3

4

5 6 7 **Case study**

MODELING AND OPTIMIZATION OF OPERATIONAL COSTS OF NISSAN URVAN VEHICLES OF A FLEET OPERATOR.

8 Abstract

9 This study focused on Modeling and Optimization of the operational costs of Nissan Urvan 10 Vehicles of a fleet operator in Anambra State Nigeria. The special design used to fit a second order model needed to optimize the operational costs of Nissan Urvan Vehicles was Box -11 12 Behnken design while response surface method (RSM) was used to model and optimize performance characteristics of the vehicles. The response function of the second order model 13 is best characterized by multivariate power equation. Ten (10) years operation data were 14 collected from two sources, namely primary and secondary sources. The primary source of 15 data was from the workshop manager and the statistical office of the company, and from 16 Metrological Institute of Nigeria. The secondary source of data was from Books consulted at 17 different Libraries. The outcome of the analysis of variance (ANOVA) for RSM optimization 18 19 of operational costs of Nissan Urvan vehicles showed that all the control factors are 20 significant except factors (B, C, D) of replacement costs. From the result of the income 21 generated at optimum condition and the sum of the maintenance & replacement costs 22 compared, by the year 2013 the income generated is less than the sum of maintenance & 23 replacement costs. It was observed that the operation of the transportation system is economical for a period of 8 years (from 2005 - 2012), where the income generated is more 24 25 than the maintenance & replacement costs. It is hereby recommended that response surface model should be deployed for the operation analysis of the case study company vehicles to 26 27 enhance efficient utilization and profitability.

28

29 30

Keywords: Nissan Urvan vehicles, Operational Costs, Response Surface Model, Numerical Optimization.

31

32 **1** INTRODUCTION

33 The design life of most vehicles requires periodic maintenance. Failure to perform 34 maintenance activities intended by the equipment's designer shortens the operating life of the 35 equipment (Abdul, 2011). Vehicles and equipment are subject to deterioration due to their 36 use and exposure to environmental conditions as a result of wear and tear of parts in relative 37 motion and improper lubrication of the sliding parts. Maintenance is necessary to enhance 38 utilization of vehicles with minimum cost of stoppage and repair. If deterioration and 39 breakdown are not checked they may render the vehicles unserviceable, therefore, it is 40 necessary to attend to them from time to time, repair and recondition them so as to enhance 41 their life economically and protect them from failure (Goldberg et.al, 2004). This has brought 42 the role of maintenance and replacement as an important activity in the transportation

43 industries (Latham, 2008). Maintenance is defined as the combination of activities to restore 44 the component or equipment to a state in which it can perform its designated functions 45 (Duffuaa et. al., 2001). Every vehicle requires maintenance even if it is best designed; the 46 maintenance must be done at such a period when it will have least disruptions of service, 47 therefore, vehicles, machines undergo maintenance when not in use or their use may be 48 postponed without affecting service and operation (Clarotti et. al., 2004). However, in reality 49 most of the equipment failures are influenced not only by the internal factor (age-time usage) 50 but also by the external factor. The external factors would be the effects of the environment 51 (dust, humidity, precipitation, temperature and heat), human skills, product types and 52 maintenance activities. The timely maintenance of vehicles in the fleet is one of the 53 fundamental programs that serve as a backbone of a successful transport system (Gertsbalch, 54 1997). Vehicle maintenance expenses usually increase as the age of a vehicle advances 55 thereby triggering replacement. The vehicles are subject to breakdowns and deterioration 56 therefore, maintenance policy can be beneficial in order to prevent failures during operation 57 (Steven, 2009). Besides, vehicle maintenance is an important service function of an efficient 58 operational/productive system. It helps in maintaining and increasing the operational 59 efficiency of the transport facilities and thus contributes to increase in revenue by reducing 60 the operating costs and increasing the effectiveness of production (Zeqing and Price, 2006). 61 Conversely, poorly maintained vehicles may lead to more frequent parts failures, poor 62 utilization and delayed operation schedules. However, poor maintenance may mean more 63 frequent vehicle replacement because of shorter life. For many asset-intensive industries the 64 maintenance costs are a significant portion of the operational costs, the maintenance 65 expenditure accounts for 20-50% of the service cost for the industry depending on the level 66 (age) of the equipment (Parida, 2007).

67 Prior to this study, the case company was challenged with high cost of maintaining 68 company's vehicles which reduces and generally affect the total net profit of the company. 69 However, this research work is geared towards optimization of the operational costs of 70 Nissan Urvan vehicles of the case company by the application of response surface method 71 which is best characterized by multivariate power law model (Chapra and Canale, 2006). 72 This would help in making an optimal replacement policy so that a particular vehicle is 73 replaced when it has reached its optimum service. It would also help the company to prevent 74 losses by making the proper decisions based on relevant information.

