Original Research Article

CORROSION BEHAVIOUR OF ALUMINIUM-IRON (AI-Fe) METAL MATRIX COMPOSITE (MMC) REINFORCED WITH SILICON CARBIDE (SiC) PARTICLES IN VARIOUS MEDIA CONENTRATION OF TETRAOXIOSULPHATE IV ACID (H2SO4)

5

6 Abstract:-

The current study focused on the investigation of the corrosion behavior of 7 aluminium-iron (Al-Fe) Metal matrix Composite (MMC) reinforced with silicon 8 carbide (SiC) particles in various media concentration of tetraoxosulphate iv acid 9 (H2SO4). The Al/Fe materials were combined in various proportion of 10% wt 10 Al/87.5% wt Fe, 15% wt Al/80% wt Fe and 20% wt Al/73% wt Fe respectively. 11 They were fed into an electric furnace and mechanically stirred to form a fine 12 vortex. The respective molten compositions were reinforced with silicon carbide 13 (SiC) particles. The fabricated composite were of the composition; 2.5% SiC/10% 14 wt Al / 87.5% wt Fe, 5% wtSiC/15% wt Al/80% wt Fe and 7% wt SiC/20% wt 15 Al/73% wt Fe. Microstructurally scan showed signs of porosity and the weight loss 16 corrosion test result expressed reduction in corrosion resistance with SiC addition 17 18

1

19 Keywords:- corrosion, iron, analysis, regression, statistics

21 INTRODUCTION

22 **1.0 BACKGROUND OF STUDY**

Corrosion is mostly a naturally occurring phenomenon commonly defined as the 23 deterioration of a substance or its properties because of a reaction with contents in 24 its environment. Like other natural hazard such as earthquakes, or severe weather 25 disturbances, corrosion can cause dangerous and expensive damage to everything 26 from automobiles, home appliances drinking water system, pipeline of various 27 categories, bridges, glass waves, metals of different shades and buildings. It has 28 been shown that virtually everything responds to corrosion impact from metallic 29 and nonmetallic materials to living things in one form transformation in either 30 shapes or content (Anyalebechi, Owate and Avwiri 2013, Koch, bronger, 31 Thompson, Virmani and Payer 2002, Ross and Lott 2001). 32

Corrosion control and treatment are of vital concern because corrosion of 33 equipment and primary structures has a great effect on the operational and 34 structural integrity of systems including economy (John F. Kennedy space center 35 (KSC) TM-584C. Revision C 1994). Time proven methods for preventing and 36 controlling corrosion depend on the specific nature of the material, environmental 37 factors such as soil resistivity, humidity, acidity or alkalinity of the conducting 38 medium (PH factor), temperature, active of biological organism (precisely 39 anaerobic bacterial), variation in composition of the corrosive medium and water 40

intrusion (Koch et., al.). In general, the severity of the corrosion damage cannot be 41 overemphasized. Therefore, it is important to make corrosion prevent and control a 42 priority in Material selection and usage in various fields of science and 43 engineering. Among the methods employed in corrosion control and prevention 44 are; organic and metallic protective coating, corrosion resistant alloys, plastic and 45 polymer, corrosion inhibitors and cathodic protection used in pipeline, 46 underground storage tanks and shore structures that create an electrochemical cell 47 in which the surface to be protected in the cathode and corrosion reactions are 48 mitigated (Uhlig 2008). 49

