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Abstract

In the present study, Magnetohydrodynamics (MHD) natural convection casson fluid flow over a non-isothermal
stretching sheet embedded in a porous medium is considered. The set of governing differential equations are simpli-
fied by similarity variables into coupled ordinary differential equations. The defined stream functions satisfied the
continuity equation. Roseland approximation is utilized and the present study is therefore limited to an optically
thick fluid. The transformed set of coupled nonlinear ordinary differential equations are then solved numerically via
spectral homotopy analysis method (SHAM). Results revealed that the Magnetic parameter (M) reduces the velocity
profile but produce a significant increase in the temperature profile. Also, it is observed that increasing the thermal
radiation parameter increases the thermal condition of the fluid

Keyword-MHD, Porous medium, SHAM, Viscous, Incompressible, Heat Transfer, Natural Convection.

1. Introduction

Problems in engineering and scientific disciplines are majorly described by partial differential equations (PDEs).
These problems are complex and are difficult to solve analytically. Many great authors in the past have developed
numerous numerical techniques in solving such problems. The basic celebrated equations which govern flow model
in fluid mechanics are the conservation of mass, the conservation of momentum, and the conservation of energy.
Many researchers have developed various kinds of fluid flow model based on the above celebrated equations. Mondal
et al.[1] analyzed the effect of thermal radiation on an unsteady MHD Axisymmetric stagnation-point flow over a
shrinking sheet in presence of temperature dependent thermal conductivity with Navier slip. Metri et al.[2] also
discussed thin film flow and heat transfer over an unsteady stretching sheet with thermal radiation internal heating
in presence of external magnetic field. Spectral relaxation method for entropy generation on a MHD flow and heat
transfer of a Maxwell fluid has been investigated by Shateyi et al.[3]. Shateyi and Makinde[4] analyzed extensively
hydrodynamic stagnation-point flow towards a radially stretching convective heated disk.

Fluid flow through porous medium finds applications in engineering such as irrigation, tribology and lubrication,
solidification, chromatography etc. Convection flow through porous medium has attracted the attention of researchers
in fluid mechanics. Sharma and Aich[5] presented Soret and Dufour effects on steady MHD flow in presence of heat
source through a porous medium over a non-isothermal stretching sheet. Fagbade et al.[6] studied influence of
magnetic field, viscous dissipation and thermophoresis on Darcy-Forcheimer mixed convection flow in fluid saturated
porous media. Heat and mass transfer in visco-elastic fluid through rotating porous channel with hall effect was
investigated by Gaur and Jha[7]. Ahmed et al.[8] presented numerical/Laplace transform analysis for MHD radiating
heat/mass transport in a Darcian porous regime bounded by an oscillating vertical surface. In the same vein, Shateyi
and Marewo[9] presented numerical analysis of unsteady MHD flow near a stagnation point of a two-dimensional
porous body with heat and mass transfer, thermal radiation and chemical reaction.

The study of Non-Newtonian fluids is gaining much interest in recent years due to their applications in many
engineering industries. Ajayi et al.[10] recently considered viscous dissipation effect on the motion of casson fluid
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over an upper horizontal thermally stratified melting surface of a paraboloid of revolution. Ullah et al.[11] studied
MHD natural convection flow of Nanofluid over nonlinear stretching sheet through porous medium with chemical
reaction and thermal radiation. Vijaya et al.[12] studied magnetic field on the flow and heat transfer in a casson thin
film on an unsteady stretching surface in the presence of viscous and internal heating. Jithender et al.[13] studied
influence of viscous dissipation on unsteady MHD natural convective flow of casson fluid over an oscillating vertical
plate via FEM.

Magnetohydrodynamics (MHD) is the study of motion of an electrically conducting fluid as a result of an ap-
plied magnetic field. This word magnetohydrodynamics can be split into three as Magneto-Hydro-Dynamics where
magneto means magnetic field, hydro means liquid, dynamics means movement. Magnetohydrodynamics has nu-
merous applications in engineering and biological sciences such as the generation of electrical power with the help
of an electrically conducting fluid through a magnetic field, in describing the rheological behaviour of blood, plasma
confinement, and electromagnetic casting, etc. Due to the numerous applications of MHD mentioned above many
researchers finds its importance in fluid dynamics. Rao et al.[14] explored MHD transient free convection and chem-
ically reactive flow past a porous vertical plate with radiation and temperature gradient dependent heat source in
slip flow regime. Mahender and Rao[15] has investigated unsteady MHD free convection and mass transfer flow past
a porous vertical plate in presence of viscous dissipation. Ahmed and Das[16] examined MHD mass transfer flow
past a vertical porous plate embedded in a porous medium in a slip flow regime with thermal radiation and chemical
reaction. Rashidi et al.[17] presented free convective heat and mass transfer for MHD fluid flow over a permeable
vertical stretching sheet in the presence of the radiation and buoyancy effects.

