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ABSTRACT 5 
 6 
It is important to prepare novel micro-nanostructures of Mn oxides for energy storage. A simple and 
versatile method for preparation of Mn3O4 microflowers associated with super-thin nanosheets is 
developed via a solvo-thermal approach, which are tested as a new high-capacity anode material for 
lithium-ion batteries. Mn3O4 microflowersIt shows better cycling performance than Mn3O4 
nanoparticles. Research on this topic mainly sheds some light on the preparation of three-dimensional 
flower-like oxide hierarchical architectures with improved electrochemical performance for energy 
storage. 
 7 
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1. INTRODUCTION 11 
 12 
Rechargeable batteries with reversible and efficient electrochemical energy storage and conversion 13 
are urgent in various applications, such as portable electronic consumer devices, electric vehicles, 14 
and large-scale electricity storage in smart and intelligent grids as renewable and clean energy [1, 2]. 15 
Lithium-ion battery is one of the fascinating rechargeable batteries for high energy density coupled 16 
with a long life cycle and charge-discharge rate capability [3]. Studies have been conducted to 17 
develop low-cost, sustainable, renewable, safe, and high-energy density electrode materials for 18 
lithium-ion batteries. Considering environmental safety, researchers should prepare potential 19 
electrode materials for lithium-ion batteries through green chemistry based on simple and inexpensive 20 
procedures.  21 

Manganese based anode materials are less toxic, abundant in natural resources [4]. Though Mn3O4 is 22 
isostructural with Co3O4, it has poor lithiation activity and electrically insulating, resulting in fast 23 
capacity decay as anode materials for lithium-ion batteries. Recently great progress has been 24 
achieved for Mn3O4 anode materials. The improved electrochemical properties turned true via the 25 
following methods. Mesoporous carbon, graphene, carbon nanotube and various carbon 26 
nanostructures were introduced to prepare carbon based Mn3O4 nano-composites. These composites 27 
showed better cycling stability and higher discharge capacity than bulk Mn3O4 for fast ion diffusion, 28 
good electronic conductivity, and skeleton supporting function [5-35]. People also designed various 29 
Mn3O4 nanostructures to improve the cycling performance of Mn3O4. In these Mn3O4 nanostructures, 30 
well-shaped nanostructure, pore, hollow structure and 3D array played an important role in the long 31 
cycling performance. Novel pongelike nanosized Mn3O4 exhibits a high initial reversible capacity of 32 
869 mA h g-1 and significantly enhanced first coulomb efficiency with a stabilized reversible capacity 33 
of around 800 mA h g-1 after over 40 charge/discharge cycles [4]. Mn3O4 hollow microspheres 34 
demonstrate a good electrochemical performance, with a high reversible capacity of 646.9 mA h g-1 35 
after 240 cycles at a current density of 200 mA h g-1[36]. ], While while pluorinated Mn3O4 36 
nanospheres for lithium-ion batteries show poor cycling performances [37]. 3D porous Mn3O4 37 
nanosheet arrays could be directly used as a binder-free and conductive-agent-free electrode to 38 
deliver ultrahigh electrochemical performance [38]. It is reported that the 3D pores and voids between 39 
the nanosheet arrays could provide rapid ion transfer channels, as well as accommodating the 40 
volumetric changes of Mn3O4 during the electrochemical cycling [38]. The ultrathin Mn3O4 nanosheets 41 
exhibit a high reversible capacity and stronger cycling stability for high surface area [39]. The well-42 
shaped Mn3O4 tetragonal bipyramids with high-energy facets show a high initial discharge capacity. In 43 
addition, the anode displays a good fast rate performance and delivers a reversible capacity of 822.3 44 
mA h g-1 (the theoretical capacity: 937 mA h g-1 at a current density of 0.2 C after 50 cycles [40]. The 45 
porous Mn3O4 nanorods can improve electrochemical reaction kinetics and favor the formation of 46 
Mn3O4 [41].  Mn3O4 nano-octahedra has a discharge capacity of 667.9 mA h g-1 after 1000 cycles at 47 



