1	Original Research Article
2 3	PREVALENCE OF AGGREGATIBACTER
4	ACTINOMYCETEMCOMITANS AND FUSOBACTERIUM NUCLEATUM
5	AMONG CLINICAL ORTHODONTIC AND NON-ORTHODONTIC
6	SALIVA SAMPLES
7	
8	
9	
10	
11	Abstract
12	Objectives: The oral flora is a complex ecosystem characterized by numerous bacterial
13	species and changes to the levels of these bacteria in health, disease, and dental treatments
14	such as orthodontics. Although some studies have documented changes in periodontal
15	pathogen burden during orthodontic treatment using saliva, most have focused on traditional
16	cariogenic bacteria and some periodontal pathogens, such as Porphyromonas gingivalis or
17	Fusobacterium nucleatum- far fewer have focused on Aggregatibacter
18	actinomycetemcomitans - commonly associated with aggressive periodontitis. Therefore, the
19	main objective of this study was to evaluate the prevalence of this organism among
20	orthodontic and non-orthodontic patients from a public dental school clinic.
21	
22	Experimental Methods: Using an approved protocol, samples were taken from orthodontic
23	(n=39) and non-orthodontic (n=45) patients. DNA was extracted and screened for
24	Aggregatibacter actinomycetemcomitans. Males and females were equally represented,
25	although a majority of patients participating in this study were Hispanics and ethnic
26	minorities.
27	
28	Results: PCR analysis of the DNA isolated from these patient samples revealed that more
29	than half (54%) of the orthodontic samples harboured significant levels of Aggregatibacter
30	actinomycetemcomitans, compared with only one-quarter (25%) of samples from non-
31	orthodontic patients. In addition, screening for Fusobacterium nucleatum revealed a slightly
32	increased prevalence among orthodontic patients (27%) compared with non-orthodontic
33	patients.
34	

35 Conclusions: These results are significant as Aggregatibacter actinomycetemcomitans has 36 been traditionally observed as facilitating heterotypic communities of overtly pathogenic 37 organisms, compared with other gram-negative oral microbes. These heterotypic biofilm 38 communities exhibit greatly increased capacities to resist antimicrobial drugs and other host immune factors and the capacity to facilitate heterotypic associations within the biofilm may 39 be restricted to a few key species. This project successfully demonstrated evidence that non-40 41 invasive salivary screening of orthodontic patients may be sufficient to assess and detect 42 changes to this periodontal pathogen – thereby increasing the potential quality and efficiency 43 of orthodontic dental treatment among this patient population 44 45 Key words: Aggregatibacter actinomycetemcomitans, Fusobacterium nucleatum, saliva 46 screening, microbial prevalence, orthodontic treatment 47 Abbreviations: Aggregatibacter actinomycetemcomitans (AA), Fusobacterium nucleatum 48 49 (FN), Institutional Review Board (IRB), Office for the Protection of Human Subjects 50 (OPRS), University of Nevada, Las Vegas – School of Dental Medicine (UNLV-SDM), Polymerase chain reaction (PCR), glyceraldehyde-3-phosphate dehydrogenase (GAPDH), 51 52 deoxyribonucleic acid (DNA), 53

54 **1. Introduction**

The oral flora is a complex ecosystem characterized by numerous bacterial species and changes to the levels of these bacteria in health, disease, and dental treatments such as orthodontics [1.2]. Many studies of the oral flora are centred around consensus bacteria responsible for caries and chronic periodontal disease [3-6]. Other virulent bacterial strains may receive less attention because their mere presence is not strictly correlated with the presence of chronic periodontal disease [7-10].

61

One of these bacterial strains is *Aggregatibacter actinomycetemcomitans* (AA), a commensal bacterium found among the oral flora [7,11,12]. This organism is a facultative non-motile, gram-negative, bacillus commonly associated with aggressive periodontitis, but is also found commonly in the oral flora not suffering from that severe periodontal condition [13,14]. In addition to oral infections, its several serotypes have a variety of virulence factors enable to evade defence mechanisms of many tissues and is capable of being found in infections of the skin, GI tract, sinus and reproductive systems [15-19]. Recent evidence indicates that its presence is associated with risk of pre-diabetes, metabolic syndrome, and coronary arterydisease [20-23].