Although, many approaches and models have been used in the past to analyze the operational
 costs of transportation industries, but they could not be used widely to fit second order model

77 to the response surface and were not able to display the extent of the significance of the 78 control factors on the yield (Amponsah, 2006). With these proposed model an optimal 79 replacement policy can be made so that a particular vehicle is replaced when it has reached its 80 optimum service. The accomplishment of the response surface method for automobile 81 replacement policy stated would assist the case study company and other transport service 82 providers nationwide to better access and manage their vehicles that need particularly 83 maintenance and replacement. The creation of a more effective equipment replacement 84 system would be of tremendous benefit both in potential labor and vehicle maintenance Naira 85 savings. Finally, the study would be used as a guide for organizations to improve or promote 86 their maintenance strategies and also benefit future researchers in this field on how to adopt 87 maintenance measures. The objective of this study is to optimize the operational costs of 88 Nissan Urvan vehicles of a fleet operator using response surface method.

89

90 2. MATERIALS AND METHODOLOGY

91 2.1 DATA COLLECTION

92 In this study, data on the type and number of vehicles, maintenance costs, replacement costs 93 and income generated from 2005 to 2014 were collected from the maintenance workshop of 94 the company, while data on environmental factors were obtained from the Metrological 95 Institute of Nigeria. The data obtained were presented as shown in Table 1.

96 Table 1: Shows data of environmental factors and data collected from Nissan Urvan

97

fleet operator's office.

	Factor A	Factor B	Factor C	Factor D	Maint.	Re place.	Icome
Year				Re <i>lative</i>	Cost	Cost	generated
	Dist.(Km)	Pr eci.(Cubic)	<i>Temp</i> .(° <i>C</i>)	humidity	(#x1000)	(#x1000)	(#x1000)
2005	101616	1620	29.2	148	1969	1992	9807.30
2006	102784	1500	28.5	156.9	2250	2240	9782.40
2007	105120	1650.3	28.96	176.98	2520	2400	9660.00
2008	113296	1507	28.15	159.56	2815	2500	9515.00
2009	116800	1579.1	28.3	126.2	3030	2568	9020.00
2010	117384	1506.6	27.8	122.65	3240	2681	8850.00
2011	117968	1695.4	28.85	129.7	3360	2705	8610.00
2012	118552	1662	27.9	148	3590	2805	8489.70
2013	119720	2294.7	28.3	122.65	3995	2856	8340.00
2014	120304	1695	24.4	129.68	4005	2943	8300.00

98

99 100

101 2.2 FITTING A SECOND ORDER MODEL TO THE DATA COLLECTED.

102 In this study the data obtained from the statistical office of the fleet operator is linearized on

103 the assumption that the sample results follow a power law model of the form:

104
$$Y = a_0 A^{a1} B^{a2} C^{a3} \dots N^{an}$$
 (Chapra and Canale, 2006). (1)

and that the response surface is optimized by a second order polynomial

106 equation stated as:

107
$$Y = \beta_0 + \sum_{i=1}^q \beta_i x_i + \sum_{i=1}^q \beta_{ii} x_i^2 + \sum_{i=1}^{q-1} \sum_{j=2}^q \beta_{ij} + \varepsilon$$
(2)

- 108 where *Y* is the predicted response (dependent variable),
- q is the number of factors (independent variables),
- 110 X_i is the input factors (i = 1, 2 etc),
- 111 β_0 is the constant coefficient, and

112 β_{i} , β_{ij} and β_{ii} are the coefficients of linear, interaction and quadratic terms

113 respectively.

114 For four factors, three level design equation (1) reduces to:

115
$$Y = a_0 A^{a_1} B^{a_2} C^{a_3} D^{a_4}$$
(3)

116 And equation (2) expanded to:

117
$$Y = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \beta_3 x_3 + \beta_4 x_4 + \beta_{11} x_1^2 + \beta_{22} x_2^2 + \beta_{33} x_3^2 + \beta_{44} x_4^2 + \beta_{12} x_1 x_2 + \beta_{13} x_1 x_3$$

118
$$+ \beta_{14} x_1 x_4 + \beta_{23} x_2 x_3 + \beta_{24} x_2 x_4 + \beta_{34} x_3 x_4$$
(4)

The coefficient parameters were estimated by linearizing the data of maintenance cost, replacement cost and income generated of Table 1 and using regression as analysis tool for evaluating transformed log data of input parameters presented in Table 2, 3 and 4, and expressed them as power law models of the form of equation (3).

123
$$Y_{mcost} = 2.933607451E \cdot 14A^{3.183453789}B^{0.4665364202}C^{-0.80574072}D^{0.274461545}$$
(5)

124
$$Y_{\text{rcost}} = 6.418851538\text{E}-07\text{A}^{1.813623751}\text{B}^{0.139777175}\text{C}^{-0.378185139}\text{D}^{0.247298984}$$
 (6)

125
$$Y_{\text{income gen.}} = 22976659.8 \text{A}^{-0.668996929} \text{B}^{-0.147041359} \text{C}^{-0.240003793} \text{D}^{0.046911726}$$
 (7)

Where factors A, B, C and D are the distance covered, precipitation, temperature and relativehumidity respectively.