1.0 A g-1 ascribed to the lower charge transfer resistance due to the exposed highly active {011} 48 
facets, which can facilitate the conversion reaction of Mn3O4 and Li owing to the alternating Mn and O 49 
atom layers, resulting in easy formation and decomposition of the amorphous Li2O and the multi-50 
electron reaction [42]. The hollow Mn3O4 spheres deliver a highly stable cycle performance with 51 
capacity retention of similar to 980 mA h g-1 for over 140 cycles at 200 mA g-1 and an excellent rate 52 
capability [43]. It can be seen that Mn3O4 with nanosheets, pore, high surface area and 53 
interconnected voids are apt to show high discharge capacity and long cycling stability. The 3D 54 
assembling Mn3O4 microflowers assembling with nanosheets are expected to show favorable 55 
electrochemical performances for the presence of voids among the nanosheet arrays. There are few 56 
reports on the research of Mn3O4 microflowers except  Mn3O4-Fe3O4 and MnO- Mn3O4 nanoflowers. 57 
Mn3O4-Fe3O4 nanoflowers are simply fabricated through one step etching Mn5Fe5Al90 ternary alloy, 58 
which exhibits higher performance as anode material for lithium ion batteries than that of pure Mn3O4 59 
and Mn3O4 anodes for unique hierarchical flower-like structure and the synergistic effects between 60 
Mn3O4 and Mn3O4 [44]. A hierarchically porous MnO- Mn3O4 nano-flowers can be fabricated by 61 
dealloying Mn/Al alloys in aqueous NaOH solution in the presence of H2O2, and upon annealing, 62 
which has a capacity of 1018, 901 and 757 mA h g-1 with nearly 100% retention capacity after 100 63 
cycles at 100, 200 and 500 mA g-1 [45]. Mn3O4 nanosheets associated with nanorods can be 64 
assembled to 3D flower-like Mn3O4 with hexadecyl trimethyl ammonium bromide (CTABr), urea and 65 
MnSO4 as reagents, while they did not tested any properties, e.g. batteries [46]. 66 

In this study, a simple method was developed to prepare Mn3O4 microsflowers associated with 67 
nanosheets. These microflowers were synthesized in a N,N-dimethylformamide (DMF)–water solution 68 
with the aid of CTABr. When tested as an anode material for lithium-ion batteries, the Mn3O4 69 
microflowers exhibited enhanced cycling stability than Mn3O4 nanoparticles. 70 

 71 
2. MATERIAL AND METHODS / EXPERIMENTAL DETAILS / METHODOLOGY (ARIAL, 72 

BOLD, 11 FONT, LEFT ALIGNED, CAPS) 73 
 74 
All chemicals are commercially available. The preparation was performed via a solvothermal method 75 
in a DMF-water mixed solvent. In a typical procedure, 1 mmol manganese acetate tetrahydrate and 76 
0.5 g hexadecyl trimethyl ammonium bromide (CTABr) were added to a 5 ml DMF- 25 ml water 77 
solution and stirred at room temperature for 2 hours. After that, the mixture was transferred to a 50-ml 78 
Teflon-lined stainless autoclave, sealed, kept at 200 OC for 24 hours, cooled to room temperature, 79 
washed with absolute alcohol and dried at 70 OC for 12 hours (marked with DT-1). Sample DT-2 was 80 
prepared without CTABr under the identical condition. While Sample DT-3 was prepared with 30 ml 81 
water in the absence of CTABr. 82 

The morphological characteristics of the as-synthesized materials were observed with a Hitachi S-83 
4800 field emission scanning electron microscope (SEM). X-ray diffraction (XRD) patterns were 84 
recorded on a diffract meter (Co Kα, Analytical, and Pert). Cyclic voltammetry (CV) experiments were 85 
performed with a Chi660c electrochemical workstation at a scan rate of 1 mV S-1. A Land CT2001A 86 
battery tester was used to measure the electrode activities at room temperature. 87 

