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ABSTRACT5

6
A simple and versatile method for preparation of Mn3O4 microflowers associated with super-thin
nanosheets is developed via a solvo-thermal approach, which are tested as a new high-capacity
anode material for lithium-ion batteries. It shows better cycling performance than Mn3O4
nanoparticles. Research on this topic mainly sheds some light on the preparation of three-dimensional
flower-like oxide hierarchical architectures with improved electrochemical performance for energy
storage.
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1. INTRODUCTION11
12

Rechargeable batteries with reversible and efficient electrochemical energy storage and conversion13
are urgent in various applications, such as portable electronic consumer devices, electric vehicles,14
and large-scale electricity storage in smart and intelligent grids as renewable and clean energy[1, 2].15
Lithium-ion battery is one of the fascinating rechargeable batteries for high energy density coupled16
with a long life cycle and charge-discharge rate capability[3]. Studies have been conducted to develop17
low-cost, sustainable, renewable, safe, and high-energy density electrode materials for lithium-ion18
batteries. Considering environmental safety, researchers should prepare potential electrode materials19
for lithium-ion batteries through green chemistry based on simple and inexpensive procedures.20

Manganese based anode materials are less toxic, abundant in natural resources[4]. Though Mn3O4 is21
isostructural with Co3O4, it has poor lithiation activity and electrically insulating, resulting in fast22
capacity decay as anode materials for lithium-ion batteries. Recently great progress has been23
achieved for Mn3O4 anode materials. The improved electrochemical properties turned true via the24
following methods. Mesoporous carbon, graphene, carbon nanotube and various carbon25
nanostructures were introduced to prepare carbon based Mn3O4 nano-composites. These composites26
showed better cycling stability and higher discharge capacity than bulk Mn3O4 for fast ion diffusion,27
good electronic conductivity, and skeleton supporting function[5-35]. People also designed various28
Mn3O4 nanostructures to improve the cycling performance of Mn3O4. In these Mn3O4 nanostructures,29
well-shaped nanostructure, pore, hollow structure and 3D array played an important role in the long30
cycling performance. Novel pongelike nanosized Mn3O4 exhibits a high initial reversible capacity of31
869 mAhg-1 and significantly enhanced first coulomb efficiency with a stabilized reversible capacity of32
around 800 mAhg-1 after over 40 charge/discharge cycles [4]. Mn3O4 hollow microspheres33
demonstrate a good electrochemical performance, with a high reversible capacity of 646.9 mAhg-134
after 240 cycles at a current density of 200 mAhg-1[36]. While pluorinated Mn3O4 nanospheres for35
lithium-ion batteries show poor cycling performances[37]. 3D porous Mn3O4 nanosheet arrays could36
be directly used as a binder-free and conductive-agent-free electrode to deliver ultrahigh37
electrochemical performance [38]. It is reported that the 3D pores and voids between the nanosheet38
arrays could provide rapid ion transfer channels, as well as accommodating the volumetric changes of39
Mn3O4 during the electrochemical cycling[38]. The ultrathin Mn3O4 nanosheets exhibit a high40
reversible capacity and stronger cycling stability for high surface area[39]. The well-shaped Mn3O441
tetragonal bipyramids with high-energy facets show a high initial discharge capacity. In addition, the42
anode displays a good fast rate performance and delivers a reversible capacity of 822.3 mAhg-1 (the43
theoretical capacity: 937 mAhg-1 at a current density of 0.2 C after 50 cycles[40]. The porous Mn3O444
nanorods can improve electrochemical reaction kinetics and favor the formation of Mn3O4 [41].45
Mn3O4nano-octahedra has a discharge capacity of 667.9 mAhg-1 after 1000 cycles at 1.0 A g-146
ascribed to the lower charge transfer resistance due to the exposed highly active {011} facets, which47
can facilitate the conversion reaction of Mn3O4 and Li owing to the alternating Mn and O atom layers,48
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resulting in easy formation and decomposition of the amorphous Li2O and the multi-electron49
reaction[42]. The hollow Mn3O4 spheres deliver a highly stable cycle performance with capacity50
retention of similar to 980 mAhg-1 for over 140 cycles at 200 mAg-1 and an excellent rate51
capability[43]. It can be seen that Mn3O4 with nanosheets, pore, high surface area and52
interconnected voids are apt to show high discharge capacity and long cycling stability. The 3D53
assembling Mn3O4 microflowers assembling with nanosheets are expected to show favorable54
electrochemical performances for the presence of voids among the nanosheet arrays. There are few55
reports on the research of Mn3O4 microflowers except Mn3O4-Fe3O4 and MnO- Mn3O4 nanoflowers.56
Mn3O4-Fe3O4 nanoflowers are simply fabricated through one step etching Mn5Fe5Al90 ternary alloy,57
which exhibits higher performance as anode material for lithium ion batteries than that of pure Mn3O458
and Mn3O4 anodes for unique hierarchical flower-like structure and the synergistic effects between59
Mn3O4 and Mn3O4 [44]. A hierarchically porous MnO- Mn3O4 nano-flowers can be fabricated by60
dealloying Mn/Al alloys in aqueous NaOH solution in the presence of H2O2, and upon annealing,61
which has a capacity of 1018, 901 and 757 mAhg-1 with nearly 100% retention capacity after 10062
cycles at 100, 200 and 500 mAg-1[45]. Mn3O4 nanosheets associated with nanorods can be63
assembled to 3D flower-like Mn3O4 with hexadecyl trimethyl ammonium bromide (CTABr), urea and64
MnSO4 as reagents, while they did not tested any properties, e.g. batteries [46].65