128

	Factor	Factor	Factor	Factor	Re sponse	Log 1	Log B	LogC	LogD	Log Y
	A	В	С	D	Y	Log A	LOG D	Log C	Log D	Log I
Ī	101616	1620	29.2	148	1969	5.007	3.2095	1.4654	2.1703	3.2942
	102784	1500	28.5	156.9	2250	5.012	3.1761	1.4548	2.1956	3.3522
	105120	1650.3	28.96	176.98	2520	5.0217	3.2176	1.4618	2.2479	3.4014
	113296	1507	28.15	159.56	2815	5.0542	3.1781	1.4495	2.2029	3.4495
	116800	1579.1	28.3	126.2	3030	5.0674	3.1984	1.4518	2.1011	3.4814
	117384	1506.6	27.8	122.65	3240	5.0696	3.1780	1.4440	2.089	3.5105
	117968	1695.4	28.85	129.7	3360	5.0718	3.2293	1.4601	2.1129	3.5263
	118552	1662	27.9	148	3590	5.0739	3.2206	1.4456	2.1703	3.5551
	119720	2294.7	28.3	122.65	3995	5.0782	3.3607	1.4518	2.0887	3.6015
	120304	1695	24.4	129.68	4005	5.0803	3.2292	1.3874	2.1129	3.6026

129 Table 2: Log transformed data for maintenance cost.

131

130

132 Table 3: Log transformed data for replacement cost.

Factor	Factor	Factor	Factor	Re sponse	T A	L. D	Lee	LeeD	LeeV
A	В	C	D	Y	Log A	Log B	Log C	Log D	Log Y
101616	1620	29.2	148	1992	5.007	3.2095	1.4654	2.1703	3.2993
102784	1500	28.5	156.9	2240	5.012	3.1761	1.4548	2.1956	3.3502
105120	1650.3	28.96	176.98	2400	5.0217	3.2176	1.4618	2.2479	3.3802
113296	1507	28.15	159.56	2500	5.0542	3.1781	1.4495	2.2029	3.3979
116800	1579.1	28.3	126.2	2568	5.0674	3.1984	1.4518	2.1011	3.4096
117384	1506.6	27.8	122.65	2681	5.0696	3.1780	1.4440	2.089	3.4283
117968	1695.4	28.85	129.7	2705	5.0718	3.2293	1.4601	2.1129	3.4322
118552	1662	27.9	148	2805	5.0739	3.2206	1.4456	2.1703	3.4479
119720	2294.7	28.3	122.65	2856	5.0782	3.3607	1.4518	2.0887	3.4558
120304	1695	24.4	129.68	2943	5.0803	3.2292	1.3874	2.1129	3.4688

134

133

135 Table 4: Log transformed data for income generated

Factor	Factor	Factor	Factor	Re sponse	Lag	Lag	LanC	LazD	Larv
A	В	C	D	Y	Log A	Log B	Log C	Log D	Log Y
101616	1620	29.2	148	1992	5.007	3.2095	1.4654	2.1703	3.9915
102784	1500	28.5	156.9	2240	5.012	3.1761	1.4548	2.1956	3.9904
105120	1650.3	28.96	176.98	2400	5.0217	3.2176	1.4618	2.2479	3.9850
113296	1507	28.15	159.56	2500	5.0542	3.1781	1.4495	2.2029	3.9784
116800	1579.1	28.3	126.2	2568	5.0674	3.1984	1.4518	2.1011	3.9552
117384	1506.6	27.8	122.65	2681	5.0696	3.1780	1.4440	2.089	3.9469
117968	1695.4	28.85	129.7	2705	5.0718	3.2293	1.4601	2.1129	3.9350
118552	1662	27.9	148	2805	5.0739	3.2206	1.4456	2.1703	3.9289
119720	2294.7	28.3	122.65	2856	5.0782	3.3607	1.4518	2.0887	3.9212
120304	1695	24.4	129.68	2943	5.0803	3.2292	1.3874	2.1129	3.9191

137

136

138 The power law models of Eqs. (5) - (7) were used to evaluate the design matrix of Box –

139 Behnken design and presented in Tables 5, 6 and 7 for maintenance, replacement and income

140 generated respectively.