One of the best procedures for corrosion control is to minimize the potential for 50 corrosive attack while designing the material and equipment through the use of 51 corrosive resistant materials and avoiding dissimilar metal couple. Metal matrix 52 composite is a material design technique aimed at improving material quality and 53 corrosion resistance. A composite is a material having two or more distinct 54 constituents, whose corrosion is affected by; the specificity of a given corrosion 55 toward the individual components and galvanic interactions between them 56 (Anyalebechi et., al 2013, Ihom, Nyior, Nor, Segun and Ogbodo 2012). 57 Considering the importance of composite, Fontana (1987) stressed the need to 58 assess composite in environments in which they may be likely operating. In line 59 with the suggestion some researchers have studied composite behavior in a number 60

of environments. Anyalebechi et., al. (2013) studied the reduction of corrosion in 61 various concentrations of hydrochloric acid by compositional design. Their 62 findings showed that 30wt%Al/ 70wt%Fe composition reduced corrosion by 50%. 63 Ihom et., al. (2012) evaluated the corrosion resistance of aluminum alloy matrix 64 2.5% particulate glass reinforced composite in HCl, NaOH and NaCl solution. 65 They concluded that the composition cannot be used in NaOH and HCl 66 environments but NaCl. Ogbonna et., al (2004) studied the corrosion susceptibility 67 of squeeze cast Aluminum based metal composites. The work submitted that the 68 rate of corrosion attack was proportional to volume fraction of the reinforcement 69 agent alumina. Other relevant works are; Darvishi et., al. (2010), Owate et., al. 70 (2012), Adeosun et., al. (2012), Asuke et., al (2009) and Bobic et., al (2010). 71

72 1.1 AIM OF STUDY

The aim of this study is to evaluate the corrosion behavior of Aluminum/iron metal
matrix composite, reinforced with Silicon carbide (SiC) particulate in various
media concentration of tetraoxosulphate IV acid solution.

76

77 MATERIAL AND METHOD

78 2.0 MATERIALS

79 The materials used are Aluminum alloy with determined chemical composition of;

Al	Cu	Mg	Si	Fe	Mn	Zn	Ti	Cr	Ni	K
92.01	0.06	0.57	6.58	0.16	0.06	0.20	0.14	0.20	0.01	0.01

80

Iron (Fe) material and silicon carbide (SiC) particles used as reinforcing material
other were materials for weight less analysis, electric furnace and string rod,
electronic weighing machine, mould for fabrication.

84

85 2.1 PROCEDURE

The Al/Fe material were combined in various proportion by 10% wt Al/ 87.5% wt 86 Fe, 15% wtAl/80% wt Fe and 20% wtAl/73% wt Fe respectively by weight in gram. 87 They were separately fed into an electric furnace of 1000^oc capacity. The metal 88 composition was stirred with the help of mechanical stirrer to form a fine vertex. 89 The silicon carbide particles preheated was added with the molten metal 90 composite. The molten mixture is then stirred continuously at 320 censuses. The 91 final molten liquid metal of Al/Fe/SiC is poured into the mould which has 92 preheated at 400°c. The various fabrications composite was at composite 93 2.5% wtSiC/ 10% wt Al/ 87.5% wtFe, 5% wtSiC/ 15% wtAl/80% wtFe and 7% wtSiC/ 94

- 95 20% wtAl/ 73 wtFe respectively. The various fabricated composite was subjected to
- weight loss corrosion test using various concentration of H_2SO_4 of 0.1m, 0.5m and
- 97 1.0m respectively.

Table 1: Specimen (2.5% wt sic/ 10% wt Al/ 87.5% wt Fe) in $0.1 \text{ m H}_2\text{SO}_4$

Time(hours)	Initial weight (g) wi	Final weight (g) wf	Weight loss ∆w=wi- wf	% weight loss $\frac{\Delta w}{wi} x100$	Change in weight wi-∆w	Log (wi- Δw)
24	34.8560	33.9253	0.9307	2.6700	33.9253	1.5305
48	34.8560	33.1515	1.7045	4.8900	33.1515	1.5202
72	34.8560	32.8553	2.0007	5.7400	32.8533	1.5166
96	34.8560	32.6148	2.2412	6.4300	32.6148	1.5134
120	34.8560	32.4160	2.4400	7.0000	32.6160	1.5107
144	34.8560	31.8235	3.0325	8.7000	31.8235	1.5027
168	34.8560	30.4990	4.3570	12.5000	30.4990	1.4883

