

Original Research Article

Development of a novel, rapid and validated HPTLC protocol for the quantitative estimation of marrubiin (a furan labdane diterpene) from the extract of *Marrubium vulgare* Linn.

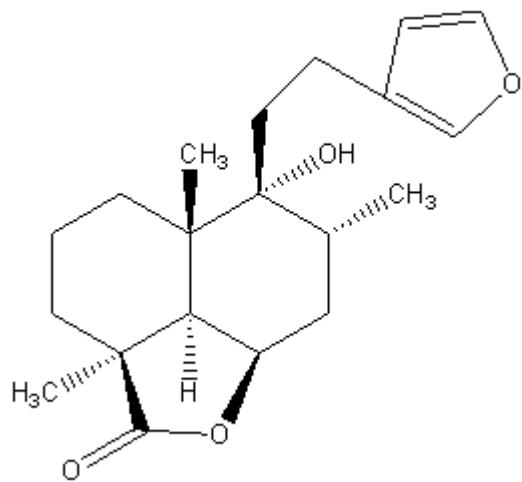
ABSTRACT

Aim: To develop a novel, simple, precise and rapid HPTLC protocol for the analysis of marrubiin in herbal extracts and formulations.

Methodology: The marrubiin can be quantified by performing the HPTLC on silica gel F₂₅₄ plates using toluene: ethyl acetate: acetic acid (5:4:1) as mobile phase. The developed method was validated as per ICH guidelines.

Results: The protocol was found to be linear in the concentration range of 40-400ng/spot and simultaneous comparison of R_f (0.47 ± 0.05) and overlapping UV spectra of samples confirm the specificity of the method. The LOD and LOQ of biomarker were found to be 15 and 40 ng by the selected method. The low value of %RSD (less than 2) in peak area on analyzing the sample on same and different days ensures the precision of the developed method. Further the recovery of more than 95% of the marrubiin affirms the accuracy of developed analytical method.

Conclusion: It can be concluded that the developed protocol could be beneficial for the qualitative and quantitative analysis of the marrubiin in herbal extracts and formulations.


Key words: *Analysis, chromatography, fingerprint, TLC, Lamiaceae*

1. INTRODUCTION

The herbal extracts are the complex mixture of chemical constituents and separation of these entities is a quite challenging task. The quantitative and qualitative analysis of the different compounds in plant extracts with acute accuracy is need of the hour. The various chromatographic techniques such as high pressure liquid chromatography (HPLC), gas chromatography (GC), high performance thin layer chromatography (HPTLC) have been employed by large number of researchers for the analysis of herbal extracts ([1-4]. Of these the HPTLC was considered to be quite advantageous in terms of time saving,

29 high output and cost effectiveness for the analysis of multi component samples. Moreover the analysis of
30 plant based mixtures with HPTLC having mass spectrum (MS) interface not only separate the various
31 constituents but the proportion and identity of biomarkers/compounds can also be recognized. [5-8].
32 Chemically the marrubiin (Figure 1) is a furan labdane diterpenoid, isolated from the various species of
33 *Marrubium* genus (family- Lamiaceae). Generally in India, the species *Marrubium vulgare* Linn is found at
34 an altitude of 5000 – 6000 ft in Kashmir region. This perennial herb is conventionally used as diuretic,
35 bitter tonic, expectorant, antipyretic and also useful in the treatment of bronchitis, joint pain and various
36 complications related to spleen, lever and uterus [9]. The pharmacological significance of the marrubiin
37 was approved by many scientists as it was found to possess the vasorelaxant, hypotensive,
38 cardioprotective, analgesic, antinociceptive, antidiabetic, gastroprotective, antioxidant and
39 antioedematogenic properties [10-18]. Due to its vast therapeutic potential, marrubiin could be included in
40 various herbal formulations. The multicomponent nature of polyherbal formulations necessitates the
41 requirement of a cost effective and specific analytical method to evaluate the marrubiin. The HPTLC has
42 its own inherent advantage as compared to gas chromatography (GC) and high performance liquid
43 chromatography (HPLC). Nevertheless the analytical strategies such as high pressure liquid
44 chromatography (HPLC) and gas chromatography (GC) can not be replaced but development of
45 optimized novel methods for phytopharmaceuticals by HPTLC were always proved to be quite useful.
46 Therefore an approach to develop a validated process for the qualitative and quantitative analysis of
47 marrubiin from plant extract by HPTLC has been planned and executed in the present research work.