Std. Order	Run order	Distance	Precipitation	Temp.	Relative	Response
					Humidity	Maintenance
						cost
23	1	110960	1500.00	26.8	176.980	2970.01
14	2	110960	2294.70	24.4	149.815	3729.47
3	3	101616	2294.70	26.8	149.815	2613.34
2	4	120304	1500.00	26.8	149.815	3670.10
8	5	110960	1897.35	29.2	176.980	3092.00
18	6	120304	1897.35	24.4	149.815	4415.72
26	7	110960	1897.35	26.8	149.815	3165.11
22	8	110960	2294.70	26.8	122.650	3273.18
11	9	101616	1897.35	26.8	176.980	2503.97
13	10	110960	1500.00	24.4	149.815	3060.03
27	11	110960	1897.35	26.8	149.815	3165.11
15	12	110960	1500.00	29.2	149.815	2647.79
10	13	120304	1897.35	26.8	122.650	3875.47
1	14	101616	1500.00	26.8	149.815	2144.24
21	15	110960	1500.00	26.8	122.650	2685.64
16	16	110960	2294.70	29.2	149.815	3227.05
25	17	110960	1897.35	26.8	149.815	3165.11
5	18	110960	1897.35	24.4	122.650	3231.25
9	19	101616	1897.35	26.8	122.650	2264.22
24	20	110960	2294.70	26.8	176.980	3619.76
19	21	101616	1897.35	29.2	149.815	2232.31
12	22	120304	1897.35	26.8	176.980	4285.82
20	23	120304	1897.35	29.2	149.815	3820.84
6	24	110960	1897.35	29.2	122.650	2795.95

141 Table 5: Design matrix of Box-Behnken design for optimization of maintenance costs.

17	25	101616	1897.35	24.4	149.815	2579.86
7	26	110960	1897.35	24.4	176.980	3573.39
4	27	120304	2294.70	26.8	149.815	4473.01

143 The regression model resulting from the evaluation of the design matrix of Box-Behnken design for 144 maintenance cost is presented as equation (8) for uncoded factors in chapter 4, section 4.1. Also the

- 145 test for statistical significance of the response model is presented as Table 8 in section 4.2 of the same
- 146 chapter.

147	Table 6: Design matrix of Box-B	ehnken design for optimiz	ation of replacement cost.
-----	---------------------------------	---------------------------	----------------------------

Std. Order	Run order	Distance	Precipitation	Temp.	Relative	Response
					Humidity	Maintenance
						cost
23	1	110960	1500.00	26.8	176.980	2613.64
14	2	110960	2294.70	24.4	149.815	2757.82
3	3	101616	2294.70	26.8	149.815	2269.18
2	4	120304	1500.00	26.8	149.815	2904.24
8	5	110960	1897.35	29.2	176.980	2614.72
18	6	120304	1897.35	24.4	149.815	3109.61
26	7	110960	1897.35	26.8	149.815	2591.88
22	8	110960	2294.70	26.8	122.650	2533.20
11	9	101616	1897.35	26.8	176.980	2302.62
13	10	110960	1500.00	24.4	149.815	2598.71
27	11	110960	1897.35	26.8	149.815	2591.88
15	12	110960	1500.00	29.2	149.815	2428.08
10	13	120304	1897.35	26.8	122.650	2856.34
1	14	101616	1500.00	26.8	149.815	2138.26
21	15	110960	1500.00	26.8	122.650	2387.05
16	16	110960	2294.70	29.2	149.815	2576.74
25	17	110960	1897.35	26.8	149.815	2591.88
5	18	110960	1897.35	24.4	122.650	2555.86
9	19	101616	1897.35	26.8	122.650	2103.00
24	20	110960	2294.70	26.8	176.980	2773.66
19	21	101616	1897.35	29.2	149.815	2139.14
12	22	120304	1897.35	26.8	176.980	3127.48
20	23	120304	1897.35	29.2	149.815	2905.43
6	24	110960	1897.35	29.2	122.650	2388.03
17	25	101616	1897.35	24.4	149.815	2289.47
7	26	110960	1897.35	24.4	176.980	2798.47
4	27	120304	2294.70	26.8	149.815	3082.05

148 The regression model resulting from the evaluation of the design matrix of Box-Behnken 149 design for replacement cost is stated as equations (9) for uncoded factors in chapter 4, section 150 4.1. Also the test for statistical significance of the response model is presented as Table 9 in section 151 4.2 of the same chapter.