71

72 Although some evidence has demonstrated changes to subgingival periodontal microbes such 73 as AA, little is known regarding whether orthodontic treatment will result in changes to the salivary levels of this bacterial species -a non-invasive and more readily assessed measure of 74 75 risk [7-9,24,25]. Fixed orthodontic appliances introduce new surfaces for plaque 76 accumulation and obstacles to removing daily plaque on and between teeth while reducing 77 the efficiency of natural plaque removal mechanisms, such as salivary flow accompanied by 78 movement of the oral mucosa and tongue [26,27]. Although some studies have documented 79 the change in periodontal pathogen burden during orthodontic treatment using saliva, most 80 have focused on traditional cariogenic bacteria and some periodontal pathogens, such as 81 Porphyromonas gingivalis - but not Aggregatibacter [8,28-30].

82

Based upon this paucity of evidence, the main objective of this study was to evaluate the 83 84 prevalence of AA among orthodontic and non-orthodontic patients from a public dental 85 school clinic. The main research question was to assess if there is variation in the prevalence 86 of AA between orthodontic and non-orthodontic patients that is detectable in salivary samples 87 taken from these patients. Successful completion of this project would provide preliminary 88 evidence that non-invasive salivary screening of orthodontic patients may assess changes to 89 this periodontal pathogen – thereby increasing the quality and efficiency of dental treatment 90 among this patient population.

91

92 2. Methodology

93 2.1 Project approval

94 This project was reviewed and approved by the Institutional Review Board (IRB) and Office 95 for the Protection of Human Subjects (OPRS) at the University of Nevada, Las Vegas 96 OPRS#1502-506M titled "The Prevalence of Oral Microbes in Saliva from the University of 97 Nevada, Las Vegas – School of Dental Medicine pediatric and adult clinical population". 98 Inclusion criteria included all current patients of record at UNLV-SDM clinics. Exclusion 99 criteria included any patient who declined to participate and any subject who was not a 100 patient of record at UNLV-SDM. In brief, clinic patients were randomly asked to participate in three, randomly selected days per week for a set period of three months. 101

104 2.2 Sample collection

In brief, all adult patients were asked to provide Informed Consent, while pediatric patients
were asked to provide Pediatric Assent and their parent or guardian was asked to provide
Parental Permission. Each sample and corresponding demographic information intake sheet
was assigned a randomly generated, non-duplicated identifier that was designed to protect
patient information. Demographic information included only basic information, such as Sex,
Age, and Race or Ethnicity.

111

112 *2.3 DNA isolation*

113 Patient saliva samples were brought to the biomedical laboratory for storage at -80C until

114 processing. In brief, patient samples were processed using the GenomicPrep DNA isolation

115 kit from Amersham Biosciences (Little Chalfont, UK). Quantification and quality of DNA

116 was assessed using spectrophotometric UV absorbance readings at 260 and 280 nm (A260,

117 A280). DNA with a ratio of A260:A280 greater than 1.65 was subsequently screened using

118 PCR and primers specific for *Aggregatibacter actinomycetemcomitans* (AA).

119

120 2.4 PCR screening

121 Polymerase Chain Reaction (PCR) screening of the isolated DNA was accomplished using

the exACTGene complete PCR kit from Fisher Scientific (Fair Lawn, NJ) and an Eppendorf

123 MasterCycler (Hamburg, Germany). A positive control for human DNA was used -

124 glyceraldehyde-3-phosphate dehydrogenase (GAPDH), an enzyme from the glycolytic

125 pathway. In addition, a positive control for bacterial DNA was also used – 16S rRNA

universal primer, to confirm the presence of bacterial DNA. Primers for *Aggregatibacter*

actinomycetemcomitans (AA) and Fusobacterium nucleatum (FN) were also synthesized by

