 2 above, body weight of normal rats (group 1) was significantly (P<0.05)
312	increased after treatment period. Body weight of diabetic control rats (group 2) was
313	significantly (P<0.05) decreased after treatment. Body weight of 1% C.F.S.D treated rate
314	(group 3) was increased after treatment. Body weight of 2% C.F.S.D treated rats (group 4)
315	was increased after treatment. Percentage change in body weight (between before
316	treatment and after treatment) were expressed in percentage.
317	

318 DISCUSSION

The present study was undertaken to investigate the effect of *Capsicum frutescens* supplemented diet on biochemical parameters in alloxan induced diabetic Wistar rats. The action of capsaicin is mediated by TPRV1 (vanilloid receptor), which belongs to an ion

322 channel group. VR1 when activated permits cations to pass through the cell membrane and 323 into the cell resulting in depolarization of the neuron stimulating it to signal the brain. By 324 binding to the VR1 receptor, the capsaicin molecule produces the same sensation that 325 excessive heat or abrasive damage would cause, explaining why the spiciness of capsaicin 326 is described as a burning sensation. The inflammation resulting from exposure to Capsaicin 327 is believed to be the result of the body's reaction to nerve excitement rather than just 328 chemical burn or any direct tissue damage when chili peppers are the source of exposure.

329 Alloxan is a well- known diabetogenic agent widely used to induce Type 11 diabetes in 330 animals [22]. Alloxan is a urea derivative which causes selective necrosis of the pancreatic 331 islet β-cells. Alloxan and its reduction product dialuric acid establish a redox cycle with the formation of superoxide radicals. These radicals undergo dismutation to hydrogen peroxide. 332 The action of reactive oxygen species with a simultaneous massive increase in cytosolic 333 334 calcium concentration causes rapid destruction of beta cells, [23]. Alloxan which has been 335 reported to destroy the beta cells of the pancreas causing reduction in insulin secretion 336 thereby increasing blood glucose level and decreasing in body weight gain [24]. From results of the present study, the diabetic rats induced with alloxan showed these changes by 337 338 decreasing body weight from (140 \pm 9.6), before treatment to (120 \pm 7.9), after treatment 339 [Table 2]. Body weight of 1% and 2% Capsicum frutescens supplemented diet treated 340 groups were increased more than rats in group 2. This could be traced to the recovery 341 effects of Capsicum frutescens against weight loss associated with diabetes mellitus caused 342 by alloxan monohydrate.

Alloxan induced diabetic is characterized by Increase in blood glucose (hyperglycemia) 343 above normal level (normoglycemia), [24]. Increased in fasting blood glucose level (FBGL) in 344 group 2 could be attributed to the diabetogenic effect of alloxan. Significant reduction in 345 346 FBGL in 1% (group 3) and 2% (group 4) C.F.S.D treated groups may be attributed to the 347 presence of hypoglycemic agents in Capsicum frutescens. Studies had shown that 348 Capsicum frutescens is used to treat diabetes mellitus by traditional healers in Jamaica, [25]. 349 Pharmacokinetic and the effect of Capsaicin in Capsicum Frutescens on decreasing Plasma Glucose Level in a crossover study of 12 healthy volunteers by performing the OGTT while 350 351 receiving placebo or 5 grams of capsicum had been documented [26].

In this study polydipsia and excess voiding of urine observed in group 2 rats (diabetic control) was most predominant when compared with groups 1, 3 and 4. In diabetes, the obligatory renal water loss combined with the hyperosmolarity tends to deplete intracellular water, triggering the osmoreceptor of the thirst centre of the brain and

polydipsia which leads to increase in water intake, [27]. Reduce diauresis and excessive
taste observed in groups 3 and 4 could be attributed to the effects of *Capsicum frutesence* in the diet of such rats.

Impaired carbohydrate utilization in the diabetic also leads to accelerated lipolysis, which results in elevated plasma triglycerides levels (hyperlipidemia), [28]. The observed abnormalities of triglyceride and HDL metabolism are in accordance with reports on early manifestation of insulin resistance, the precursor to diabetes [29; 30]. From the result of the study, 2% C.F.S.D treated group elicited reduction in serum level of total cholesterol than 1% treated group. The physiological effects of most spices had been documented to exhibit hypolipidemic and antioxidant properties with beneficial health implication, [13].