66
2. MATERIAL AND METHODS / EXPERIMENTAL DETAILS / METHODOLOGY (ARIAL,67

BOLD, 11 FONT, LEFT ALIGNED, CAPS)68
69

All chemicals are commercially available. The preparation was performed via a solvothermal method70
in a DMF-water mixed solvent. In a typical procedure, 1 mmol manganese acetate tetrahydrate and71
0.5 g hexadecyl trimethyl ammonium bromide (CTABr) were added to a 5 ml DMF- 25 ml water72
solution and stirred at room temperature for 2 hours. After that, the mixture was transferred to a 50-ml73
Teflon-lined stainless autoclave, sealed, kept at 200 OC for 24 hours, cooled to room temperature,74
washed with absolute alcohol and dried at 70 OC for 12 hours (marked with DT-1). Sample DT-2 was75
prepared without CTABr under the identical condition. While Sample DT-3 was prepared with 30 ml76
water in the absence of CTABr.77

The morphological characteristics of the as-synthesized materials were observed with a Hitachi S-78
4800 field emission scanning electron microscope (SEM). X-ray diffraction (XRD) patterns were79
recorded on a diffract meter (Co Kα, Analytical, and Pert). Cyclic voltammetry (CV) experiments were80
performed with a Chi660c electrochemical workstation at a scan rate of 1 mV S-1. A Land CT2001A81
battery tester was used to measure the electrode activities at room temperature.82

The  as-synthesized samples were tested as anode materials for lithium-ion batteries. The composite83
of negative electrode material was consisted of the active material, a conductive material (super-pure84
carbon) and binder polyvinylidene difluoride (PVDF) in a weight ratio of 7/2/1. The Li metal was used85
as the counter electrode. The cells were charged and discharged between a 0.05 - 3.0 V voltage limit.86

87
3. RESULTS AND DISCUSSION88

89
Three samples were obtained by adjusting synthesis parameters. Both DMF and CTABr play an90
important role in the formation of different morphologies. When water was used as the solvent in the91
absence of CTABr, the sample appears as monodispersed nanoparticles between 30 and 150 nm in92
Fig. 1a,b. While DMF was added, thin microplatelets were obtained, as shown in Fig. 1c, d. The93
length and width of microplatelets can be up to several µm. There are also some thin nanobelts.94
Some microflowers composed of superimposed thin and wide nanosheets were prepared with CTABr95
in the DMF-H2O mixed solvent in Fig. 1c, d. Certain microflower is several µm in size.96

97
X-ray diffraction was performed to identify the structure of the three samples. It can be seen that98
CTABr plays an important role in the crystallization of products. The diffraction peaks of the sample99
prepared with DMF, water and CTABr has the highest intensity than samples prepared with water and100
THF in Fig. 2. The diffraction peaks can be ascribed to Mn3O4 in Fig. 2a. The other samples can also101
be ascribed to Mn3O4 in Fig. 2b,c , respectively. All the Mn3O4 here are lack of the peak of (101),102
which means that the is not the high-energy {101} plane.103

104
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The electrochemical performance of Mn3O4 nanoparticles and microflowers was evaluated as anode105
materials for lithium-ion batteries (Fig. 3). Fig. 3a shows the 1st and 2nd charge–discharge profiles of106
Mn3O4 microflowers at a current density of 240 mAg−1 (Sample T-72). A long discharge platform is107
observed at 0.5 V in the first discharge curve, but this platform disappears in the succeeding108
discharge curves. The Mn3O4 microflowers-based composite electrode delivers an inial  discharge109
capacity of 1496 mAhg−1.  However, the 1st discharge profiles of Mn3O4 nanoparticles show four110
discharge platforms at 0.33, 0.44, 0.92 and 1.3V, implying that a multi-step conversion reaction takes111
place. A new platform at 0.7 V appears in the succeeding discharge curves. The Mn3O4112
nanoparticles-based composite electrode delivers an initial discharge capacity of 1280 mAhg−1. It can113
be seen that Mn3O4 without high-energy {101} plane can also have a very high initial discharge114
capacity. It can also be found that Mn3O4 nanoparticles have a steeper charge curve than Mn3O4115
microflowers between 1.4 and 3.0 V implying that a severe polarization takes place in the Mn3O4116
nanoparticles-based composite electrode.117