- 128 Eurofins Genomics (Louisville, KY):
- 129

130 GAPDH forward primer, 5'-ATC TTC CAG GAG CGA GAT CC-3'; 20 nt, 55% GC,

131 Tm=66°C

132 GAPDH reverse primer, 5'-ACC ACT GAC ACG TTG GCA GT-3'; 20 nt, 55%GC,

133 Tm=70°C

134 Annealing temperature: 67C

136	16S rRNA universal primer, 5'-ACG CGT CGA CAG AGT TTG ATC CTG GCT-3'; 27 nt,
137	56% GC, Tm=76°C
138	16S rRNA universal primer, 5'-GGG ACT ACC AGG GTA TCT AAT-3'; 21 nt, 48% GC,
139	Tm=62°C
140	Annealing temperature: 63C
141	
142	AA forward primer, 5'-ATT GGG GTT TAG CCC TGG T-3'; 19 nt, 53% GC, Tm=67C
143	AA reverse primer, 5'-GGC ACA AAC CCA TCT CTG A-3'; 19 nt, 53%GC, Tm=65C
144	Annealing temperature: 66C
145	
146	FN primer (forward); 5'-CGC AGA AGG TGA AAG TCC TGT AT-3'; 23 nt, 48% GC, Tm
147	67C
148	FN primer (reverse); 5'-TGG TCC TCA CTG ATT CAC ACA GA-3'; 23 nt, 48% GC, Tm
149	68C
150	Annealing temperature: 68C
151	
152	2.5 Statistical analysis
153	Using the IRB-approved protocol, saliva samples were obtained from orthodontic and non-
154	orthodontic patients of record. Simple descriptive statistics of the study sample and the clinic
155	population were provided and Chi-Square analysis was used to determine any differences
156	among the demographic groups (Sex, Age, Race or Ethnicity). Following PCR screening,
157	differences between demographics of positive and negative samples also were assessed using
158	Chi-Square analysis
159	
160	
161	3. Results
162	A total of thirty-nine (n=39) orthodontic samples and forty-five (n=45) non-orthodontic
163	samples were collected from clinic patients, yielding a total study sample size of eighty-four
164	(n=84) (Table 1). Analysis of these demographics revealed that the percentages of females in

the study samples (both orthodontic and non-orthodontic) was slightly greater than males

166 (56.4%, 57.8%, respectively). This was similar to the demographic distribution of females in

the orthodontic and main patient clinics (60.4% and 56.4%, respectively), and not statistically

168 significant (p=0.4142).

- 170 An evaluation of self-reported Race/Ethnicity revealed approximately one-fourth of the study
- 171 sample (both orthodontic and non-orthodontic) identified as White or Caucasian, which was
- similar to the overall percentage from the orthodontic and main patient clinics, p=0.6532. The
- 173 greatest proportion of non-White or minority patients were Hispanic in both the study
- samples (51.3%, 51.1%) and the Orthodontic clinic (52.3%), which was also not significantly
- different, p=0.6532. Finally, the proportion of patients under 18 years of age was
- approximately half in both the study samples (51.2%, 51.1%), which was similar to the
- 177 overall percentage in the orthodontic clinic (56.7%), p=0.2255.
- 178
- 179 Table 1. Demographic analysis of study participants

	Orthodontic	Non-	Statistical	Orthodontic	Main clinic
	sample	orthodontic	analysis	clinic	population
	(n=39)	sample		population	(n=73,024)
		(n=45)		(n=1,463)	
Sex					
Female	56.4 %	57.8%	χ2=0.667	60.4%	56.4%
	(n=22)	(n=26)	d.f.=1	(n=884)	(n=41,185)
Male	43.6% (n=17)	42.2%	<i>p</i> =0.4142	39.6%	43.6%
		(n=19)		(n=579)	(n=31,839)
Race/Ethnicity					
White	25.6% (n=10)	24.4%	χ2=1.627	24.7%	24.1%
		(n=11)	d.f.=3	(n=361)	(n=17,599)
Hispanic	51.3% (n=20)	51.1%	<i>p</i> =0.6532	52.3%	49.5%
		(n=23)		(n=765)	(n=36,147)
Black	15.4% (n=6)	13.3% (n=6)		11.8%	13.1%
· · · · · · · · · · · · · · · · · · ·				(n=172)	(n=9,566)
Asian	7.7% (n=3)	11.1% (n=5)		7.9% (n=117)	11.5%
					(n=8,398)
Other				3.3% (n=48)	1.8%
					(n=1,314)

Age					
Under <18 yrs.	51.2% (n=20)	51.1%	χ2=1.469	56.7%	N/A
		(n=23)	d.f.=1	(n=830)	(Pediatric
					clinic)
Over > 18 yrs.	48.7% (n=19)	48.9%	<i>p</i> =0.2255	43.3%	100%
		(n=22)		(n=633)	(n=73,024)