48

49

50

Figure 1**51 2. METHODOLOGY****52 2.1 Plant sample and reagents**

53 The plant, *Marrubium vulgare* Linn was collected from the Pulwama district of Jammu and Kashmir state,
54 India in April 2013. The herb was identified by, Dr. Sunita Garg, taxonomist from National Institute of
55 Science Communication and Information Research, New Delhi, vide reference no
56 NISCAIR/RHMD/Consult/2013/2336-116 dated- 19-11-2013. A voucher specimen was kept in the
57 department for future reference. The bio marker marrubiin (HPLC grade) was procured from
58 Extrasynthese, France. The HPLC grade solvents were used in the study and obtained from
59 Spectrochem Pvt. Ltd., Mumbai, India.

60 2.2 Preparation of test samples and reference solution

61 The selected medicinal plant was dried and grounded using a household mixer grinder. The powder of
62 the drug (10 g) was sieved and extracted with ethanol (500 ml) in a soxhlet apparatus. After exhaustive
63 extraction the solution was filtered and concentrated through rotary evaporator. The extract was dried in
64 lyophilizer and kept in dessicator before further use. For analysis of the extract by HPTLC, the dried
65 extract was dissolved in methanol to prepare a solution of 5 mg/ml concentration. The solution (test
66 sample) was filtered through a membrane filter (0.45 μ m) before applying on the stationary phase (Silica
67 gel plate). The solution of the standard compound was formed by dissolving the biomarker (marrubiin) in

68 methanol to get a concentration of 1 mg/ml. This solution was further diluted to reduce the concentration
69 upto 10 μ g/ml and termed as standard stock solution or reference solution.

70 **2.3 HPTLC analysis of different samples**

71 A HPTLC system (CAMAG, Muttenz, Switzerland) was used to analyze the test and reference samples
72 for the quantification of marrubiin. The precoated and preactivated plates of silica gel 60 F₂₅₄ (E. Merck)
73 supported on aluminum sheet were used as stationary phase. The various samples were applied using
74 CAMAG automatic sample applicator (Linomat V) with the help of micro syringe (100 μ l). The mobile
75 phase consisting of toluene, ethyl acetate and acetic acid in a ratio of 5:4:1 was used to develop the
76 chromatogram. The chromatogram was developed upto 80% height of plates by ascending technique in a
77 presaturated twin trough chamber with 20 ml of solvent system. The developed plates were dried at room
78 temperature and then heated at 110°C for 15 minutes on CAMAG TLC plate heater. The spots were
79 visualized in UV light of CAMAG TLC visualizer system at wavelength of 254 nm. The images of the
80 developed plates were captured using winCATS software. For the quantification of biomarker in the
81 samples, the plates were scanned in CAMAG TLC densitometric scanner at wavelength of 254 nm and
82 analyzed using winCATS 1.4.8 software. All the experiments were carried in laboratory conditions with
83 temperature of 26 \pm 2°C and relative humidity was 50 \pm 5%. The resolved spots were used to determine
84 the retention factor (R_f).

