1 MODELING ELECTROCATALYTIC ACTIVITY OF NITROGEN RADICALS

2

3 ABSTARCT

4 It has recently been shown that nitrogen radicals electrochemically deposited on carbon 5 nanotube paper can catalyze reactions at the cathode of fuel cells. Density functional 6 theory (DFT) is used to show that O_2 and O_2H could adsorb on nitrogen radicals such as 7 N_2 , N_4 , and N_8 . The bond dissociation energy to remove an O atom from O_2 and OH 8 from O_2H bonded to these radicals is calculated. The results show that N_4^- and N_8^- 9 could be effective catalysts for the O₂H dissociation but not O₂ dissociation. The results 10 support the previous conclusion that N_8^- could be a catalyst for the reactions at the 11 cathode of fuel cells. 12 13 Key words: catalysis, nitrogen radicals, oxygen reduction reaction, fuel cells. 14 **I INTRODUCTION** 15 16 Presently platinum is employed to catalyze the reactions that produce H₂O at the 17 cathode of fuel cells. Platinum is expensive and susceptible to time dependent drift and 18 CO poisoning.^{1,2} These issues are significant obstacles to the development of large 19 scale commercial application of fuel cells. Likely reactions that produce H₂O at the 20 cathodes are the O₂ dissociation followed by atomic oxygen undergoing the following 21 reaction. $2O + 4H^+ + 4e \rightarrow 2H_2O$ 22 (1) 23 Another possibility is the formation of O₂H which bonds to the catalyst followed by the 24 removal of OH which could then undergo the following reaction, 25 $OH + H^+ + e \rightarrow H_2O$ (2) 26 The object of this paper is to use theoretical methods such as Density Functional 27 Theory (DFT) to determine whether nitrogen radicals can catalyze these reactions. Modeling has been used to understand the role of platinum as a possible catalyst.^{3,4} It 28 29 also has been employed to predict possible new catalysts. For example molecular

orbital theory has been used to predict that nitrogen doped graphene, coronene and
pentacene could be an effective catalysts .^{5,6,7}

32 It has been shown that electrolysis of sodium azide solutions can be used to deposit nitrogen molecules on carbon nanotube paper.⁸ The carbon nanotube paper having the 33 34 deposited nitrogen molecules was shown by cyclic voltammetry to be an effective 35 catalyst for the ORR reaction in fuel cells. Based on the agreement of density functional 36 calculations of frequencies and measured Raman and IR values the species responsible for the catalytic effect was attributed to an N₈⁻ chain molecule.⁸ The 37 38 possibility of N_8^- is plausible because it has an unpaired electron and thus an available bond for the O₂ and O₂H to bind to. However, other radical species such as N_4^- and N_3^0 39 40 could also catalyze the ORR reaction. The N₄⁻ radical has been detected in uv 41 photolyzed monovalent azides by electron paramagnetic resonance and has been shown to be stable above room temperature.^{9,10,11} The N₂- has also been observed in 42 irradiated azides but is not stable at room temperature.¹² 43

Generally the modeling has been used to identify a material X that bonds to O_2 or O_2H to form X- O_2 or X- O_2H such that the bond dissociation energy (BDE) to produce O or OH is less than the BDE to dissociate free O_2 or O_2H . This approach has been used to obtain understanding of the mechanism of platinum catalysis and the modeling of nitrogen doped graphene and coronene as a cathode catalyst in fuel cells.^{5,6,7}

49 II METHODS

50 The minimum energy structures of XO_2 , XO, and XO_2H where X is N_2^- , N_4^- , and 51 N_8^- are calculated using DFT. The calculations are performed using the Gaussian 03 52 software package at the B3LYP/6-31 G* level.¹³ The BDE is defined as ,

