Responses of Morphological and Yield Components of Pepper in Treatments of *Glomus deserticola* Trappe, Bloss & J.A. Menge, *Pleurotus pulmonarius* (Fr.) Quél. compost and Poultry Manure

O. J. Olawuyi ^{1*}, S. G. Jonathan ¹, B. J. Babalola ¹, D. A. Aina ², O. M. Olowe ³ and O. S. Ogunsanya ¹ Please check authors' affiliation ¹Department of Botany, University of Ibadan, Nigeria. ²Department of Bioscience and Biotechnology, Babcock University, Nigeria. ³Department of Pure and Applied Botany, College of Biological Sciences, Federal University of Agriculture Abeokuta, Ogun State, Nigeria.

The response of five varieties of pepper was investigated at the research farm of the Department of Botany, University of Ibadan. Five treatments of Glomus deserticola (AMF), poultry manure (PM), Pleurotus pulmonarius (SMC) were inoculated into 5 kg of sterile soil in poly pots, while uninoculated served as control. The treatment and varieties produced highly significant (p<0.01) effects on the total number of fruit, while total fresh weight was highly significant for treatment. Jos pepper and treatment combinations of AMF + PM produced the highest mean for the total number of 24.07 and 25.87 fruits, while Bell pepper had highest total fresh weight and dry weight of 12.15g and 12.05g respectively. The leaf length, leaf width, the number of leaves, number of branches and stem girth of Long pepper were significantly higher with 9.20cm, 4.63cm, 110.01cm, 5.89cm and 0.82cm respectively, while plant height (48.82cm) and stem height (30.27cm) of cherry pepper had the highest. The plant height was positive and strongly correlated (p< 0.01) with stem height, leaf width, leaf length, number of leaves and stem girth at r= 0.84, 0.80, 0.83, 0.79 and 0.60 respectively. Also, there was a positive association between the total number of fruits and total fresh weight (r= 0.56). However, the selection of Jos, Bell, Long and Cherry pepper based on morphological and yielding traits as a result of individual and combined treatments of Glomus deserticola, Pleurotus pulmonarius compost, and poultry manure could play major roles in food security.

Keywords: Phenotypic traits; food security; bioinoculants; pepper; variability.

1. INTRODUCTION

Pepper (*Capsicum annum* L.) is an important vegetable grown in Nigeria and other parts of the humid and semi arid tropics [1]. The different

*Corresponding author: E-mail: olawuyiodunayo@yahoo.com;

varieties of *C. annum* grown which include Bird pepper, Cayenne pepper or Red pepper, Bell pepper, Long pepper also called Indian long pepper, Cherry pepper and Thai pepper. Their fruits vary in sizes, shapes, colour, and pungency and culinary uses [2]. It is commonly used as condiments, while the non pungent species of *C. annum* are eaten raw as salad, while the stronger flavoured types (Chilies) are popularly used in all kinds of cookery as pungent spices, and also used in seasoning sauces in soup and other dishes [3]. The leaves of sweet pepper are sometimes eaten as vegetable in Gabon and are reported to have carcascidal and molluscicidal potential due to the presence of active essential oil [4].

The excessive use of inorganic fertilizers has resulted in pollution of water basins, destruction of microbes, insects and physicochemical property of the soil. Therefore, there is need for adoption of arbuscular mycorrhizal fungi biotechnology and other bioinoculants which could serve as alternative to chemical fertilizers. Bio-inoculants are natural and organic fertilizers that conserve nitrogen and enrich the soil nutrients, for the benefit of plants [5]. Arbuscular mycorrhizae Fungi (AMF) associate symbiotically with the roots of plant improve the uptake of phosphorus due to the short transmission distance of phosphate ions in the soil for plants' survival and growth [6, 7, 8, 9, 10, 5]. AMF fungi also play key role in nutrients cycling and protection of plants against environmental and biotic stresses [11, 12, 13, 14]. Several studies had reported the role of AMF on the growth of pepper [15, 16]. However, the interactions of arbuscular mycorrhizal fungi and other bioinoculants in genetic improvement of crops had enhanced yield, and reduced the challenges of pollution and toxicity of the soil [17,14].