181

182 Each saliva sample was processed to isolate DNA, both bacterial and human (Table 2). In

total, DNA was successfully isolated from n=81/84 samples (96.4%), which is well within

the expected recovery range (95-100%). The average concentration of DNA from the

orthodontic samples was 699.1 ng/uL that ranged between 550 – 885 ng/uL, which is lower

but comparable to the average of the non-orthodontic samples of 804.7 ng/uL that ranged

187 between 571 - 980 ng/uL, p=0.0018.

188

189 Table 2. DNA isolation and analysis

	DNA analysis	Statistical analysis
Orthodontic samples (n=39)		
DNA concentration	ave.= 699.1 ng/uL	Students t-test
DNA concentration	range=550-885 ng/uL	(two-tailed)
		<i>p</i> =0.0018
Non-orthodontic samples (n=45)		
DNA concentration	ave.= 804.7 ng/uL	
DNA concentration	range=571-980 ng/uL	

190

191 The DNA from each sample was then screened using PCR for the presence of

192 Aggregatibacter actinomycetemcomitans or AA above the threshold limit of detection from

saliva at 30 cycles, which roughly approximates 10^4 CFU/mL (Figure 1). These results

revealed that more than half of the orthodontic samples (56.4%) had detectable levels of AA

in saliva, compared with only 25% of the non-orthodontic samples. Correspondingly, less

- than half of orthodontic samples tested negative for AA, while three-quarters (75%) of the 196
- 197 non-orthodontic samples were found to have no AA above the threshold limit of detection.
- 198
- 199

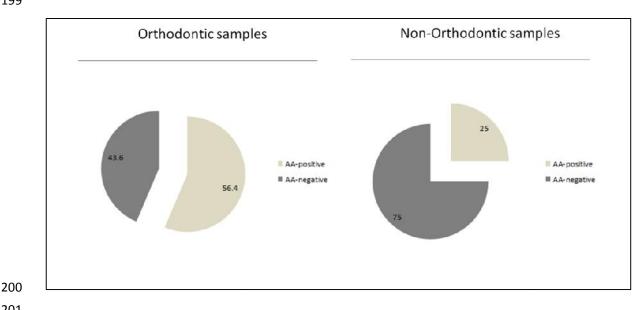
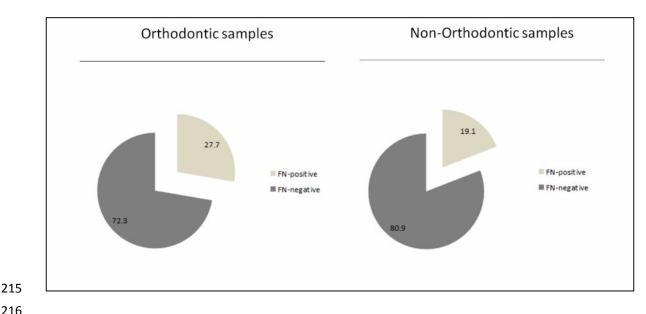


Figure 1. PCR screening of DNA isolates. PCR screening revealed 56.4% of orthodontic 202


203 samples harboured detectable levels of Aggregatibacter actinocetemcomitans (AA) in saliva,

204 compared with only 25% of non-orthodontic samples. This was statistically significant,

205 *p*=0.036.

206

207 To determine if this phenomenon was restricted to AA, another gram-negative organism was selected for screening - Fusobacterium nucleatum or FN (Figure 2). PCR screening of the 208 DNA isolated from the orthodontic and non-orthodontic samples revealed significant levels 209 210 of FN (above the limit of detection) in one fourth (27.7%) of the orthodontic saliva samples 211 and only one-fifth (19%) of non-orthodontic samples tested, which was also statistically 212 significant. 213

217 Figure 2. PCR screening of DNA isolates. PCR screening revealed 27.7% of orthodontic

samples harboured significant levels of *Fusobacterium nucleatum* (FN), compared with only 218

219 19.1% of non-orthodontic samples. This was statistically significant, p=0.041.

