1

2

3

4

Rare double heterozygous of HbD/HbG in a Nigerian: A case report

- 5 Author details: Olusogo Ebenezer BUSARI1 Taiwo Rachael KOTILA2 Omotola Toyin
- 6 **OJO3**

7

- 8 *Corresponding Author: Dr Olusogo Ebenezer Busari
- 9 Department of Haematology, College of Medicine and Health Sciences, Afe Babalola
- 10 University, Ado-Ekiti
- 11 Km 8.5 Afe Babalola way, Ado-Ekiti P.M.B 5454, Ado-Ekiti, Ekiti State, Nigeria
- 12 Email address: olusogobusari@yahoo.com
- 13 drshogzy@yahoo.com

14

- 15 Department of Haematology, College of Medicine, University of Ibadan, Nigeria
- 16 Department of Haematology and Blood Transfusion, Obafemi Awolowo College of
- 17 Health Sciences, Olabisi Onabanjo University, Ago-Iwoye, Nigeria

18

- 19 Abstract
- 20 Aim: To advocate the use of newer and improved methods towards accurate diagnosis of
- 21 haemoglobinopathies
- 22 Case presentation: A rare case of double heterozygous of HbD/G in a pregnant female
- 23 Nigerian who had present to the antenatal clinic for routine Haemoglobin electrophoresis.
- 24 She had previously been diagnosed as HbAS using capillary electrophoresis and HPLC
- 25 techniques.
- 26 **Discussion:** Capillary zone electrophoretograms showed the presence of peaks in zone Hb
- 27 A, Hb D, C and a small peak in Z1 zone. Bio-Rad D10 chromatogram also indicated the
- 28 presence of four peaks which are identified as Hb A, Hb D, Hb G, and hybrid of HbD/HbG. A
- 29 peak in Hb D zone of capillary electrophoresis was due to co-migration of Hb D and Hb G
- 30 variants. The small peak in Z1 zone indicated the presence of alpha chain variant of HbG.
- 31 Conclusion: The case exemplifies the need to use more advanced methods, including DNA
- 32 analysis in order to accurately diagnose haemoglobinopathies in the nation with the largest
- 33 burden of sickle cell disease.

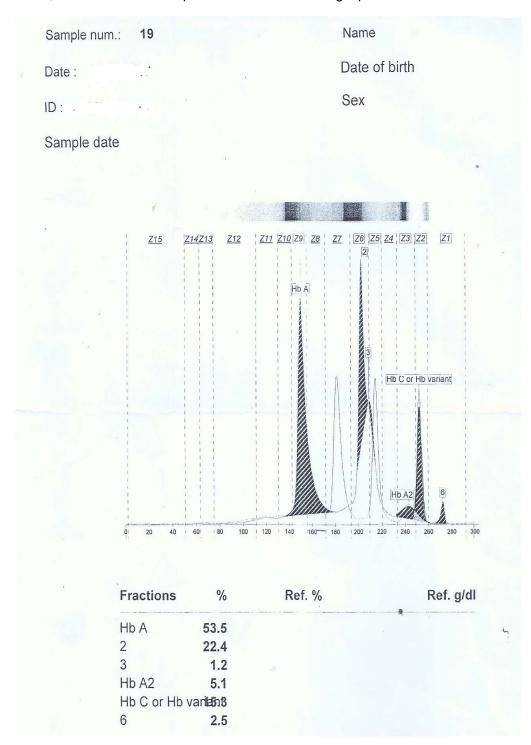
Keywords: Haemoglobinopathies, haemoglobin electrophoresis, heterozygous, high performance liquid chromatography