The  as-synthesized samples were tested as anode materials for lithium-ion batteries. The composite 88 
of negative electrode material was consisted of the active material, a conductive material (super-pure 89 
carbon) and binder polyvinylidene difluoride (PVDF) in a weight ratio of 7/2/1. The Li metal was used 90 
as the counter electrode. The cells were charged and discharged between a 0.05 - 3.0 V voltage limit. 91 
 92 
3. RESULTS AND DISCUSSION 93 
 94 
Three samples were obtained by adjusting synthesis parameters. Both DMF and CTABr play an 95 
important role in the formation of different morphologies. When water was used as the solvent in the 96 
absence of CTABr, the sample appears as monodispersed nanoparticles between 30 and 150 nm in 97 
Fig. 1a,b. While DMF was added, thin microplatelets were obtained, as shown in Fig. 1c, d. The 98 
length and width of microplatelets can be up to several µm. There are also some thin nanobelts. 99 
Some microflowers composed of superimposed thin and wide nanosheets were prepared with CTABr 100 
in the DMF-H2O mixed solvent in Fig. 1e, f. Certain microflower is several µm in size. 101 
 102 



X-ray diffraction was performed to identify the structure of the three samples. It can be seen that 103 
CTABr plays an important role in the crystallization of products. The diffraction peaks of the sample 104 
prepared with DMF, water and CTABr has the highest intensity than samples prepared with water, 105 
CTABr and DMF in Fig. 2. The diffraction peaks can be ascribed to Mn3O4 in Fig. 2a (JCPDS 89-106 
4837). The other samples can also be ascribed to Mn3O4 in Fig. 2b,c , respectively. All the Mn3O4 107 
here are lack of the peak of (101), which means that the is not the high-energy {101} plane. 108 
 109 
The electrochemical performance of Mn3O4 nanoparticles and microflowers was evaluated as anode 110 
materials for lithium-ion batteries (Fig. 3). Fig. 3a shows the 1st and 2nd charge–discharge profiles of 111 
Mn3O4 microflowers at a current density of 240 mA g−1 (Sample T-72). A long discharge platform is 112 
observed at 0.5 V in the first discharge curve, but this platform disappears in the succeeding 113 
discharge curves. The Mn3O4 microflowers-based composite electrode delivers an initial  discharge 114 
capacity of 1496 mA h g−1.  However, the 1st discharge profiles of Mn3O4 nanoparticles show four 115 
discharge platforms at 0.33, 0.44, 0.92 and 1.3 V, implying that a multi-step conversion reaction takes 116 
place. A new platform at 0.7 V appears in the succeeding discharge curves. The Mn3O4 117 
nanoparticles-based composite electrode delivers an initial discharge capacity of 1280 mA h g−1. It 118 
can be seen that Mn3O4 without high-energy {101} plane can also have a very high initial discharge 119 
capacity. It can also be found that Mn3O4 nanoparticles have a steeper charge curve than Mn3O4 120 
microflowers between 1.4 and 3.0 V implying that a severe polarization takes place in the Mn3O4 121 
nanoparticles-based composite electrode. 122 
 123 
We also performed the dQ/dV~V curves obtained from the 1st and 2nd charge-discharge curves of 124 
Mn3O4 nanoparticles and microflowers in Fig. 4. In the first charge-discharge cycle of Mn3O4 125 
nanoparticles, four reduction peaks are centered at 0.33, 0.45, 0.90 and 1.3 V, and the oxidation peak 126 
is at 1.24 V in Fig. 4a. In the first charge-discharge cycle of Mn3O4 microflowers, the reduction and 127 
oxidation peaks are centered at 0.33 and 1.28 V in Fig. 4b, respectively. In the second charge-128 
discharge cycle of Mn3O4 nanoparticles, two reduction peaks are centered at 0.45 and 0.52 V, and the 129 
oxidation peak is at 1.24 V in Fig. 5b. In the second charge-discharge cycle of Mn3O4 microflowers, 130 
the reduction and oxidation peaks are centered at 0.54 and 1.25 V in Fig. 2, respectively. The 131 
reduction peaks in the range of 1.3-0.4 V was ascribed to reduction from Mn(III) to Mn(II), and the 0.4-132 
0.1 V range reflected the reduction from Mn(II) to Mn(0) [47,48]. The difference of first discharge curve 133 
between Mn3O4 microflowers and nanoparticles is because Mn3O4 microflowers only undergoes the 134 
reduction from Mn(II) to Mn(0). While Mn3O4 nanoparticles undergo reductions from Mn(III) to Mn(II) to 135 
Mn(0). In the second discharge process, In the second discharge, the contribution to discharge 136 
capacity is mainly ascribed to the reduction around 0.5 V. The Li+ charge reaction: is Mn3O4 + 8Li+ + 137 
8e- to 3Mn(0) + 8Li2O [49]. Compared to Mn3O4 nanoparticles, Mn3O4 microflowers does not undergo 138 
reduction from Mn(III) to Mn(II) and reduce polarization. 139 
 140 
Fig.6 is the cycling performance testes at current densities of 240 and 480 mA g-1. The Mn3O4 141 
microflowers-based composite electrode delivers a second discharge capacity of 870.2 and 714.8  142 
mA h g−1 in Fig. 6a,b, respectively . A reversible capacity of 392.8 and 358.5 mA h g−1 is retained after 143 
20 cycles. The Mn3O4 nanoparticles-based composite electrode show lower discharge capacity and 144 
worse cycling stability at current densities of 240 and 480 mA g-1 in Fig. 6c,d. It delivers a second 145 
discharge capacity of 332.8 and 156.5 mA h g−1, respectively. The final discharge capacity is even low 146 
to 131.3 and 53.8 mA h g-1. The fast capacity decay of Mn3O4 nanoparticles is due to the reduction 147 
from Mn(III) to Mn(II). The improved electrochemical performance of Mn3O4 microflowers is due to 148 
reduce the activity of Mn3O4,  avoid the complicated reduction from Mn(III) to Mn(II) and reduce 149 
polarization. We have focused on the research of flower-like rutile TiO2 and ammonium vanadium 150 
bronze. We found that the effect of flower-like nanostructures on the reaction kinetics of the electrode 151 
are ascribe to the changes the total impedance and electron transfer resistance [50, 51].The improved 152 
performance of Mn3O4 micro-flowers is also ascribed to  improve the transferring of electron. 153 
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 154 
 155 
Fig. 1. SEM images of samples with (a, b) water, (c, d) water and DMF, and (e, f) water, DMF and 156 