Heat transfer describes temperature and the flow of heat. It is everyday experience for heat to flow from a
hot object to a cold object. Many researchers investigated the importance of heat transfer in fluid dynamics.
Mahbub et al.[18] studied soret-dufour effects on the MHD flow and heat transfer of micro-rotation fluid over a
nonlinear stretching plate in the presence of suction. Makinde and Onyejekwe[19] presented a numerical study
of MHD generalized couette flow and heat transfer with variable viscosity and electrical conductivity. In another
study, Idowu et al.[20] presented numerical solution for thermal radiation effect on inclined magnetic field of MHD
free convective heat transfer dissipative fluid flow past a moving vertical porous plate with variable suction. Heat
transfer effects on a viscous dissipative fluid flow past vertical plate in the presence of induced magnetic field has
been studied by Raju et al.[21]. Ahmad[22] explore visco-elastic boundary layer flow past a stretching plate and heat
transfer with variable thermal conductivity.

The Spectral homotopy analysis method (SHAM) is the discrete version of the homotopy analysis method (HAM).
HAM was first introduced by Liao[23] and he is credited for developing the method. In 2010, Motsa et al.[24]
suggested SHAM with the use of Chebyshev pseudo-spectral method to solve linear high order deformation equations.
The benefits of these newly proposed method (SHAM) are better accuracy, it requires few iterations, it has less
computational effort. It worth mentioning in the present study that the spectral homotopy analysis method (SHAM)
is applicable to systems of nonlinear ordinary differential equations and partial differential equations. Numerous
researchers used this method in solving problems in fluid dynamics among which we mention in this research work
those by (Makukula and Motsa[25]; Atabakan et al.[26]; Makukula et al.[27]; Makukula et al.[28]; Zou et al.[29];
Shaban et al.[30]; Shateyi and Motsa[31])

In all the literatures discussed above and to the very best of our knowledge, no study or little attention has
been on MHD natural convection casson fluid flow over a non-Isothermal stretching sheet embedded in a porous
medium. The novelty of our work is to present the analysis of Casson fluid flow over a non-isothermal stretching
sheet embedded in a porous medium. Effects of parameters such as thermal radiation, magnetic field, Joule heating
and heat generation are considered significant in the present study. An elegance and accurate numerical method
called spectral homotopy analysis method is utilized in solving the present modeled equations.

2. Mathematical Formulation

Consider a steady, incompressible, viscous, MHD two-dimensional boundary layer flow over a non-isothermal
stretching sheet embedded in a porous medium. The stretching sheet is placed at the bottom of the fluid porous
medium with the effects of heat generation and radiation [see Fig 1]. The Rosseland approximation is considered
and the fluid is assumed to be optically thin. A magnetic field of uniform strength (B0) is executed transverse to
the sheet. The induced magnetic field is neglected because we assumed the magnetic Reynolds number to be small.
We take x-axis along the sheet and y-axis normal to it. The rheological equation of state for the isotropic and
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Figure 1: Physical Model

incompressible flow of a casson fluid is given by Mukhopadhylay[32] as:

τij = 2(µB +
py√
2π

)eij , π > πc (1)

τij = 2(µB +
py√
2πc

)eij , π < πc (2)

As a result of the Boussineq’s approximation and the basic assumptions made above, the equations governing the
flow model can be written as:
Continuity equation

∂u

∂x
+
∂v

∂y
= 0 (3)

Momentum equation

u
∂u

∂x
+ v

∂v

∂y
= ν

(
1 +

1

β

)
∂2u

∂y2
− ν

k
u− σB2

0

ρ
u (4)

Energy equation

u
∂T

∂x
+ v

∂T

∂y
=

k

ρcp

∂2T

∂y2
− 1

ρcp

∂qr
∂y

+
σB2

0

ρcp
u2 +

µ

ρcp

(
1 +

1

β

)
(
∂u

∂y
)2 +

Q(T − T∞)