- 220
- 221

222 4. Discussion

223 The main objective of this study was to evaluate the prevalence of Aggregatibacter

224 actinomycetemcomitans or AA among orthodontic and non-orthodontic patients from a public

225 dental school clinic. The results of this study demonstrate that AA is detectable in saliva

226 samples from these patients. Moreover, the main finding was that more than half of the

227 orthodontic subjects harboured significant levels of AA in unstimulated saliva, compared

228 with only one-fourth of the non-orthodontic subjects. These results are significant as AA is

229 mainly associated with localized aggressive periodontitis and chronic periodontitis [31,32].

230

231 These results are significant as AA has been traditionally observed as facilitating heterotypic

232 communities of overtly pathogenic organisms, compared with other gram-negative oral

233 microbes [33,34]. In fact, biofilm communities exhibit greatly increased capacities to resist

234 antimicrobial drugs and other host immune factors [35,36]. The capacity to facilitate

235 heterotypic associations within the biofilm may be restricted to a few key species, including

236 AA [37,38].

For comparison, another gram-negative, periodontal pathogen was assessed in this study –
 Fusobacterium nucleatum or FN [39]. Although the results of this study demonstrated a

- 240 difference between the prevalence of FN among orthodontic samples (27%) compared with
- non-orthodontic samples (19%), these differences were less dramatic and are more likely a
- secondary result due to the primary influx of AA among the orthodontic patients [7,24].
- Although these results are significant and may provide some useful biometric indicators for
- non-invasive biofilm community assessment among orthodontic patients, there are some
- 245 limitations associated with this type of study.
- 246

247 First, only non-invasively collected saliva was available for this study, which may limit the

- conclusions that can be made from these analyses. No corresponding direct biofilm
- collection was possible, therefore only inferential analyses can be made from these results.
- 250 Second, and more importantly, this was a cross-sectional study that collected saliva from
- orthodontic and non-orthodontic patients at a single time point, which means no temporal
- information can be evaluated regarding the change in microbial prevalence over time.
- Finally, limited scope and duration of this study did not allow for the ability to screen for,
- select and evaluate patients based upon the presence of other dental prosthetics, fixed
- restorations or other factors, which may have influenced the potential for periodontal disease
- or other oral conditions that may have influenced these observations.
- 257

5. Conclusions

- 259 Despite these limitations, this project successfully demonstrated preliminary evidence that
- non-invasive salivary screening of orthodontic patients may be sufficient to assess and detect
- changes to periodontal pathogens, such as AA and FN thereby increasing the potential
- quality and efficiency of orthodontic dental treatment among this patient population.
- 263

264 **References**

- 265 1. Gao L, Xu T, Huang G, Jiang S, Gu Y, Chen F. Oral microbiomes: more and more
- importance in oral cavity and whole body. Protein Cell. 2018 May 7. doi: 10.1007/s13238-
- 267 018-0548-1. [Epub ahead of print] Review. PMID: 29736705
- 268
- 269 2. Zhang Y, Wang X, Li H, Ni C, Du Z, Yan F. Human oral microbiota and its modulation
- for oral health. Biomed Pharmacother. 2018 Mar;99:883-893. doi:
- 271 10.1016/j.biopha.2018.01.146. Epub 2018 Feb 20. Review. PMID: 29710488