100

101 Regression Analysis: Log versus Time(hrs)

102 The regression equation is

Log = 1.536 - 0.000249 Time(hrs)

104

105 Model Summary

S R-sq R-sq(adj)

0.0040026 92.60% 91.12%

106 Analysis of Variance (ANOVA)

Source	DF	SS	MS	F	Р
Regression	1	0.0010020	0.0010020	62.54	0.001
Error	5	0.0000801	0.0000160		
Total	6	0.0010821			

109

Figure 2.1: Regression of Log Versus Time (hrs)

110

- Regression Analysis: %Weight Loss versus Time(hrs) 111
- The regression equation is 112
- %Weight Loss = 1.366 + 0.05710 Time(hrs) 113

114

Model Summary 115

> S R-sq R-sq(adj) 1.04970 90.52% 88.62%

118 Analysis of Variance (ANOVA)

Source	DF	SS	MS	F	Р
Regression	1	52.5806	52.5806	47.72	0.001
Error	5	5.5093	1.1019		
Total	6	58.0899			

Time(hours)	Initial	Final	Weight	%weight	Change	Log (wi-
	weight	weight	loss	loss	in weight	Δw)
	(g) wi	(g) wf	∆w=wi- wf	$\frac{\Delta w}{wi} x100$	wi-∆w	
24	28.4510	27.5975	0.8535	3.0000	27.5975	1.4409
48	28.4510	27.0284	1.4226	5.0000	27.0184	1.4263
72	28.4510	26.6870	1.7640	6.2000	26.6870	1.4263
96	28.4510	26.2318	2.2192	7.8000	26.2318	1.4188
120	28.4510	26.0371	2.4183	8.5000	26.0327	1.4155
144	28.4510	25.7766	2.6744	9.4000	25.7766	1.4112
168	28.4510	25.3214	3.1296	11.0000	25.3214	1.4035

123 **Table 2**: Specimen (2.5% wt sic/ 10% wt Al/ 87.5% wt Fe) in $0.5m H_2SO_4$

124

125 Regression Analysis: Log versus Time(hrs)

- 126 The regression equation is
- 127 Log = 1.442 0.000228 Time(hrs)
- 128

129 Model Summary

S	R-sq	R-sq(adj)
0.0031130	94.54%	93.44%

130

131 Analysis of Variance (ANOVA)

Source	DF	SS	MS	F	Р
Regression	1	0.0008382	0.0008382	86.50	0.000
Error	5	0.0000485	0.0000097		
Total	6	0.0008867			

Figure 2.3: Regression of Log Versus Time (hrs)

135

- 136 Regression Analysis: %Weight Loss versus Time(hrs)
- 137 The regression equation is
- 138 %Weight Loss = 2.257 + 0.05223 Time(hrs)

139

140 Model Summary

S	R-sq	R-sq(adj)
0.393428	98.27%	97.93%

141

142 Analysis of Variance (ANOVA)

Source	DF	SS	MS	F	Р
Regression	1	44.0004	44.0004	284.27	0.000
Error	5	0.7739	0.1548		
Total	6	44.7743			

- Figure 2.4: Regression of %Weight Loss Versus Time (hrs)

Table 3: Specimen (2.5% wt sic/ 10% wt Al/ 87.5% wt Fe) in 1.0m H_2SO_4

Time(hours)	Initial weight (g) wi	Final weight (g) wf	Weight loss ∆w=wi- wf	% weight loss $\frac{\Delta w}{wi} x100$	Change in weight wi-∆w	Log (wi- Δw)
24	33.6712	32.2223	1.4479	4.3000	32.2223	1.5082
48	33.6712	31.7519	1.9193	5.7000	31.7519	1.5018
72	33.6712	31.3816	2.2896	6.8000	31.3816	1.4987
96	33.6712	30.9775	2.6937	8.0000	30.7081	1.4872
120	33.6712	30.7081	2.9631	8.8000	30.7081	1.4830