85 **2.3.1 Development of calibration curve**

86 The marrubiin reference solution (10 μ g/ml) was used to prepare the calibration curve which was
87 used to quantify the marrubiin in samples with unknown concentration. The ten different spots
88 (4mm wide) of reference solution with a volume of 4, 8, 12, 16, 20, 24, 28, 32, 36, 40 μ l were
89 applied on the stationary phase with the help of a micro syringe under the flow of N₂ gas. The
90 spots were applied on the plate at a distance of 10mm from bottom and side with a 4mm space
91 between them. The each consecutive spot was supposed to have 40, 80, 120, 160, 200, 240, 280,
92 320, 360, 400ng of the marrubiin. The chromatogram was developed by the method described in
93 the previous section and R_f was calculated for isolated spot (marrubiin). The plates were scanned

94 and analyzed with winCATS computer software to observe the area under curve (AUC) for each
95 resolved spot. The mean peak area for each sample with known concentration was used to plot
96 the calibration curve. The equation of straight line was generated by linear regression of the data
97 and used to determine the concentration of biomarker (marrubiin) in test sample.

98 **2.4 Validation of HPTLC protocol**

99 The HPTLC protocol for the quantification of marrubiin was validated as per the guidelines described by
100 International Conference on Harmonization (ICH) [19, 20].

101 **2.4.1 Linearity**

102 The linearity of the method was ascertained by plotting calibration graph between the various
103 concentrations of marker (40-400 ng/spot) compound to the corresponding area under curve (AUC). The
104 data was linearly analyzed to develop equation of straight line and coefficient of correlation (R^2) was
105 determined.

106 **2.4.2 Specificity and sensitivity**

107 The specificity of developed analytical procedure was confirmed by the simultaneously comparing the R_f
108 of marker compound in reference solution and test sample. Further it was ascertained by superimposing
109 the UV spectra of extract and standard solution. The limit of detection (LOD) and limit of quantification
110 (LOQ) are the measure of sensitivity for selected protocol. These were estimated by analyzing different
111 concentrations of marrubiin till the mean AUC was about three (for LOD) ten (for LOQ) times the standard
112 deviation ($n=6$).

113

114

115 **2.4.3 Precision**

116 The precision of the instrument and developed method was affirmed by repeated analysis of reference
117 sample (100 ng/spot) for six times. Further intraday and interday variability of procedure was determined
118 by analyzing the standard solution at three different concentration (60, 120, 180 ng/spot) in triplicate on
119 same day and different day. The results were communicated as % relative standard deviation (% RSD).

120 **2.4.5 Accuracy/Recovery**

121 The accuracy of the protocol was assessed by recovery after addition of 50,100,150% of marrubiin to a previously
122 analyzed standard solution (100ng/band). The experiment was conducted in triplicate at each three level and
123 percentage recovery and average recovery (%) was calculated.

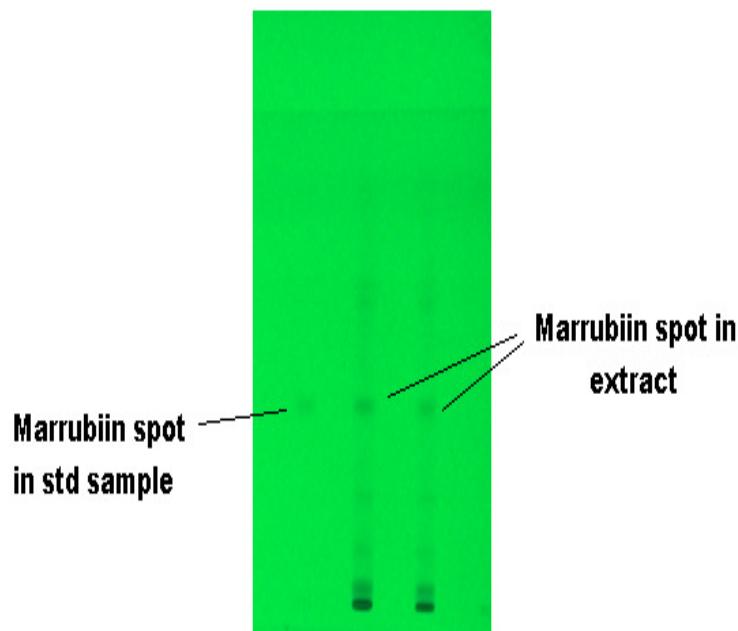
124 **2.4.6 Robustness**

125 The robustness of the selected strategy was also evaluated by analyzing the chromatogram, for test
126 sample (300 ng/spot), developed by slightly fluctuating the development distance (8 ± 0.5 cm), volume of
127 mobile phase (20 ± 2 ml), composition of solvent system ($\pm 10\%$) and time taken for saturation (30 ± 5
128 min). The results were expressed as % RSD for each deliberate change in chromatographic conditions.