Poultry Manure (PM) is an organic waste from poultry birds consisting of bird's faeces, waste food, feathers and increases soil carbon, organic nitrogen and exchangeable calcium resulting to pH increase. It causes slow release of macro nutrients most especially phosphorous which may lead to slow growth and poor yield of plant [18, 19]. It has also been used to improve the soil structure apart from enhancing the growth and yield of vegetable plants [20].

Spent Mushroom Compost (SMC) also known as spent mushroom substrate (SMS) or mushroom soil has become a popular organic soil amendment for the establishment and maintenance of agricultural and horticultural crops. It is also a viable and useful by-product in mushroom farming [21, 17]). This growth medium which constitute the mixture of agricultural materials such as; straw from horse stables, hay, poultry litter, ground corn cobs, cottonseed hulls, cocoa shells, peat moss, and other natural organic substances improve plant growth in poor or marginal soils [21].

The study investigated the morphological and yield variability response of pepper to *Glomus deserticola, Pleurotus pulmonarius* and Poultry manure.

2. MATERIALS AND METHODS

2.1 Study Location and Soil Sample

The study was conducted in the nursery Farm of the Department of Botany, University of Ibadan, Nigeria from February, 2013 to May, 2013. This area lies between latitude 3° 53' E and longitude 17° 26' N and altitude of 185 m above sea level [22], with a mean daily temperature of 24.6°C and mean rainfall range above 1300 mm.

The soil sample was collected from Sultan Bello Hall garden, University of Ibadan, and bagged in black polythene bags punched with 6 tiny holes to prevent water logging.

2.2 Research Design and Treatments

The experiment was factorially laid out in a 5x5 arrangement of a complete randomized design with three replicates. Five accessions of peppers cultivated in the study were labeled and they are; Accession G – Bell Pepper (Tatase), Accession H – Long Pepper , Accession I – Jos Pepper, Accession J – cherry Pepper (Bawa), Accession K – Thai Pepper (Ata Ibile).

A total of seventy five (75) plants which comprised of five treatments were evaluated in this study; T1– 2.5g inoculum of Arbuscular mycorrhizal Fungus (AMF) plus 2.5g of Poultry Manure (PM), T2 – 5g of AMF only, T3 - 5g of PM only, T4 - 5g of Spent Mushroom Compost (SMC) only, T5 – Control.

2.3 Sources of Bio-inoculants and Plant Material

Arbuscular mycorrhizal Fungus genus Glomus deserticola was obtained from the Department of Botany, University of Ibadan, Ibadan. PM was

collected from the Poultry farm of University of Ibadan, Ibadan, while the SMC was obtained from a mushroom.

The Bell, Long and Jos pepper were purchased respectively in Lagos, while Cherry and Thai peppers were bought. (Table 1).

2.4 Method of Planting and Agronomic Practices

Twenty seeds each of pepper accession were raised by planting in sterile polythene bag filled with 7 kg soil at the nursery of Department of Botany. After 2 weeks each accession was transplanted into 4 kg of soil in the nursery. The *G. deserticola*, poultry manure and spent mushroom compost were applied to the depth of 10 and 20cm away from stand [23]. Watering of plant and removal of weeds were carried out weekly.

2.5 Determination of Morphological and Yield Traits

2.5.1 Growth assessment

The following numbers of leaves, plant height (cm), stem height (cm), stem girth (cm) and leaf area. This was replicated three times and data were collected at 7 days intervals on each replicate.

2.5.2 Harvesting and evaluation of pepper for yield traits

The fruits were harvested at week from the 13th to 19th week after planting at unripe stage. After harvesting, the fruits were weighed and kept in envelopes (labelled according to the plants, treatment and replicate) and air dried. The fresh and dry weights of the fruits were determined.