36

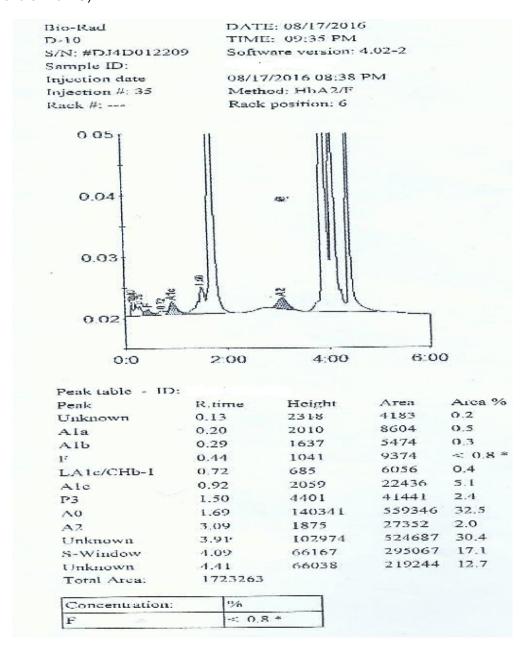
37

Introduction

- 38 Haemoglobinopathies are a group of genetic disorders that lead to quantitative or qualitative
- 39 abnormalities in haemoglobin (Hb) variants. Thalassaemias are due to the reduced or
- 40 absent production of structurally normal globin chains while sickle cell disease occurs
- 41 because of substitution of one amino acid by another. The change in amino acid sequence
- 42 results in haemoglobin variants with abnormal structures. Many of the haemoglobin variants
- do not cause symptoms in heterozygous condition but can lead to varying degrees of
- 44 anaemia and other symptoms in homozygous states or when they coexist with
- 45 thalassaemias.
- Double heterozygosity is described when there is a change in the amino acid sequence in
- both α and β chains of the same individual and it is very rare. Though, sporadic cases of
- 48 hybrid haemoglobins have been reported in other regions of the world, here we report the
- very first case of double heterozygosity of an alpha-chain variant hemoglobin G and a beta
- 50 chain hemoglobin D in a Nigerian.


51

52


Case Report

- A 28 year old female, Yoruba by tribe from the Southwestern region of Nigeria presented to
- the laboratory for Haemoglobin electrophoresis as part of the routine antenatal investigation.
- 55 She has no significant past medical history. Her previous Haemoglobin electrophoresis
- 56 (verbal report from patient) by cellulose acetate at alkaline pH was reported as HbAS. About
- 3mls of venous blood was collected into an ethylenediamine tetraacetic acid (EDTA) bottle.
- 58 Complete blood count and solubility tests were also carried out on the sample.
- 59 Capillary zone electrophoresis (CE) for the sample was carried out using automated Sebia
- 60 Minicap analyser (Sebia, France) according to the manufacturer's instructions and was
- 61 repeated with BIORAD D10 high performance liquid chromatography (HPLC) to further
- 62 identify and confirm the results. The electrophoretogram by Sebia Minicap analyser showed
- four main peaks as follows: HbA zone (53.5%), HbD zone (22.4%), HbA2 zone (5.1%) which
- slightly overlaps with an unknown peak in C zone (15.3%). There was also a small peak in
- the Z1 (2.5%) indicating a variant of alpha chain (fig 1).
- The BIORAD-D10 high performance liquid chromatography also showed four major peaks
- 67 HbA (32.5%) with retention time of 1.69 minutes, HbD (30.4%) with a retention time of
- 68 3.91minutes in an unknown window, HbG (17.1%) with retention time 4.09 minutes in Hb S-
- 69 window, and an hybrid of HbD/G (12.7%) at retention time of 4.41 minutes in an unknown
- 70 window (fig 2). A small peak of HbA2 (2%) is also noted on the electrophoretogram. The full
- 71 blood count showed essentially normal parameters: RBC= 4.3 X 10⁶/µL, Heamoglobin=
- 72 12.5g/dl, mean cell corpuscular volume (MCV)=88FL, mean corpuscular haemoglobin
- concentration (MCHC)=33g/dl, mean corpuscular haemoglobin (MCH)= 29pg The sickling
- 74 test, a procedure in which red blood cells sickle in the presence of sodium metabisulphite (a
- 75 reducing agent) was negative, however, solubility test was not done. The requesting