366 Individuals with type 2 diabetes had also been reported to have a higher incidence of 367 liver function test abnormalities than non diabetic individuals. Mild chronic elevations of transaminases often reflect underlying insulin resistance. Diabetes mellitus can arise as a 368 369 result of insulin insufficiency, which is associated with altered activity of various liver enzymes, [20]. Grossi, et al., (1998)²¹ had also reported that values of serum ALP can be 370 371 raised in diabetic patients. The liver releases alanine aminotransferase (ALT) and an 372 elevation in plasma concentrations are an indicator of liver damage, [30]. The levels of 373 aspertate aminotransferase (AST), alanine amino transaminase (ALT) and alkaline 374 phosphatase (ALP) had been reported to be increased in alloxan-induced diabetic rats, [31]. 375 Increased in serum liver enzymes parameters in diabetic control group observed in the 376 present investigation corroborates these findings. Reduction in liver enzyme levels in group 377 3 (1%, C.F.S.D.) and 4 (2% C.F.S.D.) clearly indicates the therapeutic role of Capsicum 378 frutescens against increased in serum liver enzyme parameters correlated with alloxan 379 induced diabetes. In previous research, Capsicum frutescens had been documented to 380 protect against iron overload liver injury by reducing plasma liver parameters level to normal, 381 [16].

There was a significant increase in serum creatinine level of group 2. An increase in plasma creatinine levels may be a sign of impaired renal function which is associated with diabetes. The elevation in the plasma creatinine concentration indirectly suggests kidney damage specifically the renal filtration mechanism, [32]. Significant reduction observed in the serum creatinine levels of the diabetic rats treated with 1% and 2% C.F.S.D in this study suggests protective effect by *Capsicum frutescens* against kidney disorders associated with diabetes mellitus.

Another characteristic feature of severe diabetic is an elevated excretion of urea whose
 concentration may be five times higher than the normal value [35]. As corroborated by
 this study, serum uric acid level of group 2 (Diabetic control) was significantly increased

when compared with group 1 (Normal control). The significant reduction in serum uric acid level observed in the group 3 conferred protections against elevated uric acid associated with diabetes mellitus. The significant reduction could be attributed to the main active principles present in *Capsicum frutescens*.

397 4. CONCLUSION

399 From the above study increased in serum liver enzymes (AST, ALT, ALP, GGT) levels, 400 increased in serum uric acid, creatinine, total cholesterol, fasting blood glucose level and 401 reduced high density lipoprotein (HDL) cholesterol associated with alloxan induced diabetes 402 mellitus were reversed after treatment with 1% and 2% C.F.S.D. Such remarkable changes 403 observed in this study could be traced to the active ingredients [capsaicin, 404 dihydrocapsaincin, antioxidant vitamins (ascorbic acid, vitamin E), carotenoids (β-carotene, 405 β- cryptoxanthine) and several organic acids and minerals present in *Capsicum frutescens*. 406 Its therefore recommended that Capsicum frutescens be added to diet especially of diabetic 407 patients.

408

396

398

- 409 410
- 411
- 412

413 AUTHORS' CONTRIBUTIONS

414 Author 1 designed the study and wrote the first draft of the manuscript. Author 2 managed 415 the literature searches; author 3 performed the statistical analysis and managed the 416 analyses of the study. All authors read and approved the final manuscript.

417 418 **REFERENCES**

419

420 1. Scoppola, A., Montecchi, F.R., Mezinger, G. and Lala, A. (2001). Urinary

421 mevalonateexcretion rate in type 2 diabetes: role of metabolic control. Atherosclerosis 156:
422 357-361.