2.6 Statistical Analysis

The data were subjected to analysis of variance (ANOVA) using SPSS version 16.0, while Duncan Multiple Range Test (DMRT) was further used to separate treatment means p<0.0

3. RESULTS

The result in table 1 showed the mean square effects of accessions and treatments of

3

bioinoculants on yield. The accession produced highly significant (p<0.01) effect on total number of fruit, while the effect of treatments of bioinoculants was significantly expressed on total number of fruit and total fresh weight.

There were significant differences (p<0.05) in the response of pepper accessions to morphological parameters (Table 2). The plant (48.82cm) and stem height (30.27cm) of cherry pepper were significantly different from other accessions, while the leaf length (9.20 cm), leaf width (4.63 cm), number of leaves (110.01), number of branches (5.89) and stem girth (0.82cm) were significantly higher in long pepper. The number of flowers was significantly expressed in Jos pepper compared to other accessions.

The result of the effect of treatment combinations of bioinoculants on growth characters of pepper is shown in table 3. The combinations of AMF + PM is significantly (p<0.05) higher for all the characters but not significantly (p>0.05) different for plant height(37.89 cm) and stem girth (0.77 cm) in all the treatments, and stem height (24.53 cm) in pepper treated with poultry manure. The application of ; AMF only and SMC only, AMF only and PM only, PM only and SMC only were not significantly different for stem height (21.39 and 23.28cm, 21.39 and 24.53cm, 24.53 and 23.28 cm) number of leaves (83.60 and 78.04, 83.60 and 80.24, 80.24 and 78.04); number of branches (5.24 and 4.00, 5.24 and 4.53, 4.53 and 4.00) as well as leaf width (2.92 and 3.20cm, 2.92 and 3.38cm, 3.38 and 3.20 cm), leaf length (6.44 and 6.82 cm, 6.44 and 7.23 cm, 7.23 and 6.82 cm) and number of leaves (83.60 and 78.04 cm, 83.60 and 80.24 cm, 80.24 and 78.04) respectively (Table 3).

The result in table 4 shows that the treatment combinations of *Glomus deserticola* and poultry manure is significantly (p < 0.05) higher for total number of fruit (25.87) than control (7.47), while *G. deserticola* only and poultry manure only did not express significant effect on total number of fruit (18.80 and 21.60). The addition of poultry manure only and combined treatments of *G. deserticola* and poultry manure were significantly higher for total fresh weight (4.53 g and 10.38 g), while the effects of control (7.75 g) and treated pepper with *Pleurotus pulmonarius* were non significant (Table 4). The untreated and sole treated with *G. deserticola* and poultry

manure were significantly higher for total dry weight (9.80 g)of pepper, while combinations of *G. deserticola* and poultry manure as well as pepper solely treated with *P. pulmonarius* were not significantly different at p > 0.05.

The result of the effect of accession on yield of pepper is shown in table 5. The Long and Jos pepper were significantly (p<0.05) higher but not different for total number of fruit (21.87 and 24.07), while Bell pepper and Thai pepper were non-significant. The total fresh weight (11.11 and 12.15g) of Jos and Bell pepper were significantly higher than other pepper, while total dry weight (12.05g) of bell pepper was higher significantly compared to others. The Jos and Cherry pepper as well as Long and Thai pepper were not significantly (p>0.05) different from each other (Table 5).