BDE =
$$[E(XO) + E(Z)] - [E(XY)]$$
 (3)
where Y is O₂ or O₂H and Z is O or OH. E is the total electronic energy plus the zero
point energy (ZPE) of the minimum energy structure. The ZPE is the total ZPE of all of
the normal modes of vibration given by,
 $E_{zpo} = (1/2)h \sum_{i}^{3N+6} f_{i}$ (4)
where f_{i} are the vibrational frequencies of the normal modes and N the number of atoms
in the molecule. The calculated BDE given by equation 3 is compared with that to
dissociate free O₂ or O₂H. If it is significantly less, it can be argued that X is a good
catalyst for the reactions.
Another issue that needs to be considered in assessing these radicals as catalysts for
the reactions at the cathode is whether O₂ or O₂H can bond to them . This can be
evaluated by calculating the adsorption energy, E_{ads} , given by,¹⁴
 $E_{ads} = E(XY) - E(X) - E(Y)$ (5)
where X is N₂^{*}, N₄^{*} and N₈^{*} and Y is O₂ or O₂H. If the result is a negative value, it
indicates O₂ or O₂H can form a stable bond with the radicals.
III RESULTS
Figure 1a and 1b show the optimized minimum energy structure of N₈O^{*} and N₈O₂^{*}.
The structures have no imaginary frequencies. The bond dissociation energy to remove
an O atom from N₈O₂^{*}. Is calculated to be 4.67 eV slightly less than the calculated BDE
to dissociate free O₂ which is 5.03 eV. Figure 2a and 2b illustrate the calculated
minimum energy structure of N₄O₂^{*} and N₄O₂^{*}
is 4.08. Figure 3a and 3b show the minimum energy structures of N₂O₂^{*} and

78 N_2O^{-1} . The calculated BDE to remove an O atom from $N_2O_2^{-1}$ is 4.67 eV.

79 These results indicate that these nitrogen radicals would not be highly effective

80 catalysts for O₂ dissociation as the BDEs are only slightly less than that needed to

81 dissociate free O₂.

82 Figure 4 shows the calculated minimum energy structure of $N_2O_2H^2$. The structure 83 has no imaginary frequencies. The calculated BDE to remove an OH from it is 2.58 eV. 84 Figure 5 shows the minimum energy structure of N₄O₂H⁻. The BDE to remove OH from it is calculated to be 0.49 eV. Figure 6 shows the minimum energy structure of N_8O_2H . 85 86 This structure had no imaginary frequencies. The BDE to remove an OH from it was 87 calculated to be 0.54 eV. which is much less than calculated BDE to remove OH from 88 free O_2H which is 5.79 eV. The calculated minimum energy structure of O_2H had no 89 imaginary frequencies indicating it can exist as a free entity. Table I tabulates all the 90 BDEs to remove an O atom from O₂ bonded to all the nitrogen radicals and to remove 91 an OH from O₂H bonded to the radicals.

Table II presents the calculated adsorption energy for O_2 and O_2H to bond to all the nitrogen radicals considered, showing that because they are negative, a stable bonds can form. Interestingly, a calculation of E_{ads} for non paramagnetic molecules such as N_2 , N_3^- , N_8^0 yield positive values suggesting that nitrogen radicals are necessary for potential catalysts. This is plausible in that the radical species have an available bond for the O_2 or O_2H to bind with.

98 CONCLUSION

99 Density functions calculations of the minimum energy structure of $N_2O_2^-$, N_2O^- 100 $,N_4O_2^-$, $N_4O^-N_8O_2^-$ and N_8O^- indicate the structures have no imaginary frequencies and

101 are therefore at a minimum on the potential energy surface. The calculated bond 102 dissociation energy to remove an O atom from, $N_2O_2^{-1}$, $N_4O_2^{-1}$, and $N_8O_2^{-1}$ are only 103 slightly less than that needed to dissociate free O₂ into two O atoms. This suggests that 104 these molecules would not be highly effective catalysts for the molecular oxygen 105 dissociation in fuel cells. However, the bond dissociation energy to remove OH from 106 O_2H bonded to N_4^- and N_8^- is considerably smaller than that needed to dissociate free 107 O₂H into O and OH. These nitrogen radicals are predicted to be effective catalysts for 108 the O₂H dissociation. Calculation of the adsorption energy for O₂ and O₂H on all the 109 radicals yield a negative value indicating they can bond with the radicals. 110 The results support the explanation for the recently observed catalytic effect of 111 electrochemically deposited nitrogen radicals on carbon nanotube paper which were 112 attributed to N_8 but suggest the O₂H reaction is being catalyzed.⁷ 113 Table I Calculated bond dissociation energy to remove an O atom from O₂ bonded to