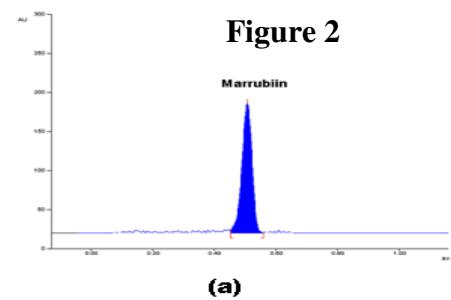
129 **2.4.7 Suitability of system**

130 To ensure the reproducibility of the results the suitability of the system was assured by performing the
131 HPTLC profile of the biomarker at concentration of 200 ng/spot (n=6). The chromatogram was developed
132 with selected mobile phase and plates were scanned to note the AUC and R_f for each concentration of
133 marrubiin. The standard deviation (SD), % RSD, and mean peak area was observed and reported.

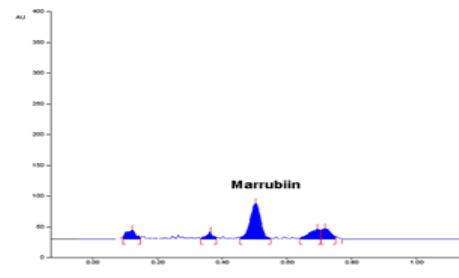
134 **2.4.8 Quantification of marrubiin in herbal extract**


135 The *Marrubium vulgare* Linn extract was dissolved in ethanol to get a concentration of 5 mg/ml and
136 subjected to HPTLC evaluation for the quantification of marrubiin by developed method (n=3).

137


138 **3. Results and Discussion**

139 The development of chromatographic fingerprint for the selected extract could convey the necessary
140 information to determine the proportion of dynamic constituents in a quite short span. The fingerprint
141 patterns also guarantee about the consistency of extract and make it assessable to confirm the quantity
142 of all discernible analytes [21].The various solvents in different proportion were tried to analyze the
143 marrubiin in the extract and reference solution. After conducting the large number of experiments the
144 mobile phase consisting of toluene: ethyl acetate: glacial acetic acid (5:4:1) was selected. The different
145 samples were applied with a band width of 4mm on the plates to enhance the response of detector and
146 accuracy in scanning results was also improved. The simultaneous development of chromatogram for
147 standard and test sample confirmed that the marrubiin was well resolved at R_f of about 0.47 (Figure 2).


148 The HPTLC chromatogram developed with the selected mobile phase for standard and extract solution
149 confirmed that the marrubiin was present in the test sample (Figure 3).

150

(a)

(b)