The plant height is positive and strongly correlated (p<0.01) with stem height, leaf width, leaf length, number of leaves and stem girth with r=0.84, 0.80, 0.83, 0.79 and 0.60 respectively. The stem height is positively associated with leaf width, leaf length, number of leaves and number of branches per plant at p<0.01; r=0.80, 0.81, 0.61, and 0.51 respectively. The leaf width is positive and strongly correlated with leaf length (r=0.95) and number of leaves (r=0.66), but related with number of branches (r=0.59) and stem girth (r=0.51), while the association between the leaf width and number of flowers, week after planting, and accessions were positive but not related. Also, there was positive association between leaf length and number of leaves, number of branches and stem girth at p<0.01; r=0.68, 0.57and 0.54 respectively. The number of leaves is positive correlated with number of flowers, number of branches and stem girth at r=0.57, 0.65, and 0.59 respectively while there was positive association between week after planting and stem girth (r=0.71, p< 0.05) (Table 6).

There is no significance in the relationship between treatment and total number of fruits and accessions, while there is a negative and non significant correlation between treatment, total fresh weight and total dry weight. There is high significance and positive correlation between total number of fruits and total fresh weight alone (r=0.56), while there is negative and no correlation between total dry weight and accessions (Table 7).

4. DISCUSSION

It is apparent from the results that growth of pepper plant can be improved when inoculated with appropriate AMF+PM and AMF only, under well watered condition. Significant increase in plant height (37.89 and 33.81 cm), number of leaves (95.47 and 83.60 cm), stem girth (0.77 and 0.67 cm) was recorded in AMF+PM and AMF only inoculated plants. This increase in growth characters can be attributed to the mycorrhizal activity in stimulating the absorption of the nutrition from the surrounding soil to the host plants [24]. Plants inoculated with Mycorrhiza had improved growth performance which agreed with the reports of [25] that the symbiotic association

Table 1. Mean Square effects of Accessions and Treatments of Glomus deserticola, Pleurotus pulmonarius Compost and Poultry Manure on yield of pepper

Sources of					
Variation	Df	Total Number of I			ht Total Dry
				(g) _{10.20}	Weight (g)
Treatment	4	507.55	114.16	10.20	
Accession	4	858.58**	1	70.80	64.54
Replicate	2	113.65	24.99	15.88	
Error	64	160.18	:	24.99	39.34
Total	75				
Corrected	74				
Total					
** P< 0.01 high	ly significar	nt, <u>*</u> P< 0.05 significa	nt, ns= non s	ignificant	

Please arrange Table 1 in below table format

Sources of variation Treatment Accession Replicate Error Total	Df 4 2 64 75	Total number of fruit 507.55** 858.58** 113.65 160.18	Total fresh weight (g) 114.16** 170.80 24.99 24.99	Total dry weight (g) 10.20 64.54 15.88 39.34
Total Corrected Total	75 74			

** P< 0.01 highly significant, * P< 0.05 significant, ns= non significant Table 2. Effect of accessions on morphological characters of pepper

Accession	Plant height (cm)	Stem height (cm)	Leaf width (cm)	Leaf length (cm)	Number of leaves	Number of flowers	Number of branches	Stem girth (cm)
Bell Pepper (Tatase)	17.64 ^ª	13.72 ^d	1.95 ^d	4.49 ^d	55.17°	3.60 ^c	4.00 ^b	0.53 [°]
Long Pepper	43.54 ^{ab}	29.61ª	4.63 ^ª	9.20 ^a	110.01ª	7.63 ^b	5.89 ^ª	0.82 ^a
Jos Pepper Cherry Pepper (Bawa)	29.07 ^c 48.82 ^a	17.82° 30.27ª	2.87 ^c 3.58 ^b	5.62 ^c 8.12 ^a	81.81 ^b 89.25 ^{ab}	14.04 ^a 8.81 ^{ab}	4.29 ^b 3.71 ^b	0.61 ^{bc} 0.78 ^a
Thai Pepper (Ata Ibile)	38.47 ^b	21.84 ^b	3.05 ^{bc}	7.00 ^b	81.54 ^b	7.33 ^b	3.96 ^b	0.75 ^{ab}

Means followed by the same letter do not differ significantly at P ≤ 0.05 by Duncan test