152

Std. Order	Run order	Distance	Precipitation	Temp.	Relative	Response
	Run order	Distance	recipitation	remp.	Humidity	Income
					inamatey	Generated
27	1	110960	1897.35	26.8	149.815	8889.55
4	2	120304	2294.70	26.8	149.815	8189.29
19	3	101616	1897.35	29.2	149.815	9624.49
15	4	110960	1500.00	29.2	149.815	9393.46
24	5	110960	2294.70	26.8	176.980	8712.29
11	6	101616	1897.35	26.8	176.980	9502.40
21	7	110960	1500.00	26.8	122.650	9116.12
1	8	101616	1500.00	26.8	149.815	9759.88
16	9	110960	2294.70	29.2	149.815	8824.23
13	10	110960	1500.00	24.4	149.815	8997.20
22	11	110960	2294.70	26.8	122.650	8563.69
6	12	110960	1897.35	29.2	122.650	8989.66
14	13	110960	2294.70	24.4	149.815	8451.97
7	14	110960	1897.35	24.4	176.980	8759.83
2	15	120304	1500.00	26.8	149.815	8717.56
8	16	110960	1897.35	29.2	176.980	9145.64
25	17	110960	1897.35	26.8	149.815	8889.55
23	18	110960	1500.00	26.8	176.980	9274.30
20	19	120304	1897.35	29.2	149.815	8596.63
26	20	110960	1897.35	26.8	149.815	8889.55
3	21	101616	2294.70	26.8	149.815	9168.45
9	22	101616	1897.35	26.8	122.650	9340.33
5	23	110960	1897.35	24.4	122.650	8610.43
10	24	120304	1897.35	26.8	122.650	8342.82
18	25	120304	1897.35	24.4	149.815	8233.98
12	26	120304	1897.35	26.8	176.980	8487.58
17	27	101616	1897.35	24.4	149.815	9218.48

154 Table 7: Design matrix of Box-Behnken design for optimization of income generated.

17271016161897.3524.4149.8159218.48The regression model equation for uncoded factors is presented in chapter 4, section 4.1 as 155

156 equation (10). Also the test for statistical significance of the response model is presented as Table 10 157 in section 2 of the same chapter.

3.1 OPTIMIZATION PLOTS 158

159 Optimization plot is a graphical representation of the dependent and independent variables at 160 their optimal value settings. The optimization plots are presented in Figures 1, 2 and 3. The 161 optimal values of the factors were indicated in the plots in squared parentheses. The 162 optimization plots showed the maximum predicted values of #1,916,643.30 for maintenance 163 cost, #1,971, 390.00 for replacement cost and #10,040,000.00 for income generated. The 164 optimized plot was obtained with the response surface optimizer of Minitab 16 software.

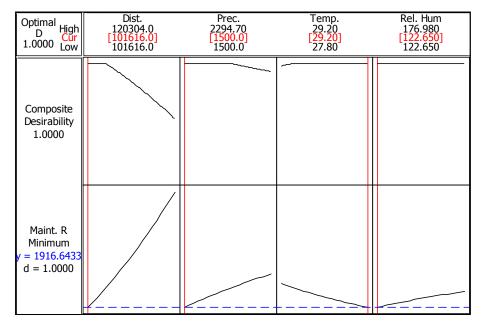


Figure 1: Optimization plot for maintenance cost.

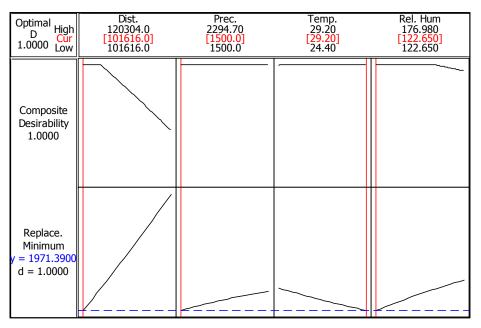
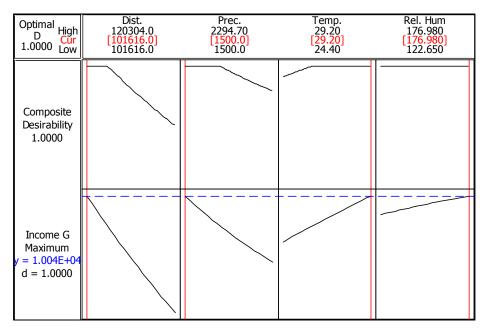



Figure 2: Optimization plot for replacement cost.

171

172

Figure 3: Optimization plot for income generated.

173 **3.2 MODEL VALIDATION.**

174 The fitted models were checked to ensure that they provide adequate approximations to the 175 real systems. Unless the models show adequate fits, proceeding with the optimization of the 176 fitted response surfaces is likely to give misleading results. The graphical optimization 177 method (optimization plot) was used as a primary tool for optimization. The graphical 178 techniques were validated using numerical method. There are three optimization parameters 179 namely maximum, minimum and target that define each desirability index, d_i. The 180 desirability function d_i is defined differently based on the objective of the response according 181 to Relia Wiki (2013) and is expressed as:

182 (i) If the response is to be maximized, d_i is defined as:

183
$$d_{i} = \begin{cases} \left(\frac{Y_{i}^{0} - L}{T - L}\right) & Y_{i} < L \\ L \le Y_{i} \le T \\ Y_{i} > T \end{cases}$$
(11)

- 184 where T represents the target value of the i^{th} response (the highest value) and
- 185 L represents the acceptable lower limit value for the response.
- 186 (ii) If the response is to be minimized, di is defined as:

187
$$d_{i} = \begin{cases} \underbrace{U^{1} - Y_{i}}_{0} & Y_{i} < T \\ \hline U - T \\ 0 & Y_{i} > U \end{cases}$$
(12)

- 188 where U represents the acceptable upper limit of the response and T is the
 - smallest value.
- 190 (iii) For a specific target response value, d_i is defined as:

191
$$d_{i} = \begin{cases} \frac{Y_{i} - L}{T - L} & Y_{i} < L\\ \frac{T - L}{U - Y_{i}} & L \le Y_{i} \le T\\ \frac{U - Y_{i}}{U - T} & Y_{i} \le U\\ Y_{i} > U \end{cases}$$
(13)

192 The maintenance and replacement cost responses were evaluated by minimization method193 while the generated income response was evaluated by maximization method.

- 194 By the evaluation of equation (12) for minimization at a desirability index of 1, with the
- 195 maximum and minimum values of maintenance cost response in Table 5 for $Y_i > U$.

$$1 = \left(\frac{4,473.01 - Y_i^{196}}{4,473.01 - 2,144_{198}^{197}}\right)$$

199 Which gives $Y_i < 2,144.24$

From the optimization plot of Figure 1, $Y_i = \#1,916.64$. The result of the validation of the model is an adequate approximation of the result obtained from the optimization plot.

Similarly, the replacement cost response was evaluated with equation (12) for minimization at a desirability index of 1, with the maximum and minimum values of replacement cost response in Table 6 for $Y_i > U$.

205
$$1 = \frac{3,127.48 - Y_i}{3,127.48 - 2,103.00}$$

206 Which gives $Y_i < 2,103.00$

From the optimization plot of Figure 2, $Y_i = \#1,971.39$. The result of the validation of the model is an adequate approximation of the result obtained from the optimization plot.

- 209 By the evaluation of equation (11) for maximization at a desirability index of 1, with the
- 210 maximum and minimum values of income generated response in Table 7 for $Y_i > T$.

211
$$1 = \frac{Y_i - 8,189.29}{9,759.88 - 8,189.29}$$

212 Which gives $Y_i > 9,759.88$

From the optimization plot of Figure 3, $Y_i = #10,040.00$. The result of the validation of the model is an adequate approximation of the result obtained from the optimization plot.

215

216 4 RESULTS AND DISCUSSIONS

217 **4.1 RESPONSE SURFACE MODELS OBTAINED FROM THE EVALUATION AND**

218 OPTIMIZATION OF MAINTENANCE, REPLACEMENT COSTS AND INCOME219 GENERATED.

220 The response surface models are second order regression models with $\{(n+1)(n+2)/2\}$

numbers of regression parameters, with n being the number of factors. The regression
parameters include the coefficients for main effects A, B, C and D, coefficients for quadratic

223 main effects A^2 , B^2 , C^2 and D^2 and the coefficients for two factors interaction effects AB,

- AC, AD, BC, BD and CD and a constant value.
- 225 For uncoded factors, the regression models for maintenance, replacement and generated
- 226 income are presented thus:

$$Y_{mcost} = 3708.23 - 0.101076A - 0.862676B + 106.003C - 6.46065D + 8.92869E - 07A^{2}$$

227
$$-1.12127E - 04B^{2} + 3.26418C^{2} - 0.0143282D^{2} + 2.24767E - 05AB - 0.00275723AC$$

$$+ 0.000168026AD - 0.0236410BC + 0.00144085BD - 0.176736CD.$$

(8)

228

229
$$Y_{r \cos t} = -187.693 + 0.007A + 0.036B - 6.526C + 0.796D + 0.000A^2 - 0.000B^2 + 0.947C^2 - 0.011D^2 + 0.000AB - 0.001AC + 0.000AD - 0.003BC + 0.000BD - 0.061CD.$$

230 (9)

231
$$Y_{income \ gen.} = 17296.9 - 0.1A - 1.8B + 203.2C + 7.0D + 0.0A^2 - 0.0B^2 - 1.2C^2 - 0.0D^2 + 0.0AB - 0.0AC - 0.0AD - 0.0BC - 0.0BD + 0.0CD.$$
(10)

232 4.2 TEST FOR STATISTICAL SIGNIFICANCE

- 233 Table 8: Analysis of variance (ANOVA) for RSM optimization for
- 234 Maintenance costs of Nissan Urvan vehicles.