- 423 2. Avesani, C.M., Cuppari, L., Silva, A.C., Sigulem, D. M., Cendoroglo, M., Sesso, R. and
- 424 Draibe, S.A. (2001). Resting energy expenditure in predialysis diabetic patients. Nephrol.
- 425 Dial. Transplant. 16: 556-560.
- 426 3. Ogbonnia SO, Odimegwu JI, Enwuru VN (2008). Evaluation of Hypoglycemic and
- 427 Hypolipidemic Effects of Aqueous Ethanolic Extract of Treculia africana Decne and
- 428 Bryophyllum Pinnatum Lam and Their Mixture on Streptozotocin(STZ)-induced Diabetic
- 429 Rats. Afr. J. Biotechnol., 7(15): 2535-2539.

- 430 4. Sofowora, A. (1993). Medicinal Plants and Traditional Medicine in Africa, 2nd Edition,
- 431 Spectrum Books, Ibadan, Nigeria, pp. 26 -100.
- 432 5. Ugochukwu, N.H., Babady, N.E., Cobourne, M. and Gasset, S.R. (2003). The effect of
- Gangronema latifolium extracts on serum lipid profile and oxidative stress in hepatocytes of
 diabetic rats. *Journal of Biosciences* 28 (1): 1-5.
- 435 6. Ojewole, J.A.O. and Adewole, S.O. (2007). Hypoglycemic and hypotensive effects of
- 436 Globimetula cupulata leaf extract in rats. *Cardiovascular. J. S. Africa.* 18(1):9-15.
- 437 7. Ajose, F.O.A. (2007). Some Nigeria plants of dermatologic importance. Int. J.
- 438 Dermatology 46 (1): 48-55.
- 439 8. Eddouks M, Jouad H, Maghrani M. Lemhadri A and Burcelin R (2003). Inhibition of
- 440 endogenous glucose production accounts for hypoglycemic effect of Spergularia purpurea in
- 441 streptozotocin mice. Phytomedicine: International Journal of Phytotherapy andn
- 442 Phytopharmacology 10 (6-7): 594-599.
- 9. Pryor W, Stahl W and Rock C. (2000). Beta carotene: Bio chemistry to clinical Trials. *Nutr Rev*; 58: 39-53.
- 10. Halliwell B. (1994). Antioxidants sense or speculation. Nutr Today. 29: 15-19.
- 446 11. Srinivasan MR, and Chandrasekhara N. (1992). Comparative influence of vanillin and
- 447 capsaicin on liver and blood lipids in the rat. *Ind. J. Med. Res.*, **96**: 133-135.
- 448 12. Srinivasan K. (2005). Role of spices beyond food flavouring: Nutraceuticals with multiple
 health effects. *Food Reviews Int.*, 21: 167–188.
- 450 13. Manjunatha H, Srinivasan K (2008). Hypolipidemic and antioxidant potency of heat
- 451 processed turmeric and red pepper in experimental Rats. *Afr. J. Food Sci.* **2**: 1-6.
- 452 14. Dewitt, Dave. Stock, Melissa T. and Hunter, Kellye (1998). The Healing Powers of Hot
- 453 Peppers. (17-22) Three Rivers Press, NY.
- 454
- 455 15. Chaiyata P. (2003). Effect of chili pepper (Capsicum frutescens) ingestion on glucose
- 456 response, metabolic rate, lipid profile, lipid peroxidation, thrombogenic and fibrinolytic
- 457 activities in hyperlipidemic thai women. Doctoral dissertation. Bangkok: Research Unit
- 458 Nutrition Faculty of Medicine Ramathibodi Hospital Mahidol University.
- 459
- 460 16. Eman A.Sadeek and Fatma H. Abd El-Razek (2010). The Chemo-Protective Effect of
- 461 Turmeric, Chili, Cloves and Cardamom on Correcting Iron Overload-Induced Liver Injury,
- 462 Oxidative Stress and Serum Lipid Profile in Rat Models. Journal of American Science. 6
- 463 (10): 42- 47.