CTABr 157 
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 159 
Fig. 2. Wide angle XRD patterns of samples with (a) water, DMF and CTABr, (b) water and DMF, 160 

and (c) water 161 
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 163 
Fig. 3. The first and second charge–discharge profiles at a current density of 240 mA g-1 of (a) 164 

Mn3O4 microflowers and (b) Mn3O4 nanoparticles 165 
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 168 
Fig. 4. The dQ/dV~cueve derived the first charge–discharge profiles of (a) Mn3O4 nanoparticles 169 

(b) Mn3O4microflowers 170 
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Fig. 5. The dQ/dV~cueve derived the second charge–discharge profiles of (a) Mn3O4 173 
microflowers (b) Mn3O4 nanoparticles 174 
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Fig. 6. The cyclic performance tested at current densities of 240 and 480 mA g-1 of (a, b) Mn3O4 177 
microflowers, and (c, d) Mn3O4 nanoparticles 178 
 179 
 180 
4. CONCLUSION 181 
 182 
In summary, Mn3O4 microflowers associated with super-thin nanosheets were prepared by using a 183 
solvo-thermal method with the aid of surfactant CTABr. The Mn3O4 microflowers exhibit better cycling 184 
stability and higher discharge capacity than Mn3O4 nanoparticles as anode materials for lithium-ion 185 
batteries due to reduce the activity of Mn3O4,  avoid the complicated reduction from Mn(III) to Mn(II) 186 
and reduce polarization. This simple method may also be used to fabricate other anode materials for 187 
lithium-ion batteries with improved electrochemical performance. 188 Comment [M5]: Conclusions should explore 
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