Time(hours)	Initial weight (g) wi	Final weight (g) wf	Weight loss ∆w=wi- wf	% weight loss $\frac{\Delta w}{wi} x100$	Change in weight wi-∆w	Log (wi- Δw)
144	33.6712	30.4051	3.2661	9.7000	30.4051	1.4737
168	33.6712	29.7653	3.9059	11.6000	29.7653	1.4702

- 149 Regression Analysis: Log versus Time (hrs)
- 150 The regression equation is
- 151 Log = 1.516 0.000277 Time (hrs)
- 152
- 153 Model Summary

S R-sq R-sq(adj)

0.0019540 98.48% 98.17%

154

155 Analysis of Variance (ANOVA)

Source	DF	SS	MS	F	Р
Regression	1	0.0012342	0.0012342	323.25	0.000
Error	5	0.0000191	0.000038		
Total	6	0.0012533			

164 Model Summary

S	R-sq	R-sq(adj)
0.280688	98.93%	98.71%

165

166 Analysis of Variance (ANOVA)

Source	DF	SS	MS	F	Р
Regression	1	36.3432	36.3432	461.29	0.000
Error	5	0.3939	0.0788		
Total	6	36.7371			

172 **RESULTS AND DISCUSSION**

173 The results of this work are as presented in the tables 1-3 and figures 2.1-2.6

174 **DISCUSSION**

The graphs of log (w_1 - Δw) plotted against time as shown in *figures 2.1, 2.3 and 2.5* above show a straight line indicating a first order reaction kind of corrosion mechanism. The rate is found to be faster at the initial time, arising from quick depletion of dissolved oxygen (O_2) and possible temperature variation as the kinetic of the reactions are affected by the ambient environmental conditions. This is supported by the result of the regression analysis for the same log (w_1 - Δw) with time which gave a regression of equation of:

182
$$y = 1.536 - 0.000249x \dots eqn. 3.1$$

Indicating that reactivity was reducing with time. The reaction rate depends on the 183 composition and the temperature of the reacting mixture (Atkin 2008, Veltegreen 184 et., al 2003, Owate et., al 2008). This observed trend did not change remarkably 185 throughout the composites. The graph of percentage weight loss i.e. % weight loss 186 $\left(\frac{\Delta w}{wi}x100\right)$ against time (see figures 2.2, 2.4 and 2.6 above) was linearly increasing 187 with an increase in SiC addition. The tendency for weight loss to increase with 188 concentrate is obvious, initially without the addition of SiC, given that Aluminum 189 (Al) dissolves in diluted mineral acid to liberate Hydrogen, also in Sodium 190 Hydroxide (NaOH) solution. Again Fe/Al are amphoteric slightly, hence, the 191

observed behavior was further enhanced by SiC addition. This is in line with 192 Adeosun et., al 2012, observation on issue of porosity in metal matrix composite 193 (MMCs). Bobic et., al (2010) noted that in aqueous solution silicon carbide can 194 serve as an inert electrode for proton or oxygen reduction depending on the SiC 195 type, galvanic corrosion with aluminum is possible. The extent of the galvanic 196 corrosion is strongly dependent on the type of SiC reinforcement. The electrical 197 resistivity of SiC depend on its purity. Pitting attack is reported to be the major 198 form of corrosion in SiC/ aluminum MMCs. Cramer et., al (2005). The resolution 199 here is further buttressed by Aqida et., al (2004) who noted that porosity in cast 200 metal matrix composite (MMC) has been known as a defect affecting the 201 enhancement of strength, particularly in particle reinforced MMc. The presence of 202 porosity decreased the mechanical properties of cast MMc as the failure process is 203 initiated from the void formed. 204