118
We also performed the dQ/dV~V curves obtained from the 1st and 2nd charge-discharge curves of119
Mn3O4 nanoparticles and microflowers in Fig. 4. In the first charge-discharge cycle of Mn3O4120
nanoparticles, four reduction peaks are centered at 0.33, 0.45, 0.90 and 1.3 V, and the oxidation peak121
is at 1.24 V in Fig. 4a. In the first charge-discharge cycle of Mn3O4 microflowers, the reduction and122
oxidation peaks are centered at 0.33 and 1.28 V in Fig. 4b, respectively. In the second charge-123
discharge cycle of Mn3O4 nanoparticles, two reduction peaks are centered at 0.45 and 0.52 V, and124
the oxidation peak is at 1.24 V in Fig. 5b. In the second charge-discharge cycle of Mn3O4125
microflowers, the reduction and oxidation peaks are centered at 0.54 and 1.25 V in Fig. 2,126
respectively. The reduction peaks in the range of 1.3-0.4 V was ascribed to reduction from Mn(III) to127
Mn(II), and the 0.4-0.1 V range reflected the reduction from Mn(II) to Mn(0) [47,48]. The difference of128
first discharge curve between Mn3O4 microflowers and nanoparticles is because Mn3O4 microflowers129
only undergoes the reduction from Mn(II) to Mn(0). While Mn3O4 nanoparticles undergo reductions130
from Mn(III) to Mn(II) to Mn(0). In the second discharge process, In the second discharge, the131
contribution to discharge capacity is mainly ascribed to the reduction around 0.5 V. The Li+ charge132
reaction: is Mn3O4 + 8Li+ + 8e- to 3Mn(0) + 8Li2O [49]. Compared to Mn3O4 nanoparticles, Mn3O4133
microflowers does not undergo reduction from Mn(III) to Mn(II) and reduce polarization.134

135
Fig.6 is the cycling performance testes at current densities of 240 and 480 mAg-1. The Mn3O4136
microflowers-based composite electrode delivers a second discharge capacity of 870.2 and 714.8137
mAhg−1 in Fig. 6a,b, respectively . A reversible capacity of 392.8 and 358.5 mAhg−1 is retained after138
20 cycles. The Mn3O4 nanoparticles-based composite electrode show lower discharge capacity and139
worse cycling stability at current densities of 240 and 480 mAg-1 in Fig. 6c,d. It delivers a second140
discharge capacity of 332.8 and 156.5 mAhg−1, respectively. The final discharge capacity is even low141
to 131.3 and 53.8 mAg-1. The fast capacity decay of Mn3O4 nanoparticles is due to the reduction from142
Mn(III) to Mn(II). The improved electrochemical performance of Mn3O4 microflowers is due to reduce143
the activity of Mn3O4,  avoid the complicated reduction from Mn(III) to Mn(II) and reduce polarization.144
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145
146

Fig. 1. SEM images of samples with (a, b) water, (c, d) water and DMF, and (e, f) water, DMF and147
CTABr148
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Fig. 2. Wide angle XRD patterns of samples with (a) water, DMF and CTABr, (b) water and DMF,151
and (c) water152

UNDER PEER REVIEW



0 500 1000 1500 2000
0

1

2

3

0 500 1000 1500 2000
0

1

2

3

a

Po
te

nt
ia

l (
Li

/L
i+

) /
 V

Discharge Capacity/mAhg-1

b

153
154

Fig. 3. The first and second charge–discharge profiles at a current density of 240 mAg-1 of (a)155
Mn3O4 microflowers and (b) Mn3O4 nanoparticles156

157

0.0 0.5 1.0 1.5 2.0
-8
-6
-4
-2
0
2

0.0 0.5 1.0 1.5 2.0
-2.5
-2.0
-1.5
-1.0
-0.5
0.0
0.5dQ

/d
V

a

Voltage/V

b

158
159

Fig. 4. The dQ/dV~cueve derived the first charge–discharge profiles of (a) Mn3O4 nanoparticles160
(b) Mn3O4microflowers161
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Fig. 5. The dQ/dV~cueve derived the second charge–discharge profiles of (a) Mn3O4164
microflowers (b) Mn3O4 nanoparticles165
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Fig. 6. The cyclic performance tested at current densities of 240 and 480 mAg-1 of (a, b) Mn3O4168
microflowers, and (c, d) Mn3O4 nanoparticles169

170
171

4. CONCLUSION172
173

In summary, Mn3O4 microflowers associated with super-thin nanosheets were prepared by using a174
solvo-thermal method with the aid of surfactant CTABr. The Mn3O4 microflowers exhibit better cycling175
stability and higher discharge capacity than Mn3O4 nanoparticles as anode materials for lithium-ion176
batteries due to reduce the activity of Mn3O4,  avoid the complicated reduction from Mn(III) to Mn(II)177
and reduce polarization. This simple method may also be used to fabricate other anode materials for178
lithium-ion batteries with improved electrochemical performance.179
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