Table 3. Effect of treatment combinations of Glomus deserticola, Pleurotus pulmonarius compost and Poultry manure on eight morphological characters of pepper

Treatments	Plant Height (cm)	Stem Height (cm)	Leaf Width (cm)	Leaf Length (cm)	Number of Leaves	Number of Flowers	Number of Branches	Stem Girth (cm)
AMF +PM	37.89 ^a	25.13ª	3.73 ^ª	7.86 ^ª	95.47 ^a	12.38 ^ª	5.24 ^ª	0.77 ^a
AMF only	33.81 ^ª	21.39 ^{ab}	2.92 ^b	6.44 ^b	83.60 ^{ab}	9.00 ^{ab}	4.29 ^{ab}	0.67 ^a
PM only SMC <i>only</i> Control	36.69 ^ª 37.44 ^ª 32.66 ^ª	24.53 ^ª 23.28 ^{ªb} 19.85 ^b	3.38 ^{ab} 3.20 ^{ab} 2.95 ^b	7.23 ^{ab} 6.82 ^{ab} 6.28 ^b	80.24 ^{ab} 78.04 ^{ab} 73.78 ^b	6.09 ^b 7.02 ^{ab} 7.27 ^{ab}	4.53 ^{ab} 4.00 ^b 3.93 ^b	0.70 ^a 0.71 ^a 0.67 ^a

Means followed by the same letter do not differ significantly at $P \le 0.05$ by Duncan test

AMF- Arbuscular Mycorrhizal fungi (Glomus deserticola), PM- Poultry Manure, SMC- Spent Mushroom Compost (Pleurotus pulmonarius)

Table 4. Effect of Glomus deserticola, Pleurotus pulmonarius compost and Poultry manure on the yield of pepper

Treatment	Total Number of Fruit	Total fresh Weight (g)	Total Dry Weight (g)
Glomus deserticola	25.87 ^a	10.38 ^a	9.80 ^{ab}
 Poultry Manure 			
Glomus deserticola only	18.80 ^{ab}	4.53 ^b	10.11 ^ª
Poultry Manure only	21.60 ^{ab}	11.67ª	11.62ª
Pleurotus pulmonarius compost	10.53 ^{bc}	9.43 ^{ab}	9.49 ^{ab}
Control (Untreated)	7.47 ^c	7.75 ^{ab}	10.01 ^ª

Means followed by the same letter do not differ significantly at P ≤ 0.05 by Duncan test

Total Number of Fruit	Total Fresh Weight	Total Dry Weight
	(g)	(g)
7.87 ^b	12.15ª	12.05 ^a
21.87 ^a	10.13 ^{ab}	11.16 ^{ab}
24.07 ^a	11.11 ^a	8.01 ^b
11.53 ^{ab}	5.84 ^{bc}	7.91 ^b
8.93 ^b	4.51 [°]	11.89 ^{ab}
	7.87 ^b 21.87 ^a 24.07 ^a 11.53 ^{ab}	7.87 ^b 12.15 ^a 21.87 ^a 10.13 ^{ab} 24.07 ^a 11.11 ^a 11.53 ^{ab} 5.84 ^{bc}

Table 5. Effect of Accessions on the yield of pepper

Means followed by the same letter do not differ significantly at P ≤ 0.05 by Duncan test

 Table 6. Correlation among morphological characters and growth stages of pepper at 7 days interval