- 464 17. Yoshioka M, Doucet E, Dropeau V, Dionne I, Tremblay A. Combined Effect of Red
- 465 Pepper and Caffeine Consumption on 24 Hour Energy Balance in Subjects Given Free
- 466 Access to Foods. *British Journal of Nutrition*. 85: 203-211.
- 467 18. Antonious, G. F.; Meyer, J.; and Snyder, J. C. (2006). Toxicity and repellency of hot
- pepper extracts to spider mite, Tetranychus urticae Koch. J. Environ. Sci. Health. 41, 13831391.
- 470 19. Story GM, Crus-Orengo L (2007). "Feel the burn". American Scientist .95 (4): 326–333.
- 471 20. Siddiqui SA, Cheema AM, and Waheed M (2005). Study of serum insulin, liver profile
- 472 and protein levels of insulin resistanttype-2 diabetics in Pakistan population. Pak J
- 473 BiochemMol Biol; 38(3-4); 92-7.
- 474 21. Grossi SG, Genco RJ, and Machtei E. (1988). Periodontal diseaseand diabetes mellitus:
- 475 A two way relationship. J Ann Periodontal; 3: 51-61.
- 476 22. Viana G.S, Medeiros A.C, Lacerda A.M, Leal L.K, Vale T.G, and Matos F.J. (2004).
- 477 Hypoglycemic and anti-lipemic effects of the aqueous extract from *Cissus sicyoides*. *BMC*478 *Pharmacol*, 8: 4-9.
- 479 23. Szkudelski T. (2001). The mechanism of alloxan and streptozotocin action B cells of the
 480 rat pancreas. *Physiology, Res.* 50:536-546.
- 481 24. Al-Kalifa, A., Mathew T.C., Al-Zaid N.S., Mathew E. and Dashti H.M. (2009).
- 482 Therapeutic role of low-carbohydrate ketogenic diet in diabetes. *Nutrition*, 25: 1177-1185.
- 483 25. Tolan I, Ragoobirsingh D, and Morrison EY (2004). Isolation and purification of the
- 484 hypoglycaemic principle present in *Capsicum frutescens*. *Phytotherapy Research*.; **18**(1):95485 6.
- 486 26. Kamon Chaiyasit, Weerapan Khovidhunkit, and Supeecha Wittayalertpanya. (2009).
- 487 Pharmacokinetic and The Effect of Capsaicin in *Capsicum frutescens* on Decreasing Plasma
- 488 Glucose Level. J Med Assoc Thai. 92 (1): 108-113
- 489 27. UKPDS (UK Prospective Diabetes Study Group), (1998). Intensive blood glucose with
- sulphonylureas or insulin compared with conventional treatment and risk of complications in
 patients with Type 2 diabetes. *Lancet.* 353: 837-853.

- 492 28. Granner DK, Mayes PA, and Rodwell VW (1996). Harper's Biochemistry, ed 24,
- 493 Connecticut, USA, Appleton and Lange, pp. 586-587.
- 494 29. Frederickson DS, and Lee RS. (1965). A system for phenotyping hyperlipidemia.
 495 Circulation, **31**: 321-327.
- 30. Lyons TJ (1992). Lipoprotein glycation and its metabolic complications. *Diabetes*.
 497 **41**(Suppl 2): 67-73.
- 498 31. Claudia ENM, Julius EO, Dagobert T, and Etienne D (2006). Antidiabetic and
- 499 Hypolipidemic effects of *Laportea ovalifolia* (URTICACEAE) in alloxan induced diabetic rats.
- 500 Afr. J. Tradit., Complement. Altern. Med. 3(1): 36-43.
- 501 32. Akah P.A, Alemji, J.A, Salawu O. A., Okoye T.C. and Offiah N.V, (2009). Effects of
- 502 Vernonia amygdalina on Biochemical and Hematological Parameters in Diabetic Rats. Asian
- 503 *Journal of Medical Sciences* **1**(*3*): 108-113.
- 504 33. Wasan KM, NajafiS, Wong J, Kwong M (2001). Assessing plasma lipid levels, body
- weight, and hepatic and renal toxicity following chronic oral administration of a water soluble
 phytostanol compound FMVP4, to gerbils. *J. Pharm. Sci.* 4(3): 228-234.
- 507 34. Lehninger, A.L., (1998). Principles of Biochemistry. CBS Publishers and Distributors
 508 Pvt. Ltd., India, pp: 531-535.

509