ρcp
(5)

subject to the boundary conditions:

u = cx , v = 0 , T = Tw(x) = T∞ +
Dx2

l2
θ(η) as y = 0 (6)

u −→ 0 , T −→ T∞ at y −→∞ (7)

where u and v are fluid velocity components in x and y directions respectively, ν is the fluid viscosity, σ is the
electrical conductivity, B0 is the applied magnetic field, ρ is the density of the fluid, T is the fluid temperature,
T∞ is the free stream temperature, cp is the specific heat at constant pressure, Q is heat generation term, k is the

permeability term. The first term ν ∂
2u
∂y2 on the RHS of the momentum equation is the viscous term, the second

term ν
ku is the porous term, while the term

σB2
0

ρ u is the magnetic field term. It is noticed that the magnetic term
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opposes the flow. In the energy equation, the convection term is u∂T∂x . This term is responsible for the distribution

of temperature. The diffusion term is k
ρcp

∂2T
∂y2 , the radiative term is 1

ρcp

∂qr
∂y . We assumed in the present study that

the radiative flux that dominate the flow is ∂qr
∂y and due to this we neglect the x-direction radiative flux ∂qr

∂x . The

term
σB2

0

ρcp
u2 is the joule heating term. The term µ

ρcp
(∂u∂y )2 is the viscous dissipation term and the heat generation

term is Q(T−T∞)
ρcp

With the stream function defined as u = ∂Ψ
∂y and v = −∂Ψ

∂x , the governing equations becomes:

∂2Ψ

∂x∂y
− ∂2Ψ

∂y∂x
= 0 (8)

∂Ψ

∂y

∂2Ψ

∂x∂y
− ∂Ψ

∂x

∂2Ψ

∂x∂y
= ν

(
1 +

1

β

)
∂3Ψ

∂y3
− ν

k

∂Ψ

∂y
− σB2

0

ρ

∂Ψ

∂y
(9)

∂Ψ

∂y

∂T

∂x
− ∂Ψ

∂x

∂T

∂y
=

k

ρcp

∂2T

∂y2
− 1

ρcp

∂qr
∂y

+
σB2

0

ρcp
(
∂Ψ

∂y
)2 +

µ

ρcp

(
1 +

1

β

)
(
∂2u

∂y2
)2 +

Q(T − T∞)

ρcp
(10)

subject to the boundary conditions:

∂Ψ

∂y
= cx ,

∂Ψ

∂x
= 0 , T = Tw(x) = T∞ +

Dx2

l2
θ(η) as y = 0 (11)

∂Ψ

∂y
−→ 0 , T −→ T∞ at y −→∞ (12)

Obviously from Eq (8) the stream function satisfied the continuity equation. Utilizing the Roseland model, the
radiative heat flux as reported by Fagbade et al.[33] is defined as:

qr = −−4σ∗

3k∗
∂T 4

∂y
(13)

The temperature difference within the flow is assumed to be sufficiently small and T 4 could be expressed as a linear
function of temperature T∞ by truncating in Taylor’s series about k0 as described below;

T (k) = T (k0) + (k − k0)T ′(k0) +
(k − k0)2

2!
T ′′(k0) + ...+

(k − k0)n

2!
Tn(k0) (14)

Neglecting higher order in the equation above result to

T 4 u 4T 3
∞T − 3T 4

∞ (15)

Invoking Eqs. (13) and (15) on (5), the energy equation becomes:

u
∂T

∂x
+ v

∂T

∂y
=

k

ρcp

∂2T

∂y2
+

16σ∗T 3
∞

3ρcpke

∂2T

∂y2
+
σB2

0

ρcp
u2 +

µ

ρcp

(
1 +

1

β

)(
∂u

∂y

)2

+
Q(T − T∞)

ρcp
(16)

simplifying further yields:

u
∂T

∂x
+ v

∂T

∂y
=

1

ρcp

∂2T

∂y2
(k +

16σ∗T 3
∞

3ke
) +

σB2
0

ρcp
u2 +

µ

ρcp
(1 +

1

β
)(
∂u

∂y
)2 +

Q(T − T∞)

ρcp
(17)

To transform the governing Eqs. (3)-(5), the following similarity transformations are introduced