Plant height (cm)	Stem height (cm)	Leaf width (cm)	Leaf length (cm)	Number of leaves	Number of flowers	Number of branches	Week after planting
Stem Height	0.84**	. ,	. ,				
Leaf Width	<mark>0.80**</mark>	0.80**					
Leaf Length	<mark>0.83**</mark>	<mark>0.81**</mark>	<mark>0.95**</mark>				
Numbe <mark>r of</mark>	<mark>0.79**</mark>	<mark>0.61**</mark>	<mark>0.66**</mark>	<mark>0.68**</mark>			
Leaves							
Number of	<mark>0.45</mark>	<mark>0.34</mark>	0.32	<mark>0.28</mark>	<mark>0.57*</mark>		
Flowers							
Number of	<mark>0.48</mark>	<mark>0.51*</mark>	0.59*	<mark>0.57*</mark>	0.65**	<mark>0.25</mark>	
Branches							
Stem Girth	0.60** *, ** significant a	<mark>0.47</mark> at P < 0.0	0.51* 05 and P < 0.	0 <mark>.54*</mark> .01 at P < 0.0	0.59** 5 and P < 0	0.34 0.47 0.01 respectively	0.71**

the fungi also provides the host with substance to enhance their growth such as auxin, gibberellins and cytokinnins. From the result, it was observed the pepper plants treated with SMC only are the tallest, this shows that SMC is responsible for increase in the height of pepper plant which agreed with the report of [26]. The positive and highly significance between the characters number of leaves, number of flowers, number of branches and stem girth shows that number of flowers, number of branches and stem girth are determinants of number of leaves indicate that these attributes are the most important component for yield selection and direct selection for these characters as similarly confirmed by

[19] and [14].

[27] reported that AMF can increase the plant biomass and rate of photosynthesis. [28] also confirmed that AMF can act as phytostimulators, and can alter the pattern of gene expression, cellular programing and organ development of host plant. Nowadays, biofertilizer is an alternative to chemical fertilizer to increase soil fertility and crop production in sustainable farming. Furthermore, the use of biofertilizer has gained momentum in recent years since chemical fertilizers are expensive and cause hazardous effect to plants [29].

6

Plate A: Fruit of bell pepper, Plate B: Fruits of Long Pepper, Plate C: Bell Pepper treated with AMF + PM Showing the leaves, fruits and flower, Plate D: Long pepper treated with PM, Plate E: Long Pepper treated with AMF + PM, Plate F: Jos pepper treated with AMF + PM

Plate G: Jos pepper treated with AMF only, Plate H: Cherry pepper (Control), Plate I: Thai pepper treated with AMF, Plate J: Thai pepper treated with AMF+PM

Treatment	Total Num	ber of Fruit	Total Fresh We	ight (g) Total Dry Weig	ht (g)
Total number of Fruit					
	0.08 [*]				
Total Fresh Weight	-0.01		0.56**		
Total Dry Weight	-0.00		-0.01	0.06	
*, ** significant at P	< 0.05 and P <	0.01respective	ely ns= Non-sign	ificant at $P < 0.05$ and $P <$	0.01
		respec	tively		

Kloos, H. and McCullough, FS. (198

Plant Molluscicides. Journal of Medicina

http://dx.doi.org/10.1055/s-2007-971215 Olawuyi, OJ. Odebode, AC. Olakojo, SA

and Adesoye, A. (2012). Variation in

Maize Tolerance in Striga lutea (Lour

and Influence of Arbuscular Mycorrhiza

ungi. International Journal of Basic

Applied and innovative Research. 1:1-5. Osonubi, O. Mulongoy, K. Awotoye, OO

tayese, MO. and Okali, DUU. (1991

ffects of Ectomycorrhizal and Vesicular

rbuscular Mycorrhizal Fungi on Drough

olerance of Four Leguminous Woody

eedlings. Plant and Soil, 136, 131-143 http://dx.doi.org/10.1111/j.1469-

Ddebode, AC. and Sobowale, A. (2001

Antagonistic Activities of Fungal Flora solated from Pepper Phylloplane or

ostharvest Pathogen of Peppel

Acta

8137.1986.tb00656.x

Research

5. CONCLUSION

Jos pepper and treatment combinations of AMF + PM produced the highest mean for the total number of 24.07 and 25.87 fruits, while Bell pepper had highest total fresh weight and dry weight of 12.15g and 12.05g respectively. The other advantages of using biofertilizer are; low cost, lead to soil enrichment with nutrients, compatible with long term sustainability and ecofriendly. However, the amount of nutrients provided by the bioinoculants is determinants of the needs of crops for high yields. The integration of AMF+PM, AMF only, PM only, SMC only in pepper production as bioinoculants should be applied by farmers to enhance better yield of the crops.