151

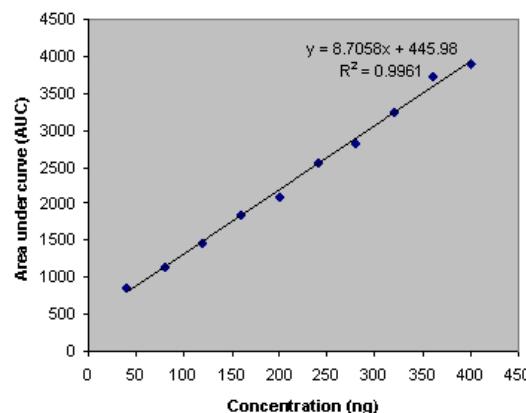
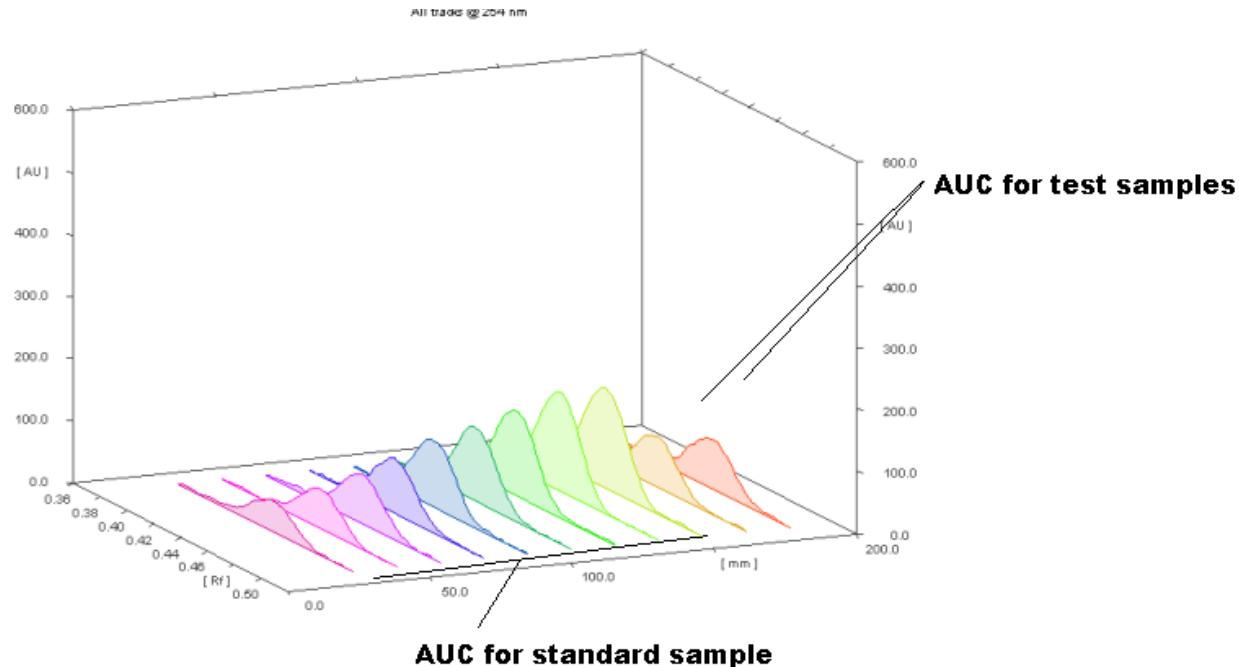

152

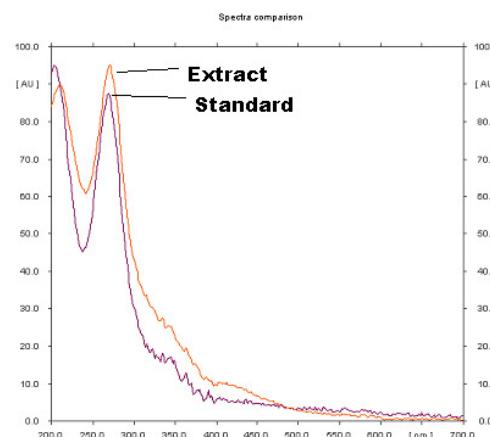
Figure 3


153 **3.1 Validation of HPTLC protocol**

154 **3.1.1 Linearity**

155 The calibration curve plotted in the selected range and was found to be linear (Figure 4). The linearity
 156 equation generated by regression analysis of data was $Y = 8.705 X + 445.98$ where Y is the mean peak
 157 area (AUC) and X represents the concentration of particular sample. The 3 D diagram representing the
 158 AUC for the different concentration of marker compound in reference and test samples was depicted in
 159 figure 5. A high R^2 value (0.996) signifies how close the data fits the regression line.