- physician was advised of the need for DNA analysis to confirm the diagnosis. However, patient was lost to follow up.
- Figure 1: Capillary zone electrophoresis pattern indicates peaks in HbA, Hb D, Hb C, HbA2 zones, and additional small peak in Z1 zone indicating alpha chain variant

Figure 2: High performance liquid chromatography (HPLC) obtained in BIORAD D10 showing 4 major peaks at retention times in minutes 1.69 (HbA), 3.91 (HbD), 4.09 (HbG), 4.41 (hybrid of HbD/G)

- There are a few variants of haemoglobin D. Hb D Punjab or Hb D Los Angeles is a type of
- 93 beta globin gene mutation at 121 codon resulting in replacement of glutamic acid with
- glutamine (Glu->Gln). The highest prevalence of HbD Punjab is among Sikhs in Punjab,
- 95 India where it is reported to be around 2%. Heterozygous HbD is a clinically silent
- 96 condition. There is also HbD Ibadan which was discovered at the University College
- 97 Hospital Ibadan, Nigeria.² The prevalence of this is currently unknown. Hb D Ibadan results
- 98 from the replacement of Threonine with Lysine in position 87 of beta chain (Threonine>
- 99 Lysine).² Haemoglobin G Philadelphia is the most common alpha chain variant and is due to
- 100 replacement of asparagine with Lysine (α^{68 Asn>Lys}).³ It occurs in less than 1% of the
- 101 population of West Africa.⁴
- 102 Presumptive identification of Hb variants was done by comparing the two methods used.
- Both techniques clearly indicated that the predominant haemoglobin in this subject was HbA
- 104 (figs 1 & 2). The second peak on Capillary zone electrophoresis (fig 1) could be either
- haemoglobin D or G or both travelling within zone 6.5 Following review of the literature we
- confirmed that HbD elutes at approximately 3.91minutes in D window similar to what was
- obtained on our HPLC (fig.2).^{7,8} Furthermore, an unknown haemoglobin eluted in the S-
- window on HPLC at retention time of 4.09 minutes but there was no corresponding pattern in
- zone 5 (S zone) of CE, suggesting it is unlikely to be HbS but rather HbG which co-eluted
- with HbD in zone 6 of capillary electrophoresis. Haemoglobins S, D and G also have the
- same mobility on cellulose acetate paper at alkaline pH which explains the initial diagnosis of
- HbAS as claimed by the patient. Cellulose acetate method is the routine technique in most
- laboratories in Nigeria. The unknown pattern in the C window on Capillary electrophoresis is
- the hybrid of HbD/G (fig 1). This correlates with the unknown peak eluted at 4.41 minutes in
- the HPLC (fig 2). The inheritance of alpha-chain defects such as HbG-Philadelphia usually
- results in formation of hybrid haemoglobins. The small peak of 2.1% in Z1 zone highly
- 117 suggests the presence of alpha variant of HbG The haematological parameters and indices
- were normal in this patient. The patient had no clinical symptoms and had only presented to
- the hospital for antenatal booking. Therefore, the clinical implications of this inheritance
- cannot be determined at the moment. The limitation of this study is non-availability of
- facilities to further confirm the identity of the various haemoglobins in this patient. DNA
- sequencing of alpha and beta globin genes which is the confirmatory diagnostic method is
- not readily available in Nigeria. The traditional method of haemoglobin electrophoresis using
- cellulose acetate in alkaline pH will most probably misdiagnose this patient.
- 125 The fully automated methods such as HPLC and CE have replaced the cellulose acetate
- electrophoresis as first-line in the diagnosis of haemoglobinopathies. Apart from the
- 127 advantages of resolution and automation both allow processing of large batches and require
- very small samples volumes. 10,11,12 Quantification and identification of larger proportion of
- variant haemoglobins can be made. The major disadvantage of HPLC is that it separates
- 130 gycosylated and other derivatives of haemoglobin making its interpretation complex,
- however this does not occur with CE. CE has also been found to be more accurate and
- sensitive for detecting Hb variants than cellulose acetate paper. 10,13
- 133 Conclusion: This case exemplifies the relevance of advanced methods such as DNA
- techniques in diagnosis of haemoglobinopathies. Quantitative haemoglobin electrophoresis
- 135 techniques such as Capillary electrophoresis and HPLC have been recently available in
- 136 some diagnostic laboratories in Nigeria, although not so affordable to the general population.