Source	DF	Seq SS	Adj. SS	Adj. MS	F	P
Re grssion	14	10902679	10902679	778763	17416.70	0.000
Linear	4	10800127	10800127	2700032	60385.08	0.000
A	1	8675135	8675135	8675135	194015.75	0.000
В	1	1176880	1176880	1176880	26320.44	0.000
С	1	641155	641155	641155	14339.15	0.000
D	1	306957	306957	306957	6864.96	0.000
Square	4	48595	48595	12149	271.70	0.000
A * A	1	42509	32412	32412	724.88	0.000
B * B	1	2499	1672	1672	37.38	0.000
C * C	1	2991	1885	1885	42.17	0.000
D * D	1	596	596	596	13.33	0.003
Interaction	6	53958	53958	8993	201.13	0.000
A * B	1	27857	27857	27857	623.02	0.000
A * C	1	15293	15293	15293	342.02	0.000
A * D	1	7276	7276	7276	162.73	0.000
B * C	1	2033	2033	2033	45.47	0.000
B * D	1	968	968	968	21.64	0.001
C * D	1	531	531	531	11.88	0.005
Residual error	12	537	537	45		
Lack of fit	10	537	537	54		
Pure error	2	0.0000	0.0000	0.0000		
Total	26	10903216				

235

The summary of the Analysis of variance (ANOVA) for RSM optimization for maintenance costs of Nissan Urvan vehicles is displayed in Table 8. The significance of each term in the model is represented by the p – value associated with the term. A term is not significant if p – value is greater than 0.05. The value 0.05 indicates the significance level of the observed effects. Significance level is the probability of the observed significant effect being due to pure error.

Table 9: Analysis of variance (ANOVA) for RSM optimization for replacement costs of Nissan Urvan vehicles.

Source	DF	Seq SS	Adj. SS	Adj. MS	F	P
Re grssion	14	2209518	2209518	157823	131063.99	0.000
Linear	4	2204234	53	13	11.08	0.001
A	1	1875049	32	32	26.52	0.000
В	1	70943	2	2	1.87	0.197
С	1	93246	2	2	1.43	0.254
D	1	164996	5	5	4.09	0.066
Square	4	2592	2592	648	538.23	0.000
A * A	1	1594	979	979	812.90	0.000
B * B	1	256	260	260	215.51	0.000
C * C	1	397	159	159	131.78	0.000
D * D	1	345	345	345	286.79	0.003
Interaction	6	2692	2692	449	372.61	0.000
A * B	1	550	550	550	456.61	0.000
A * C	1	725	725	725	602.08	0.000
A * D	1	1278	1278	1278	1061.68	0.000
B * C	1	27	27	27	22.66	0.000
B * D	1	48	48	48	39.96	0.000
C * D	1	63	63	63	52.69	0.000
Residual error	12	14	14	1		
Lack of fit	10	14	14	1	*	*
Pure error	2	0.0000	0.0000	0.0000		
Total	26	2209533				

244

245 The summary of the Analysis of variance (ANOVA) for RSM optimization for replacement

costs of Nissan Urvan vehicles is illustrated in Table 9. The outcome of the analysis indicated

that some control variables are significant while others are not.

248 Table 10: Analysis of variance (ANOVA) for RSM optimization for income

249 generation of Nissan Urvan vehicles.

Source	DF	Seq SS	Adj. SS	Adj. MS	F	P
Re grssion	14	4510855	4510855	322204	184137.62	0.000
Linear	4	4493294	26388	6597	3770.20	0.000
A	1	3046344	10862	10862	6207.74	0.000
В	1	934424	5518	5518	3153.46	0.000
С	1	442454	1673	1673	956.05	0.000
D	1	70072	383	383	218.63	0.000
Square	4	15833	15833	3958	2262.14	0.000
A * A	1	6598	6727	6727	3844.56	0.000
B * B	1	8867	6105	6105	3489.15	0.00
C * C	1	118	241	241	137.68	0.00
D * D	1	249	249	249	142.37	0.00
Interaction	6	1728	1728	288	164.55	0.00
A * B	1	997	997	997	569.95	0.00
A * C	1	470	470	470	268.61	0.00
A * D	1	75	75	75	42.79	0.00
B * C	1	144	144	144	82.33	0.00
B * D	1	23	23	23	13.11	0.004
C * D	1	18	18	18	10.52	0.00
Residual error	12	21	21	21		
Lack of fit	10	21	21	21	475431.43	0.00
Pure error	2	0.0000	0.0000	0.0000		
Total	26	4510876				

250

The outcome of the Analysis of variance (ANOVA) for RSM optimization for Income Generation of Nissan Urvan vehicles is shown in Table 10. From the result obtained it could

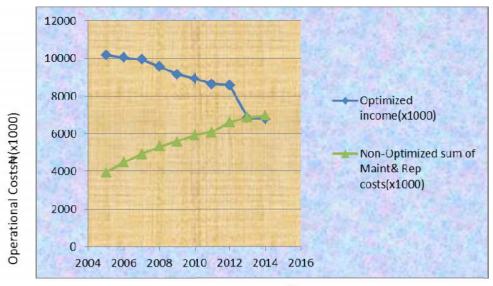

be observed that all the control factors are significant.

Table 11: Optimized income generated compared with the sum of Non-optimized maintenance and replacement costs over the stated period.