Ψ =
√
cνxf(η) , η =

√
c

ν
y , θ(η) =

T − T∞
Tw − T∞

, T = T∞ +D
x2

l2
θ(η) (18)

In view of Eq (18), the momentum and the energy equations are reduced to the following coupled nonlinear ordinary
differential equations; (

1 +
1

β

)
f ′′′ −

(
1

kp
+M2

)
f ′ + ff ′′ + f ′2 = 0 (19)(

1 +
4

3
Ra

)
θ′′ − 2Prf ′θ + Prfθ′ + PrM2Ecf ′2 + PrEc

(
1 +

1

β

)
f ′′2 + Pr∆θ = 0 (20)
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subject to:

f = 0 , f ′ = 1 , θ = 1 , at η = 0 (21)

f ′(∞) = 0 , θ(∞) = 0 as η −→∞ (22)

where
Pr =

νρcp
k , kp = ck

ν ,M =
(
σB2

0

ρcp

)
, Ec = c2l2

cpD
,∆ = Q

ρcpc
, Ra =

4σ∗T 3
∞

kke

are the Prandtl number, Permeability parameter, magnetic parameter, Eckert number, heat generation parameter
and thermal radiation parameter.

3. Spectral Homotopy Analysis Method (SHAM)

SHAM is the numerical version of homotopy analysis method (HAM) proposed by Liao[23]. SHAM is discussed
extensively in the investigation of Motsa et al.[24]. In spectral homotopy analysis method, the linearized equations
are solved using the Chebyshev spectral collocation method. Many researchers preferred spectral methods than other
numerical method because of their accuracy, it requires few iterations and it is very easy to compute. The SHAM
requires that the nonlinear equations under investigation is split into linear and nonlinear parts. In implementing
SHAM, we first transform the domain of the problem from [0, 1] to [−1, 1] using the algebraic mapping defined below:

ξ =
2η

L
− 1 , ξ ∈ [−1, 1] (23)

For easy computation and convenience we make the boundary conditions homogeneous by applying the following
transformation

f(η) = f(ξ) + f0(η) , θ(η) = θ(ξ) + θ0(η) (24)

where f0(η) = 1 − exp(−η) , θ0 = exp(−η) are chosen to satisfy the boundary conditions in Eq. (21) and (22).
Substituting (23) and (24) into the transformed governing equations (19)-(20) and boundary conditions (21)-(22),
we obtain(

1 +
1

β

)
f ′′′(ξ) + f(ξ)f ′′(ξ) + α1f(ξ) + α2f

′′(ξ) + f ′(ξ)f ′(ξ) + α3f
′(ξ)−

(
1

kp
+M2

)
f ′(ξ) = H1(η) (25)

(
1 +

4

3
Ra

)
θ′′(ξ) + Prf(ξ)θ′(ξ) + β1f(ξ) + β2θ

′(ξ)− 2Prf ′(ξ)θ(ξ) + β3f
′(ξ) + β4θ(ξ)+

PrM2Ecf ′(ξ)f ′(ξ) + β5f
′(ξ) + PrEc

(
1 +

1

β

)
f ′′(ξ)f ′′(ξ) + β6f

′′(ξ) + Pr∆θ(ξ) = H2(η) (26)

subject to:
f(−1) = f ′(1) = 0 , θ(−1) = θ(1) = 0 (27)

where prime connote differentiation with respect to ξ and we set

α1 = f ′′0 (η), α2 = f0(η), α3 = 2f ′0(η), H1(η) = −
(

1 +
1

β

)
f ′′′0 (η)− f0(η)f ′′0 (η)− f ′0(η)f ′0(η) +

(
1

kp
+M2

)
f ′0,

β1 = Prθ′0(η), β2 = Prf0(η), β3 = −2Prθ0(η), β4 = −2Prf ′0(η), β5 = 2PrM2Ecf ′0(η), β6 = 2PrEc

(
1 +

1

β

)
f ′′0 (η),

H2(η) = −
(

1 +
4

3
Ra

)
θ′′0 (η)−Prf0(η)θ′(η)+2Prf ′0(η)θ0(η)−PrM2Ecf ′0(η)−PrEc

(
1 +

1

β

)
f ′′0 (η)f ′′0 (η)−Pr∆θ0(η)

(28)
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In Eqs (25)-(26), the non-homogeneous linear part is given by(
1 +