272	
273	3. Sudhakara P, Gupta A, Bhardwaj A, Wilson A. Oral Dysbiotic Communities and Their
274	Implications in Systemic Diseases. Dent J (Basel). 2018 Apr 16;6(2). pii: E10. doi:
275	10.3390/dj6020010. Review. PMID: 29659479
276	
277	4. Bowen WH, Burne RA, Wu H, Koo H. Oral Biofilms: Pathogens, Matrix, and
278	Polymicrobial Interactions in Microenvironments. Trends Microbiol. 2018 Mar;26(3):229-
279	242. doi: 10.1016/j.tim.2017.09.008. Epub 2017 Oct 30. Review. PMID: 29097091
280	
281	5. Sampaio-Maia B, Caldas IM, Pereira ML, Pérez-Mongiovi D, Araujo R. The Oral
282	Microbiome in Health and Its Implication in Oral and Systemic Diseases. Adv Appl
283	Microbiol. 2016;97:171-210. doi: 10.1016/bs.aambs.2016.08.002. Epub 2016 Sep 21.
284	Review. PMID: 27926431
285	
286	6. Tanner AC, Kressirer CA, Faller LL. Understanding Caries From the Oral Microbiome
287	Perspective. J Calif Dent Assoc. 2016 Jul;44(7):437-46. Review. PMID: 27514155
288	
289	7. Guo R, Lin Y, Zheng Y, Li W. The microbial changes in subgingival plaques of
290	orthodontic patients: a systematic review and meta-analysis of clinical trials. BMC Oral
291	Health. 2017 Jun 2;17(1):90. doi: 10.1186/s12903-017-0378-1. PMID: 28576147
292	
293	8. Kim K, Jung WS, Cho S, Ahn SJ. Changes in salivary periodontal pathogens after
294	orthodontic treatment: An in vivo prospective study. Angle Orthod. 2016 Nov;86(6):998-
295	1003. Epub 2015 Nov 25. PMID: 27792427
296	
297	9. Jung WS, Kim K, Cho S, Ahn SJ. Adhesion of periodontal pathogens to self-ligating
298	orthodontic brackets: An in-vivo prospective study. Am J Orthod Dentofacial Orthop. 2016
299	Sep;150(3):467-75. doi: 10.1016/j.ajodo.2016.02.023. PMID: 27585775
300	
301	10. Freitas AO, Marquezan M, Nojima Mda C, Alviano DS, Maia LC. The influence of
302	orthodontic fixed appliances on the oral microbiota: a systematic review. Dental Press J
303	Orthod. 2014 Mar-Apr;19(2):46-55. Review. PMID: 24945514
304	

305	11. Gholizadeh P, Pormohammad A, Eslami H, Shokouhi B, Fakhrzadeh V, Kafil HS. Oral
306	pathogenesis of Aggregatibacter actinomycetemcomitans. Microb Pathog. 2017
307	Dec;113:303-311. doi: 10.1016/j.micpath.2017.11.001. Epub 2017 Nov 5. Review. PMID:
308	29117508
309	
310	12. Periasamy S, Kolenbrander PE. Aggregatibacter actinomycetemcomitans builds
311	mutualistic biofilm communities with Fusobacterium nucleatum and Veillonella species in
312	saliva. Infect Immun. 2009 Sep;77(9):3542-51. doi: 10.1128/IAI.00345-09. Epub 2009 Jun
313	29. PMID: 19564387
314	
315	13. Shahabuddin N, Boesze-Battaglia K, Lally ET. Trends in Susceptibility to Aggressive
316	Periodontal Disease. Int J Dent Oral Health. 2016;2(4). doi: 10.16966/2378-7090.197. Epub
317	2016 Apr 25. PMID: 28008419
318	
319	14. Nibali L. Aggressive Periodontitis: microbes and host response, who to blame? Virulence.
320	2015;6(3):223-8. doi: 10.4161/21505594.2014.986407. Review. PMID: 25654663
321	
322	15. Moazzam AA, Rajagopal SM, Sedghizadeh PP, Zada G, Habibian M. Intracranial
323	bacterial infections of oral origin. J Clin Neurosci. 2015 May;22(5):800-6. doi:
324	10.1016/j.jocn.2014.11.015. Epub 2015 Mar 21. Review. PMID: 25800939
325	
326	16. Shilo S, Kassis I, Hakim F, Shachor-Meyouhas Y. Aggregatibacter actinomycemcomitans
327	pneumonia in children: two case reports and a review of the literature. Pediatr Infect Dis J.
328	2015 Jan;34(1):100-2. doi: 10.1097/INF.0000000000000493. Review. PMID: 25068288
329	
330	17. Rahamat-Langendoen JC, van Vonderen MG, Engström LJ, Manson WL, van Winkelhoff
331	AJ, Mooi-Kokenberg EA. Brain abscess associated with Aggregatibacter
332	actinomycetemcomitans: case report and review of literature. J Clin Periodontol. 2011
333	Aug;38(8):702-6. doi: 10.1111/j.1600-051X.2011.01737.x. Epub 2011 May 3. Review.
334	PMID: 21539594
335	
336	18. Demmer RT, Desvarieux M. Periodontal infections and cardiovascular disease: the heart
337	of the matter. J Am Dent Assoc. 2006 Oct;137 Suppl:14S-20S; quiz 38S. Review. Erratum in:
338	J Am Dent Assoc. 2008 Mar;139(3):252. PMID: 17012731