160


Figure 4

161

162

163 **3.1.2 Specificity and sensitivity**

164 The specificity of the developed method was confirmed by absence of interference in detection of
 165 marrubiin from test samples with $R_f = 0.47 \pm 0.05$. Moreover the UV spectra of two samples was
 166 overlapped in the region of 254 nm which further assured the specificity of the method for determination
 167 of marrubiin in extract (Figure 6). The method sensitivity was evaluated by analyzing the different
 168 concentration of marker compound (5 – 50 ng/spot). The observed LOD and LOQ for marrubiin in the
 169 selected protocol was 15 and 40 ng respectively (Table 1).

170 **Figure 6**

171
 172 **Table 1: Summary of validation parameters for analysis of marrubiin by HPTLC**
 173

Validation Parameter	Value
Linear regression equation	$Y=8.705 X + 445.98$
Regression coefficient (R^2)	0.996
Linearity range	40-400 ng
Retention factor (R_f)	0.47 ± 0.05
Instrument precision at 100 ng/band; n=6 (%RSD)	0.70
Limit of detection (LOD)	15 ng
Limit of quantification (LOQ)	40 ng
Repeatability at 200 ng/band; n=6 (%RSD)	0.27
Marrubiin in test sample at 5 mg/ml; n=3 (%)	0.69 ± 0.04
Robustness	Robust
Specificity	Specific

174 **3.1.3 Precision**

175 The random investigation of the precision of instrument and protocol on same day (intraday) and different
 176 day (interday) established the validity of analytical procedure. The low value of % relative standard
 177 deviation (<2%) for different parameters confirms that the developed method was precise and
 178 reproducible (Table 2).

179 **Table 2: Validation of precision parameter for marrubiin by HPTLC**

180

Marker Concentration (ng/band)	Inter-day precision*		Intra-day precision*	
	Mean peak area \pm SD	%RSD	Mean peak area \pm SD	%RSD
60	1006.6 \pm 6.18	0.61	1009.3 \pm 17.55	0.41
120	1475.6 \pm 3.68	0.24	1471.3 \pm 11.57	0.78
180	1968.3 \pm 30.64	1.51	1971.0 \pm 7.3	0.37

181 * n = 3 for each concentration; values are expressed as mean \pm Standard deviation
 182
 183

184

185 **3.1.4 Accuracy/Recovery**

186 The recovery of more than 95% of marrubiin in preanalyzed samples after spiking with known
 187 concentration of standard sample confirmed the accuracy of the method. The recovery results are
 188 depicted in table 3.

189 **Table 3: Recovery studies to validate the accuracy of HPTLC protocol for marrubiin**

Amount of marker in Preanalyzed sample (ng/spot)	Amount of marker spiked (%)	Mean peak area \pm SD (Preanalyzed sample + standard)	Total area obtained \pm SD	Recovery (%) \pm SD	% RSD
100	50	1923.26 \pm 2.23	1901.5 \pm 3.22	98.8 \pm 0.95	0.96
	100	2498.9 \pm 3.81	2425.5 \pm 12.27	97.06 \pm 0.54	0.56

150	3151.4 ± 7.51	3071.7 ±	97.45 ±	0.63
		22.33	0.61	
Average Recovery			97.77 ±	1.25

190
191 Analysis in triplicate at each level (n=3); values are expressed as mean ± Standard deviation
192

193 **3.1.5 Robustness**

194 The slight deviation in the selected parameters did not represent any huge fluctuation in %RSD (less than 2%) which
195 clearly justify the robustness of the derived protocol (Table 4).