COMPETING INTERESTS

Authors have declared that no competing interests exist.

annum). Capsicum hytopathologica et entomologica REFERENCE Hungarica, 36(3-4): 289-292. - - - - Schwarzott, D and Schubbler, A. (2001 Aliyu, L. (2000). The effect of organi ind mineral fertilizer on growth yield and simple and reliable method of SSU omposition of pepper (Capsicum annum RNA gene DNA extraction, amplification Agriculture Horticulture Biological and cloning from single AM funga 8: 29-36. pores. Mycorrhizae, 10: 203-207 Gemma, A. Hohnjec, N. Vieweg, MF Puhler, A. Becker, A. and Kuster, H Basu, SK. and De, AK. apsicum: historical and botanical erspectives. In: De AK. (Ed) Capsicum 2005). Overlaps in the transcriptiona & Francis, London & New York rofiles of *M. truncatula* roots program ctivated during arbuscular mycorrhizae Plant Physiol. 137:1283-1301. DA. (2006). Effect of fertilizer phosphorus and poultry droppings 10. Olawuyi, OJ. Babatunde, FE. Akinbode reatments on growth and nutrien DA. Odebode, AC. and Olakojo, SA 2011a). Influence of Arbuscular omponents of pepper (*Capsi* annum L.). African Journal African Journal of Aycorrhizal and N.P.K fertilizer on the Biotechnology<mark>. 5(8): 671-677.</mark>___ oductivity - of- -Cucumber- -(*Cucumi*

Comment [1]: see guidelines part uniform

Comment [2]: Full name !!