Year	Optimized	Non-Optimized sum of Maint
	income N (x1000)	& Replac costs ₦(x1000)
2005	10165.57	3961.00
2006	10033.30	4490,00
2007	9931.47	4920.00
2008	9540.79	5315.00
2009	9150.10	5598.00
2010	8926.72	5921.00
2011	8639.81	6065.00
2012	8569.29	6605.00

2013	6842.48	6851.00
2014	6762.03	6948.00

Table 11 presented the income generated at optimum condition and the sum of the maintenance & replacement costs. It was observed that by the year 2013 the income generated was less than the sum of maintenance & replacement costs. Figure 4 showed the chart of combined plot of optimized income, and the non-optimized sum of maintenance and replacement costs against the operational period.

262

Year

Figure 4: Plot of Optimized income, and Non-optimized sum of maintenance and replacement costs of Nissan Urvan vehicles against the operational period.

From the chart presented, it can be seen that by the year 2013 the income generated is less than the sum of maintenance & replacement costs. This shows that the operation of the transportation system is economical for a period of 8 years (from 2005 - 2012), where the income generated is more than the maintenance & replacement costs.

269 **5. CONCLUSION**

The work has demonstrated the application of Numerical optimization in validating the optimized operation of Nissan Urvan vehicle(s). From the study carried out, the following conclusions were drawn:

The results of statistical analysis (ANOVA) show that all the control and interaction
 factors have significant effects on the maintenance and income generated, while the
 control factors B, C, and D of replacement cost have no significant effect on
 replacement cost.

2. The response models of Nissan Urvan Vehicle(s) operations are representable with
nonlinear power law (equations 5 - 7) and second order polynomial equations
(equations 8 - 10).

- 3. The income and costs values of the vehicle(s) operation obtained from the validation
 of the models are in the ranges of those estimated using the models. It implied that
 numerical optimization approach was appropriate for validating the optimized
 performance characteristics of Nissan Urvan Vehicle(s).
- 4. From Table 11 and Figure 4, comparing the income generated at optimum condition
 and the sum of the maintenance & replacement costs by the year 2013 the income
 generated is less than the expenditures. This shows that the operation of the
 transportation system was economical for a period of 8 years from 2005 2012. It is
 hereby recommended that response surface model should be deployed for the
 operational analysis of the case study company to enhance efficient utilization and
 profitability.
- 291

292 **REFERENCES**

- 293 1) Abdul,R.(2011). Dynamic Programming Based Bus Replacement Policy. Kumasi
 294 Press. Ghana.
- 2) Amponsa, K. (2006). Optimization Technique. University Press, KNUST,
 Kumasi, pp 70 75.
- 297 3) Chapra,S.C.,& Canale, R. P.(2006).Numerical Methods for Engineers,5th
 298 Edition,Mc Gran-Hill, New York, pp 460-462 & 623-625.
- 4) Clarotti, R., Martinis, P., Murthi, V., (2004). *Simulation Based Approach For Determining Maintenance Strategies*. International Journal of
 COMADEM, Vol. 7, Issue 3, pp 32-41.
- 5) Duffuaa, S.O., Ben-Daya, M., Al-Sultan, K.S., Andijani, A.A., (2001). A
 Generic Conceptual Simulation Model for Maintenance Systems. Journal of
 Quality in Maintenance Engineering, Vol. 7, Issue 3, pp 207 219.
- 6) Gertsbalch,M.(1997). Simulation Analysis of Maintenance Policies in Just-in-Time Production Systems. International Journal of Operations and Production Management, Vol. 17, Issue 3, pp 256-266.
- 308 7) Goldberg, M.A., Gomaa, A.H., Mohib, A.M., (2004). A Genetic Algorithm for
 309 Preventive Maintenance Scheduling in a Multiunit Multistate System. Journal of
 310 Engineering and Applied Science, Vol. 51, Issue 4, pp 795-811.
- 311 8) Latham A. (2008). Differences in Forecasting Demand for a Product versus a
- 312 Service; Demand Media.
- 313 9) Parida, K.L. (2007). *Recursive Utility and Dynamic Programming*. Barbera, P.
- 314 H.,and C. Seidl (editors), Handbook of Utility Theory, Volume 1 chapter 3
- 315 93.121.

- 316 10) Relia Wiki: Response Surface Methods for Optimization. [Online]:
- 317 <u>http://reliawiki-org/index.php/Response_Surface_methods_for_opti...</u>
- 318 (Accessed December 19, 2013).
- 319 11) Steven, S. (2009). *Applications of Dynamic Programming*. State University
 320 of New York Stony Brook, NY 11794–4400,pp 13-20.
- 321 12) Zeqing, A.P., Price, J.W.H., (2006). Optimal Maintenance Intervals for Multi-
- 322 *Component System*. Production Planning and Control, Vol. 17, Issue 8. pp 769-
- 323 779.