196 **Table 4: Robustness of developed HPTLC method for marrubiin analysis**

Test sample (ng/spot)	Chromatogram development conditions	Mean peak area ± SD	RSD (%)
300	Development distance (8 ± 0.5 cm), Volume of mobile phase (20 ± 2 ml)	2996.63 ± 24.12 2963.13 ± 36.46	0.80 1.23
	Composition of solvent system (±10%)	3032.9 ± 51.79	1.71
	Time taken for saturation (30 ± 5 min)	3021.86 ± 8.36	0.27

197 n=3 for each conditions; values are expressed as mean ± Standard deviation

198 **3.1.6 System suitability**

199 The mean peak area for selected concentration of standard sample (200 ng/spot) was found to be 2084.1
200 ± 5.75 with %RSD of 0.27. Moreover the R_f for the marrubiin was confirmed at 0.47 ± 0.05. The small
201 value of %RSD confirms the suitability for the analysis of marrubiin in extract.

202 **3.1.7 Quantification of marrubiin:**

203 The prepared extract of *Marrubium vulgare* Linn was analyzed by developed method in triplicate and the
204 percentage of marrubiin was quantified to be 0.69 ± 0.04.

205

206 **4. CONCLUSION**

207 The marrubiin is considered to be the chemotaxonomic marker for the plants related to *Marrubium* genus
208 of Lamiaceae family. Hence the developed and validated chromatographic fingerprint pattern for
209 marrubiin by HPTLC could be beneficial for the evaluation of particular plant species. Moreover the

210 developed pattern clearly speaks about the various chemical entities of the extract and could be
211 employed for the qualitative and quantitative assessment of marrubiin in the herbal formulations.

212 **CONSENT**

213 It is not applicable

214 **ETHICAL APPROVAL**

215 It is not applicable

216 **REFERENCES**

1. Misra H, Mehta D, Mehta BK, Jain DC. Extraction of Artemisinin, an active antimalarial phytopharmaceuticals from dried leaves of *Artemisia annua* L. using microwaves and a validated HPTLC-Visible method for its quantitative determination. *Chromatography Research International*. 2014; 1-11.
2. Ramya V, Dhayalan DV, Umamaheswari S. *In vitro* studies on antibacterial activity separation of active compounds of selected flower extracts by HPTLC. *J. Chem. Pharm. Res.* 2010; 2 (6): 86-91.
3. Chen SB, Liu HP, Tian RT, Yang DJ, Chen SL, Xu H, Chan ASC, Xie PS. High performance thin layer chromatographic fingerprints of isoflavonoids for distinguishing between *Radix puerariae Lobata* and *Radix puerariae Thomsonii*. *J. Chromatogr. A*. 2006; 1121 (1): 114-119.
4. Lu HM, Liang YZ, Chen S, Lu H, Liang Y, Chen S. Identification and quality assessment of *Houttuynia cordata* injection using GC-MS fingerprint: A standardization approach. *J. Ethnopharmacol.* 2006; 105 (3): 436-440.
5. Shewiyo DH, Kaaleb E, Rishabh PG, Dejaegherc B, Verbeke JS, Heydene YV. HPTLC methods to assay active ingredients in pharmaceutical formulations: A review of method development and validation steps. *J. Pharm. Biomedical anal.* 2012; 66: 11-23.
6. Sethi PD. Quantitative analysis of pharmaceutical formulations, High Performance thin layer chromatography. 1st edition. New Delhi: CBS Publishers and Distributors. 1996; 1-30.
7. Li K, Wang S. Fingerprint chromatogram analysis of extracts from the leaves of *Tripterygium wilfordii* Hook. F. by high performance liquid chromatography. *J. Sep. Sci.* 2005; 28 (7): 653-657.
8. Xie P, Chen S, Liang Y, Wang X, Tian R, Upton R. Chromatographic fingerprint analysis- a rational approach for quality assessment of traditional Chinese herbal medicine. *J. Chromatogr. A*. 2006; 1112 (1): 171-180.
9. Kirtikar KR, Basu BD. Indian medicinal plants.2nd edition. Dehradun: International Book Distributors. 1996; 3: 2007-2009.
10. El Bardai S, Morel N, Wibo M, Fabre N, Llabres G, Lyoussi B, Quetin-Leclercq J. The vasorelaxant activity of marrubanol and marrubiin from *Marrubium vulgare*. *Planta Med.* 2003; 69: 75-77.