1

β

)
f ′′′l + α1fl + α2f

′′
l + α3f

′
l −

(
1

kp
+M2

)
f ′l = H1(η) (29)(

1 +
4

3
Ra

)
θ′′l + β1fl + β2θ

′
l + β3f

′
l + β4θl + β5f

′
l + β6f

′′
l + Pr∆θl = H2(η) (30)

subject to:
f(−1) = f ′(1) = 0 , θ(−1) = θ(1) = 0 (31)

Chebyshev pseudospectral method is used to solve (29)-(30). The unknown functions fl(ξ), θl(ξ) are approximated
as a truncated series of chebyshev polynomials of the form:

fl(ξ) ≈ fNl =

N∑
k=0

fNk T1k(ξJ) J = 0, 1, 2, ..., N (32)

θl(ξ) ≈ θNl =

N∑
k=0

θNk T2k(ξJ) J = 0, 1, 2, ..., N (33)

where T1k and T2k are the kth Chebyshev polynomials and their coefficients is given by fk, and θk respectively,
ξ0, ξ1, ξ2, ..., ξN are Gauss-Lobatto collocation point defined by

ξJ = cos

(
πJ

N

)
, J = 0, 1, 2, ..., N (34)

where N is the number of collocation points. The derivatives of the function fl(ξ), and θl(ξ) at all the collocation
points are defined as;

drfl
dξr

=

N∑
k=0

Dr
kJfl(ξJ),

drθl
dξr

=

N∑
k=0

Dr
kJθl(ξJ) (35)

In Eq. (25) above, r is the order of differentiation, D = 2
LD where D is the Chebyshev spectral differentiation

matrix. Invoking Eqs (32)-(35) into Eqs (29)-(30), we have

AFL = G (36)

Subject to the boundary conditions

fl(ξN ) = 0,

N∑
k=0

DNkfk(ξk) = 1,

N∑
k=0

D0kfk(ξk) = 0, θl(ξN ) = 1.θl(ξ0) = 0. (37)

where [
A11 A12

A21 A22

]
(38)

A11 =

(
1 +

1

β

)
D3 + α1I + α2D

2 + α3D −
(

1

kp
+M2

)
D, A12 = 0,

A21 = β1 + β3D + β5D + β6D
2 A22 =

(
1 +

4

3
Ra

)
D2 + β2D + β4I + Pr∆ (39)

And;
Fl = [fl(ξ0), ..., fl(ξN ), θl(ξ0), ..., θl(ξN )]

G = [Hl(η0), ...,Hl(ηN ), H2(η0), ...,H2(ηN )]
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αi = diag([αi(η0), ..., αi(ηN−1), αi(ηN−1, αi(ηN ])

βi = diag([βi(η0), ..., βi(ηN−1), βi(ηN−1, βi(ηN ]) i = 1, 2, 3

We delete the first and the last rows and columns of A in other to implement the boundary conditions (37).
Also, we imposed the boundary conditions (37) on the first and last rows of the modified matrix A, and setting the
modified matrix G to zero, all the values of fl(ξ0), ..., fl(ξN ), θl(ξ0), ..., θl(ξN ) are determined from;

Fl = A−1.G (40)

Eq. (40) above provide us the initial approximation for the SHAM solution of the governing equations. To sought
the SHAM approximate solutions of (25)-(26), we define the following linear operators

Lf [f̄(η, q), θ̄(η, q)] =

(
1 +

1

β

)
f ′′′ + α1f + α2f

′′ + α3f
′ −
(

1

kp
+M2

)
f ′ (41)

Lθ[f̄(η, q), θ̄(η, q)] = (1 +
4

3
Ra)θ′′ + β1f + β2θ

′ + β3f
′ + β4θ + β5f

′ + β6f
′′ + Pr∆θ (42)

where qε[0, 1] is the embedding parameter, f̄(η, q), andθ̄(η, q) are the unknown functions. The zeroth order deforma-
tion equation are given by

(1− q)Lf [f̄(η; q)− fl(ξ)] = q~fNf [f̄(ξ; q), θ̄(ξ, q)]−H1, (43)

(1− q)Lθ[θ̄(η; q)− θl(ξ)] = q~fNθ[f̄(ξ; q), θ̄(ξ, q)]−H2. (44)

Where ~f , ~θ are non-zero convergence controlling auxillary parameter and Nf̄ and Nθ are non-linear operations
given by:

Nf [f̄(η, q), θ̄(η, q)] = ff ′′ + f ′f ′ (45)

Nθ[f̄(η, q), θ̄(η, q)] = fθ′ − 2Prf ′θ + PrM2Ecf ′f ′ + PrEc

(
1 +

1

β

)
f ′′f ′′ (46)

Differentiating the above equation m-times with respect to q, setting q = 0 and dividing the resulting equations by
m! yields the mth order deformation equations.