<i>sativus</i>). International Journal of Organic Agriculture Research and Development 3:22-31.	18. Sunassee, S. (2001). Food and Agricultural Research Council, Reduit, Mauritius, 259 – 263.	
Harley, JL. and Smith, SE. (1989).	19. Nwangburuka, CC. Denton, OA.	
Mycorrhizal symbiosis. Academic Press,	Kehinde, OB. Ojo, DK. Popoola, A.R.	
London Uk pp 267-295	(2012). Genetic variability and heritability	
Odebode AC. 2005. The use of	in cultivated okra (Abelmoschus	
Arbuscular Mycorrhiza (AM) as a source	esculentus [L.] moench). Spanish	
of yield increase in sustainable alley	Journal of Agricultural Research. 10(1).	
cropping system. Archives of Agronomy	123-129.	
and Soil Sci. 51:385–390.	20. Nwangburuka, CC. Olawuyi, OJ.	
Olawuyi, OJ. Odebode, AC. Oyewole,	Oyekale, K. Ogunwenmo, KO. Denton,	
IO. and Akanmu, AO. (2013). Effect of	OA. Awotade, D. (2012b). Effect of	
arbuscular mycorrhizal fungi on <i>Pythium</i>	Arbuscular mycorrhiza (AM), Poultry	
aphanidermatum causing foot rot	manure(PM), Combination of AM-PM	
disease on pawpaw (<i>Carica papaya</i> L.)	and inorganic fertilizer (NPK) on the	
seedlings. Archives of Phytopathology	growth and yield of okra (Abelmoschus	
and Plant Protection 47: 185-193.	esculentus). International Journal of	
Olawuyi, OJ. Jonathan, SG. Babatunde,	Organic Agriculture Research and	
FE. Babalola, BJ. Yaya, OS. Agbolade,	Development. (7): 23-38.	
JO. Aina, DA. Egun, CJ. (2014).	21. Fidanza, MA. and Davis, DD. (2009).	
Accession × Treatment Interaction,	Recycled mushroom compost	
Variability and Correlation Studies of	suppresses bird's nest fungi in	
Pepper (<i>Capsicum</i> spp.) under the	landscape mulch. J. Environ. Hort.	
Influence of Arbuscular Mycorrhiza	27:238–240.	
Fungus (<i>Glomus clarum</i>) and Cow Dung.	22. Akin-Oriola, GA. (2003). On the	
American Journal of Plant Sciences.	phytoplankton of Awba Reservoir.	
5:683-690.	Ibadan, Nigeria. Revista de Biologia	
Turkmen, O. Sensoy, S. Demir, S. and	Tropica., 51: 99-106.	Comment [3]: abbreviate
Erdinc, C. (2008). Effects of two different	23. Orluchukwu, JA. and Adedokun, OM.	
AMF species on growth and nutrient	(2014). Comparative effects of poultry	
content of pepper seedlings grown under	manure and spent mushroom substrate	
moderate salt stress. African Journal of	on the growth and yield of pineapple	
Biotechnology. 7(4): 392-396. DOI:	(Ananas comosus) in Nigeria. African	
10.5897/AJB07.603	Journal of Agricultural Research. 9(26):	
Zayed, MS. Hassanein, MKK. Esa, NH.	2041-2044	
and Abdallah, MMF. (2013). Productivity	24. Smith, SE. and Smith, FA. (2012). Fresh	
of pepper crop (Capsicum annuum L.) as	perspectives on the roles of arbuscular	
affected by organic fertilizer, soil	mycorrhizal fungi in plant nutrition and	
solarization, and endomycorrhizae.	growth. Mycologia 2012, 104, 1–13.	
Annals of Agricultural Sciences. 58(2):	25. Slankis, V. (1973). Hormonal	
131–137	relationships in mycorrhizal development	
https://doi.org/10.1016/j.aoas.2013.07.01	in Ectomycorrhizae (Ed. By G.C. Marks	
1	& T.T. Kozlowski), pp 231-298.	
Jonathan, S.G., Olawuyi, O.J. and	Academic Press, New York.	
Babalola, B.J. (2013) Evaluation of Okra	26. Idowu, OO. and Kadiri, M. (2013).	
Accessions in Treatment Combinations	Growth and yield response of Okra	
of Mycorrhiza Fungus, Mushroom	(Abelmoscus esculentus Moench) to	
Compost and Poultry Manure.	spent mushroom compost from the	
Proceedings of Tropentag Conference	cultivation of <i>Pleurotus</i> ostreatus an	
on Agricultural Development within the	edible mushroom. Academia Journal of	
Rural-Urban Continuum, Stuttgart,	Agricultural Research. 1(3): 039-044.	
Hohenheim.	27. Ekanayake, IJ. Oyetunji, OJ. Osonubi, O.	
www.tropentag.de/abstracts/full/790.pdf	and Lyasse, O. (2004). The effects of	

arbuscular mycorrhizal fungi and water	acquisition. Mycorrhiza, 14: 185-192. doi:
stress on leaf chlorophyll production of	10.1007/s00572-003-0256-3
cassava (Manihot esculenta Grantz).	PMID:15197635
Food, Agriculture and Environment 2:	29. Aseri, GK. Jain, N. Panwar, J. Rao, A.V.
<mark>190 -196</mark>	Meghwa,I PR. (2008). Biofertilizers
28. Gamalero, E. Trotta, A. Massa, N.	improve plant growth, fruit yield, nutrition,
Copetta, A. Martinotti, MG and Berta, G.	metabolism and rhizosphere enzyme
(2004). Impact of two fluorescent	activities of Pomegranate (Punca
pseudomonads and an arbuscular	granatum L.) in India Thar Desert.
mycorrhizal fungus on tomato plant	Scientia horticulturae; 117(2):130-135.
growth, root architecture, and P	