339	
340	19. Fine DH, Kaplan JB, Kachlany SC, Schreiner HC. How we got attached to Actinobacillus
341	actinomycetemcomitans: A model for infectious diseases. Periodontol 2000. 2006;42:114-57.
342	Review. PMID: 16930309
343	
344	20. Singh-Hüsgen P, Meissner T, Bizhang M, Henrich B, Raab WH. Investigation of the oral
345	status and microorganisms in children with phenylketonuria and type 1 diabetes. Clin Oral
346	Investig. 2016 May;20(4):841-7. doi: 10.1007/s00784-015-1564-7. Epub 2015 Aug 23.
347	PMID: 26297129
348	
349	21. Demmer RT, Jacobs DR Jr, Singh R, Zuk A, Rosenbaum M, Papapanou PN, Desvarieux
350	M. Periodontal Bacteria and Prediabetes Prevalence in ORIGINS: The Oral Infections,
351	Glucose Intolerance, and Insulin Resistance Study. J Dent Res. 2015 Sep;94(9 Suppl):201S-
352	11S. doi: 10.1177/0022034515590369. Epub 2015 Jun 16. PMID: 26082387
353	
354	22. Pietiäinen M, Kopra KAE, Vuorenkoski J, Salminen A, Paju S, Mäntylä P, Buhlin K,
355	Liljestrand JM, Nieminen MS, Sinisalo J, Hyvärinen K, Pussinen PJ. Aggregatibacter
356	actinomycetemcomitans serotypes associate with periodontal and coronary artery disease
357	status. J Clin Periodontol. 2018 Apr;45(4):413-421. doi: 10.1111/jcpe.12873. Epub 2018 Mar
358	15. PMID: 29385645
359	
360	23. Liljestrand JM, Paju S, Pietiäinen M, Buhlin K, Persson GR, Nieminen MS, Sinisalo J,
361	Mäntylä P, Pussinen PJ. Immunologic burden links periodontitis to acute coronary syndrome.
362	Atherosclerosis. 2018 Jan;268:177-184. doi: 10.1016/j.atherosclerosis.2017.12.007. Epub
363	2017 Dec 6. PMID: 29232563
364	
365	24. An JS, Kim K, Cho S, Lim BS, Ahn SJ. Compositional differences in multi-species
366	biofilms formed on various orthodontic adhesives. Eur J Orthod. 2017 Oct 1;39(5):528-533.
367	doi: 10.1093/ejo/cjw089. PMID: 28339597
368	
369	25. Passariello C, Gigola P. Adhesion and biofilm formation by periodontopathogenic
370	bacteria on different commercial brackets. Eur J Paediatr Dent. 2013 Sep;14(3):199-203.
371	PMID: 24295004
372	

	Lopes LM, Rodrigues LP, Teixeira JJ, Steiner-Oliveira C, Nobre-I	Rodrigues LP, Teixeira JJ, Steiner-Oliveira C, Nobre-Do	oso AA, Lopes LM	373 26. Cardos
--	--	---	------------------	----------------