Lf [fm(ξ)− χmfm−1(ξ)] = ~fRfm, (47)

Lθ[θm(ξ)− χmθm−1(ξ)] = ~θRθm. (48)

Subject to:

fm(−1) = f ′m(−1) = f ′m(1) = 0, (49)

θm(−1) = θm(1) = 0. (50)

Where;

Rfm(ξ) =

(
1 +

1

β

)
f ′′′m−1 + α1fm−1 + α2f

′′
m−1 + α3f

′
m−1 −

(
1

kp
+M2

)
f ′m−1+

n−1∑
n=0

(fnf
′′
m−1−n + f ′nf

′
m−1−n)−H1(η)(1−Xm), (51)

Rθm(ξ) =

(
1 +

4

3
Ra

)
θ′′m−1 + β1fm−1 + β2θ

′
m−1 + β3f

′
m−1 + β4θm−1 + β5f

′
m−1 + β6f

′′
m−1 + Pr∆θm−1+

m−1∑
n=0

(
fnθ
′
m−1−n − 2Prf ′nθm−1−n + PrM2Ecf ′nf

′
m−1−n + PrEc

(
1 +

1

β

)
f ′′nf

′′
m−1−n

)
. (52)
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Applying Chebyshev pseudo-spectral transformation on above gives;

Afm = (Xm + ~)Afm−1 − ~(1−Xm)G+ ~Qm−1

subject to the boundary conditions

fm(ξN ) = 0, fm(ξ0) = 0, (53)

θm(ξN ) = 0, , θm(ξ0) = 0. (54)

where A and G are defined above

Fm = [fm(ξ0), fm(ξ1), ..., fm(ξN ), θm(ξ0), θm(ξ1), ..., θm(ξN )]T

Q1,m−1 =

m−1∑
n=0

[D2fm−1−nfn +DfnDfm−1−n] (55)

Q2,m−1 =

m−1∑
n=0

[PrfnDθm−1−n − 2PrDfnθm−1−n + PrM2EcDfnDfm−1−n + PrEc

(
1 +

1

β

)
D2fnD

2fm−1−n](56)

The boundary conditions above are implemented on A on the left hand-side in rows 1, N,N + 1, (N + 1) respec-
tively as before with the initial solution above. The corresponding rows, all column of A on the right hand-side
G,Q1,m−1, Q2,m−1 are all set to zero. This result in the following recursive formular m ≥ 1

Fm = (χm + ~)A−1.Āfm−1 + ~A−1[Qm−1 − (1 + χm)G], (57)

Θm = (χm + ~)A−1.Āθm−1 + ~A−1[Qm−1 − (1 + χm)G] (58)

4. Graphs, Results and Discussion

A novel and efficient method called spectral homotopy analysis method (SHAM) was used to solve the set
of governing coupled nonlinear ordinary differential equations. The effects of all pertinent flow parameters on the
velocity and temperature profile were examined. To get a clear insight to physics of the problem, values of controlling
parameters are set as Pr = 0.71, Gr = 2.0,M = 1.0, kp = 0.1, R = 0.5, Ec = 0.01,∆ = 0.1. All tables and graphs
corresponds to the above stated values unless or otherwise stated. It worth mentioning in the present study that all
programs for generating solutions were coded in MATLAB R2012a. Our results were generated at L = 30 and the
number of collocation point at Nx = 100 and we observed that if the value is increased there is no changes on the
numerical results of the skin-friction and Nusselt number in Table 1 and 2. In table 1, an increase in both viscous
dissipation term. Table 2 presents the computed values of thermal radiation parameter. The table implies increase
in the radiation parameter intensify the skin-friction coefficient and Nusselt number.