- 137 However, DNA analysis that would have helped in making definitive diagnosis in the index
- 138 case, is still not available.
- 139 Consent: Consent obtained from the patient.

140

References

142

146

147

148

149

150 151

152

153

154

155

156157

158

159160

161

162163

164

165166

167

168 169

170

171

172

173

174

141

- Pandey S, Mishra RM, Pandey S, Shah V, Saxena R. Molecular characterization of hemoglobin D Punjab trait and clinical-hematological profile of the patients. Sao Paulo Med J 2012;130:248-51
 - Watson-Williams EJ, Beale D, Irvine D, Lehmann H. A New Haemoglobin, D Ibadan (β-87 Threonine → Lysine), Producing No Sickle-Cell Haemoglobin D Disease with Haemoglobin S. Nature; 205:1273–1276
 - Gwendolyn BS, Basil T, Arisol MC, Ronald FR. The proportion of hemoglobin G Philadelphia (a268 Asn-.LYs#2) in heterozygotes is determined by a-globin gene deletions. Proct Natl Acad Sci 1980; 77:6874-6878
 - Esan GJF. The essential laboratory investigations of sickle cell disease. In Sickle cell disease: A Handbook for the General Physician; Ed Fleming AF. Edinburgh: Churchill Livingstone 1982: 33-41
 - 5. Parab S, Sakhare S, Sengupta S, Velumani A. Diagnosis of a rare double heterozygous Hb D Punjab/Hb Q India hemoglobinopathy using Sebia capillary zone electrophoresis. Indian J Path Microbiol 2014; 57(4):626-628
 - eren DF, Shalhoub R, Gulbranson R, Hedstrom R. Expression of Hemoglobin variant migration by Capillary Electrophoresis Relative to Hemoglobin A2 improves precision. AJCP 2012; 136: 660-664
 - 7. Shukla A Dabadghao S, Gupta S, Verma S. Interference of hemoglobin D Punjab on measurement of glycated hemoglobin. Indian J Pathol Microbiol 2015;58:572-4
 - 8. Zeng YT, Huang SZ, Zhou LD, Huang HJ, Jiao CT, Tang ZG, *et al.* Identification of hemoglobin D Punjab by gene mapping. Hemoglobin 1986;10:87-90
 - 9. Rising JA, Saulter RL, Spicer SJ. Haemoglobin G Philadelphia/S: A family study of an inherited hybrid hemoglobins. Am J Clin Pathol 1974; 61:92-102
 - 10. Ryan K, Bain BJ, Worthington D, James J, Plews D, Mason A *et al.* Significant haemoglobinopathies: Guidelines for screening and diagnosis. BMJ 2010;49(1):35-49
 - 11. Kotila TR. Guidelines for the diagnosis of haemoglobinopathies in Nigeria. *Annals of Ibadan Postgraduate Medicine* 2010;8(1): 25-29
 - 12. Mario N, Baudin B, Bruneel A, Janssens J, Verbourdolle M. Capillary zone electrophoresis for the diagnosis of congenital hemoglobinopathies. *Clinical chem.* 1999;459(2): 285-288
- 13. Seyedeh, MRG, Fatemeh A, Narges O. Use of Capillary Electrophoresis for
 Detection of Hemoglobinopathies in Individuals Referred to Health Centers in
 Masjed-Soleiman. IJBC 2017;9(3):89-92