258 11. El Bardai S, Lyoussi B, Wibo M, Morel N. Pharmacological evidence of hypotensive activity of
259 *Marrubium vulgare* and *Foeniculum vulgare* in spontaneously hypertensive rat. *Clin. Exp.*
260 *Hypertens.* 2001; 23: 329-343.

261

262 12. Mnonopi N, Levendal RA, Davies-Coleman RT, Frost CL. The cardioprotective effects of
263 marrubiin, a diterpenoid found in *Leonotis leonurus* extracts. *J. Ethnopharmacol.* 2011; 138: 67-
264 75.

265

266 13. Meyre-Silva C, Yunes RA, Schlemper V, Campos-Buzzi F, Cechinel-Filho V. Analgesic potential
267 of marrubiin derivatives, a bioactive diterpene present in *Marrubium vulgare* (Lamiaceae).
268 *Farmaco.* 2005; 60: 321-326.

269

270 14. De Jesus RAP, Cechinel-Filho V, Oliveira AE, Schlemper V. Analysis of the antinociceptive
271 properties of marrubiin isolated from *Marrubium vulgare*. *Phytomedicine.* 2000; 7: 111-115.

272

273 15. Mnonopi N, Levendal RA, Mzilikezi N, Frost CL. Marrubiin, a constituent of *Leonotis leonurus*,
274 alleviates diabetic symptoms. *Phytomedicine.* 2012; 19: 488-493.

275

276 16. Paula de Olivera A, Santin JR, Lemos M, Klein LCJ, Couto AG, Bittencourt CMS, Cechinel F,
277 Valdir FA. Gastroprotective activity of methanol extract and marrubiin obtained from leaves of
278 *Marrubium vulgare* L. (Lamiaceae). *J. Pharm. Pharmacol.* 2011; 63: 1230-1237.

279

280 17. Zaabat N, Hay AE, Michalet S, Darbour N, Bayet C, Skandrani I, Chekir-Ghedira L, Akkal S,
281 Dijoux-Franca MG. Antioxidant and antigenotoxic properties of compounds isolated from
282 *Marrubium deserti* de Noe. *J. Food Chem. Toxicol.* 2011; 49: 3328-3335.

283

284 18. Stulzer HK, Tagliari MP, Zampirolo JA, Cechinel-Filho V, Schlemper V. Antioedematogenic effect
285 of marrubiin obtained from *Marrubium vulgare*. *J. Ethnopharmacol.* 2006; 108: 379-384.

286

287 19. ICH Harmonised Tripartite Guidelines, Validation of analytical procedures: Text and methodology,
288 Q2(R1), Geneva, 2005; 6-13.

289

290 20. Patel R, Patel M, Dubey N, Dubey N, Patel B, HPTLC method development and validation:
291 Strategy to minimize methodological failures. *J. Food Drug Anal.* 2012; 20 (4): 794-804.

292

293 21. Gomathi D, Ravikumar G, Kalaiselvi M, Vidya B, Uma C. HPTLC fingerprint analysis of *Evolvulus*
294 *alsinoides* (L.). *J. Acute Med.* 2012; 2(3): 77-82.

295

296 **CAPTIONS FOR FIGURES**

297 **Figure 1: Chemical structure of marrubiin**

298 **Figure 2: Photomicrograph of TLC plate with the spot of (i) Standard sample (ii) & (ii) test sample**

300 **Figure 3: HPTLC chromatogram showing area under curve for marrubiin (a) standard sample (ii)**
301 **test sample**

302 **Figure 4: Calibration curve of marrubiin**

303 **Figure 5: 3D diagram with AUC for various standard samples and test samples**

304 **Figure 6: UV overlay spectra confirming presence of marrubiin in extract**