The graphical solution of all controlling flow parameters are presented in figures 2-7. In figure 2 the effects of
the magnetic parameter is presented. From the figure 2 it is observed that increase in magnetic parameter leads to
decrease in the velocity and temperature profiles respectively. The application of the transverse magnetic field which
gives rise to a drag-like or resistive force called Lorentz force slows down the motion of an electrically conducting
fluid. It is observed that the resistive force warm the stretching sheet and thereby increases the temperature profile.

The effect of the permeability parameter (kp) is presented in figure 3. The results revealed that an increase in (kp)
lead to increase in the velocity profile but reduces the temperature profile. Figure 4 presents the effect of Prandtl
number (Pr) on the velocity and temperature profiles respectively. It is noted from the figure 4 that increasing the
Pr decreases both velocity and temperature profiles. This is because fluids with higher Pr possesses more viscosities
and thereby lower the skin-friction. Also, Pr decreases the temperature profile due to small value of Prandtl number
say Pr < 1 the fluid is highly conducive. The Prandtl number for air is (Pr = 0.71) while that of water is (Pr = 7.0).
Furthermore, when Pr = 1 the momentum diffusion rate is beyond thermal diffusion rate. Figure 5 depicted effect
of the casson parameter (β) on the velocity and temperature profiles. A significant reduction in the velocity profile
is observed as the β is increasing. Increasing β leads to an increase in the fluid dynamic viscosity. Intensifying the
casson parameter increases the temperature profile as seen in figure (5).
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Increasing the viscous dissipative term i.e Eckert number (Ec) intensifies both the velocity and temperature
profiles as presented in figure 6. Ec is the relationship between the kinetic energy in the flow and the enthalpy.
Figure 7 presents the effect of heat generation parameter on the velocity and temperature profiles. From figure
7, we discovered that as a result of the generation of heat there is increase the velocity in the boundary layer.
Figure 8 displayed the effect of thermal radiation parameter on the temperature and velocity profile respectively. Ra
described the contribution of conduction mode of heat transfer to radiation mode of heat transfer. Thermal radiation
enhances convective flow. When Ra is increased, there is a significant increase in the thermal condition of fluid and
its boundary layer. Also, when thermal radiation is increased, there is enhancement of the heat flux from the plate
which increases both velocity and temperature profiles as shown in figure 8.
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Figure 2: Velocity and Temperature profiles for different values of Magnetic parameter M

Figure 3: Velocity and Temperature profiles for different values of permeability parameter kp

Figure 4: Velocity and Temperature profiles for different values of Prandtl number Pr
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Figure 5: Velocity and Temperature profiles for different values of casson parameter β

Figure 6: Velocity and Temperature profiles for different values of Eckert number Ec

Figure 7: Velocity and Temperature profiles for different values of heat generation parameter ∆
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Figure 8: Velocity and Temperature profiles for different values of thermal radiation parameter Ra

Table 1: Computational values of skin friction coefficient Cf and local Nusselt number Nu for different values of
Eckert number and casson parameter β for Pr = 0.71,M = 1.0, kp = 0.1, Ra = 0.5,∆ = 0.1

Ec β Cf Nu

0.01 0 1.65444360 0.91049042
0.5 1.43163937 0.96027683
1 1.22060494 1.00476744

0.1 0 1.65444360 0.85841294
0.5 1.42931715 0.91090667
1 1.21567661 0.95810125

Table 2: Computational values of skin-friction coefficient Cf and local Nusselt number Nu for different values of
thermal radiation parameter Ra for Pr = 0.71, Gr = 2.0,M = 1.0, kp = 0.1,∆ = 0.1

Ra u′(0) −θ′(0)
0 0.56326856 0.49095360

0.5 0.65338687 0.65965460
1.0 0.7228686 0.80976786
2.0 0.82725490 1.08571491
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5. Conclusion

In the present study, we have accounted for the analysis of the spectral homotopy method (SHAM) for MHD
natural convection Casson fluid flow over a non-isothermal stretching sheet embedded in a porous medium.. SHAM
adopts the Chebyshev pheudospectral method to solve the system of equations. The SHAM is the numerical version
of the proposed method by Liao[23] called homotopy analysis method. The SHAM is an efficient method which is
easy to compute and gives accurate results. From our results, the following conclusions were drawn:

• Increasing the Casson parameter (β) decreases the velocity profile and increases the temperature profile.

• The magnetic parameter decreases the velocity profile but increases the temperature profile.

• The effects of heat generation and thermal radiation on the flow is significant and thereby finds application in
numerous problems in engineering.
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