114 the nitrogen radicals and OH from O₂H bonded to the radicals.

REACTION	BOND DISSOCIATION ENERGY ,eV	
$N_2O_2^- \rightarrow N_2O^- + O$	4.85	
$N_4O_2^- \rightarrow N_4O^- + O$	4.08	
$N_8O_2^- \rightarrow N_8O^- + O$	4.67	
$N_2O_2H^- \rightarrow N_2O^- + OH$	2.58	
$N_4O_2H^- \rightarrow N_4O^- + OH$	0.49	
$N_8O_2H^- \rightarrow N_8O^- + OH$	0.54	

115

Radical	ADSORBED MOLECULE	E _{ads} (eV)
N ₈	O ₂	-0.32
N ₄ ⁻	O ₂	-20.53
N ₂ ⁻	O ₂	-9.80
N ₈ ⁻	O ₂ H	-1.33
N ₄ ⁻	O ₂ H	-22.07
N_2^-	O ₂ H	-3.04

117 Table II Calculated adsorption energies for O₂ and O₂H on nitrogen radicals.

118

119 Figures

- 120 1. ((a) Structure of O_2 bonded to N_8^- and (b) O bonded to N_8^- .
- 121 2. Minimum energy structure of (a) $N_4O_2^-$ and (b) N_4O^- .
- 122 3. Minimum energy structure of (a) $N_2O_2^-$ and (b) N_2O^- .
- 123 4. Calculated minimum energy structure of O_2H bonded to N_2^- .
- 124 5. Minimum energy structure of $N_4O_2H^2$.
- 125 6. Calculated minimum energy structure of O_2H bonded to N_8^- .
- coordinates of optimized structures will be provided on request.

127 REFERENCES

128 1. Yu X, Ye SJ. Power Sources. 2007; 172: 145-154 2. Winter M, Brood RJ, Chem. Rev. 2004; 104: 4245-4270 129 130 3. Walch S, Dhanda A, Aryanpour M, J. Phys. Chem. 2008; C112: 8464-8474 131 4. Zhang L, Xia Z, J. Phys. Chem. 2011; C115: 11170 -11176 5. Zhang L, Niu J, Dai L, Langmuir, 2012; 28: 7542-7550 132 133 6. Yeager E, Electrochim Acta 1984; 27: 1527-1537 7. Owens FJ, Molecular Simulation, DOI@2015 10.1080/08927022..1132315 134 135 8. Wu Z, Benchafia EM, Igbal Z, Wang X, Angew. Chem, Int. Ed. 2014; 53:1255-136 1261

- 137 9 . Wylie DW, Shuskus AJ, Young CG, Gilliam OR, Levey PW, J. Chem. Phys.
- 138 1960; 33: 622 -623
- 139 10 Horst HB, Anderson JH, Milligan DE, J. Phys. Chem. Solids. 1962;
 140 23:157-160
- 141 11 Bogen LD,. Bartram RH, Owens FJ, Phys. Rev. 1972 ; B6: 3090-3099
- 142 12. Wylie DW, Shuskus AJ, Young CG, Gilliam OR, Phys. Rev. 1962; 125:
 143 451-453
- 14. 13. Frish MJ, Gaussian 03, Revision B.04, Pitsburg PA, Gaussian Inc.
- 145 14. Feng L, Liu Y, Zhao J, J. Power Sources. 2015; 287: 431-438
- 146 147

148

149

153

- 154
- •
- 155