The composite behavior is characterized by pitting attack in the presence of H_2SO_4 . This is in support by the finding of Ramachandra et., al (2006). Therefore, it is likely that in homogenous structure of metal matrix composite (MMC) are responsible and must be considered in designing a corrosion protection system. This inhomogeneous tendency is made obvious by the presence of SiC particles as a reinforcement material. Ramachandra et al (2006) study has shown that sliding wear, slurring, erosive wear and corrosive wear of an aluminum based metal

212	matrix reinforced with SiC particles resistance were considerably improved with
213	the addition of Sic particles whereas composite corrosion resistance decreased.
214	Emphasis on SiC addition becomes strong, giving the submission of the findings of
215	Anyalebechi et al (2013) that after metal matrix composite reduced corrosion by
216	50%. Therefore, in the present study, it can be submitted in line with Ramachandra
217	et al (2006) that the observed decrease in composition resistance of the composite
218	was a direct consequent of SiC addition which gives rise to porosity and formation
219	of remarkable void which reduced cohesion and inter mechanical failures.
220	

REFERENCE 221

- Adesosun, S.O., Akpan, E.I., Sekunowo, O.I., Ayoola, W.A and Balogun, S.A. 222 (2012). Mechanical characteristic of 6063 Aluminum steel dust composite. 223 ISSN mechanical Engineering Vol. 2012, article ID 461853, Doi: 224 5402/2012/461853. 225
- 226
- Anyalebechi, O, Owate, I.O and Avwiri, G. (2013) reduction of corrosion in 227 carious concentration of hydrochloric acid by compositional design. 228 Academic journals vol.8 (27) pp.1328-1333. 229
- Aqida S. N, Ghazali M.I and Hashim J (2014). Effect of porosity on mechanical 231 properties of metal matrix composite; an overview journal Teknologi 400 232 (A) 17-32 233
- 234

238

- Barbuleseu and OiAC, 1. (2008) Corrosion analysis and Models for some 235 composites behavior in saline media. International journal of Energy and 236 Environment, issue 1. Vol.2 237
- Bobic B, Mitrovic S., Babic M. and Bobic I. (2010) corrosion of metal-matrix 239 composite with Aluminum Alloy substrate. Tribology in industry Vol. 32. 240 No1 pp 11 241

242 Darvishi A, Maleki A, Alabaki, M.M and Zargami, M. (2010) the mutual effect of 243 iron and manganese on microstructure and mechanical properties of 244 Aluminum- silicon Alloy. Mjom, Vol.16. no.1. pp. 11-24. 245 246 Ihom, A.P, Nyior G.B, Nor I.J, Segun, S and Ogbodo, J (2012) Evaluation of the 247 corrosion Resistance of Aluminum Alloy matrix 12.5% particulate Glass 248 Reinforced Composite in various media. International Journal of Science 249 and Technology, Vol.1 No,10 pp. 560-568. 250 251 Kamaal Haider, Md. Azid Alam, Amit Redhewal and Vishal saxena (2015). 252 Investigation of mechanical properties of Aluminum based metal matrix 253 composite reinforced with SiC and Al₂O₃. Int. journal of Engineering 254 Research and Application. ISSN 2248-9622. Vol.5. Issue 9 (part 2) pp 63-69 255 Mamatha, G.P, Pruthviriral, R.D and Ashok, S.D (2011). Weight loss corrosion 256 studies of Aluminum -7075 Metal Matrix Composites Reinforced with Sic 257 Particulates in HCl solution. International Journal of research in Chemistry 258 and Environment. Vol.1 issue 1.pp. 85-88. ISSN 2248-9649. 259 260 Owate, I.O, Ezi, C.W and Avwiri, G (2002) impact of environmental condition on 261 sub-surface storage tanks. Journal of applied Science and Environmental 262 Management, Vol.6. N0.2, pp. 79-83. 263 264 Sridhar Raja K.S and Bupesh Raja V.K (2015) corrosion Behaviour of Boron 265 carbide reinforced Aluminum metal matrix composite. Asian research 266

267 publishing Network (ARPN). *www. April journals.com*