- 374 Santos M. Influence of salivary parameters in the caries development in orthodontic patients-
- an observational clinical study. Int J Paediatr Dent. 2017 Nov;27(6):540-550. doi:
- 376 10.1111/ipd.12295. Epub 2017 Mar 1. PMID: 28247450
- 377
- 27. Arab S, Nouhzadeh Malekshah S, Abouei Mehrizi E, Ebrahimi Khanghah A, Naseh R,
- 379 Imani MM. Effect of Fixed Orthodontic Treatment on Salivary Flow, pH and Microbial
- 380 Count. J Dent (Tehran). 2016 Jan;13(1):18-22. PMID: 27536324
- 381
- 28. Davis JE, Freel N, Findley A, Tomlin K, Howard KM, Seran CC, Cruz P, Kingsley K. A
- 383 molecular survey of S. mutans and P. gingivalis oral microbial burden in human saliva using
- relative endpoint polymerase chain reaction (RE-PCR) within the population of a Nevada
- dental school revealed disparities among minorities. BMC Oral Health. 2012 Aug 27;12:34.
- 386 doi: 10.1186/1472-6831-12-34.PMID: 22925755
- 387
- 388 29. Lara-Carrillo E, Montiel-Bastida NM, Sánchez-Pérez L, Alanís-Tavira J. Effect of
- orthodontic treatment on saliva, plaque and the levels of Streptococcus mutans and
- Lactobacillus. Med Oral Patol Oral Cir Bucal. 2010 Nov 1;15(6):e924-9. PMID: 20383105
 391
- 30. Kitada K, de Toledo A, Oho T. Increase in detectable opportunistic bacteria in the oral
- cavity of orthodontic patients. Int J Dent Hyg. 2009 May;7(2):121-5. doi: 10.1111/j.1601-
- 394 5037.2008.00333.x. PMID: 19416094
- 395
- 396 31. Herbert BA, Novince CM, Kirkwood KL. Aggregatibacter actinomycetemcomitans, a
- 397 potent immunoregulator of the periodontal host defence system and alveolar bone
- 398 homeostasis. Mol Oral Microbiol. 2016 Jun;31(3):207-27. doi: 10.1111/omi.12119. Epub
- 399 2015 Sep 22. Review.
- 400 PMID: 26197893
- 401
- 402 32. Henderson B, Nair SP, Ward JM, Wilson M. Molecular pathogenicity of the oral
- 403 opportunistic pathogen Actinobacillus actinomycetemcomitans. Annu Rev Microbiol.
- 404 2003;57:29-55. Review. PMID: 14527274
- 405

406	33. Whitmore SE, Lamont RJ. The pathogenic persona of community-associated oral
407	streptococci. Mol Microbiol. 2011 Jul;81(2):305-14. doi: 10.1111/j.1365-2958.2011.07707.x.
408	Epub 2011 Jun 3. Review. PMID: 21635580
409	
410	34. Wright CJ, Burns LH, Jack AA, Back CR, Dutton LC, Nobbs AH, Lamont RJ, Jenkinson
411	HF. Microbial interactions in building of communities. Mol Oral Microbiol. 2013
412	Apr;28(2):83-101. doi: 10.1111/omi.12012. Epub 2012 Dec 17. Review. PMID: 23253299
413	
414	35. Koo H, Allan RN, Howlin RP, Stoodley P, Hall-Stoodley L. Targeting microbial
415	biofilms: current and prospective therapeutic strategies. Nat Rev Microbiol. 2017
416	Dec;15(12):740-755. doi: 10.1038/nrmicro.2017.99. Epub 2017 Sep 25. Review. PMID:
417	28944770
418	
419	36. Sanz M, Beighton D, Curtis MA, Cury JA, Dige I, Dommisch H, Ellwood R, Giacaman
420	RA, Herrera D, Herzberg MC, Könönen E, Marsh PD, Meyle J, Mira A, Molina A, Mombelli
421	A, Quirynen M, Reynolds EC, Shapira L, Zaura E. Role of microbial biofilms in the
422	maintenance of oral health and in the development of dental caries and periodontal diseases.
423	Consensus report of group 1 of the Joint EFP/ORCA workshop on the boundaries between
424	caries and periodontal disease. J Clin Periodontol. 2017 Mar;44 Suppl 18:S5-S11. doi:
425	10.1111/jcpe.12682. PMID: 28266109
426	
427	37. Marsh PD, Zaura E. Dental biofilm: ecological interactions in health and disease.
428	J Clin Periodontol. 2017 Mar;44 Suppl 18:S12-S22. doi: 10.1111/jcpe.12679. PMID:
429	28266111
430	
431	38. Peyyala R, Ebersole JL. Multispecies biofilms and host responses: "discriminating the
432	trees from the forest". Cytokine. 2013 Jan;61(1):15-25. doi: 10.1016/j.cyto.2012.10.006.
433	Epub 2012 Nov 6. Review. PMID: 23141757
434	
435	39. Jolley D, Wonder K, Chang E, Kingsley K. Oral microbial prevalence of periodontal
436	pathogens among orthodontic patients. International Journal of Dentistry and Oral Health
437	(IJDOH) 2016, 1(6): doi http://dx.doi.org/10.16966/2378-7090.159