Effect of Vermicompost <mark>on the Growth and</mark> Yield of Lettuce Plant (*Lactuca sativa* L. var. *crispa*)

ABSTRACT:

6 This research was done to find out the effect of increasing vermicompost application on yield of lettuce 7 (Lactuca sativa L. var. crispa) plant. For this purpose Lactuca sativa L. var. crispa cv. Bellafiesta 8 lettuce kind and Riverm Company vermicompost were used in this research. Four vermicompost doses 9 (0 kg/ha, 4000 kg/ha, 8000 kg/ha and 12000 kg/ha) were applied to lettuce plant. According to the 10 results, important increases of fresh weight, plant size, number of leaf, length and width of leaf for each 11 plant and dry matter yield of plants were determined with increasing vermicompost applications. But 12 the effects of Vermicopmost applications on some macro element (N, P, K, Ca and Mg) contents of 13 plant were not found significant statistically.

- 14
- 15 16

Key words: Biological property lettuce macro nutrient element vermicompost,

17 **1. INTRODUCTION**

Today an increase in the products gained from per unit area has become a necessity to satisfy mankind's need for food. On the other hand, the necessity of increase in the products brings another necessity to use more inorganic fertilizers per unit area. As a result of the excessive application of inorganic fertilizers, natural sources such as soil and water are being polluted and serious health problems are occurring.

23 Mostly in vegetable farming, in order to reach a high degree of productivity 24 and maximum growth, the amount of inorganic fertilizer as the main source of nutrient 25 is emphasized, however, usually exceeded [1,2]. It has been a well-known fact that 26 green plants respond positively to inorganic fertilizer with nitrogen content. However, 27 nitrogen application has a limited positive effect on the crop yield. Increasing nitrogen 28 fertilization can affect plant's agronomy, macro and micro nutrient element contents, 29 and the quality of the product negatively. Nitrogen has an important role in the plant's 30 vegetative development and crop yield. However, the excessive use of nitrogen 31 fertilizer in order to increase productivity might cause the risk of nitrate accumulation 32 [3,4].

While excessive inorganic nitrogen fertilizer causes soil pollution [5-7], it also causes the accumulation of harmful compounds for human health in vegetables [8]. Nevertheless, according to FAO/WHO [9] nitrate generates toxic effect if it exceeds 5 mg for each kg of human body. For this reason, in vegetable farming the management of nitrogen fertilization should carefully be programmed.

The scientists who are seeking a solution for this problem put forward that vermicompost applications should be increased in following years. Because while vermicompost and manure materials nutrient sources, they can reform the degenerations in soil and water caused by inorganic fertilizers. In recent years, the use of vermicompost is increasing especially in vegetable farming.

The aim of this research, the effects of increasing doses vermicompost application
on some nutrient element content and some agronomic properties of lettuce (*Lactuca sativa* L. var. *crispa*) plant was investigated.

1 2

3 4 5

46 2. MATERIALS AND METHODS

47 In the research, *Lactuca sativa* L. var. *crispa cv. Bellafiesta* was used, which is a type of 48 lettuce plant. Two seeds for each pot were planted and peat was used as the production 49 ground (Klasmann-Deilmann, potground H, Germany). When they gained 3-4 leaves 30 50 days after the sowing and they were transplanted to their permanent pots. Randomized blocks were designed as 3 replications on the experimental design, and there were 108 51 plants in total, 9 in each parcel. Total experimental area was 75 m². The vermicompost 52 was applied to the plants $(0 \text{ g/m}^2, 400 \text{ g/m}^2, 800 \text{ g/m}^2, 1200 \text{ g/m}^2)$ right after the 53 54 sowing. Chemical properties of vermicompost contains pH (7.60), organic matter (51.80 55 %), total humic + fulvic acid (46.10 %), organic carbon (27.80 %), total N (1.50 %), 56 soluble P₂O₅ (0.20 %), K₂O (1.10 %), CaO (0.26 %), MgO (0.13 %). Thirty days after the plantation the plants were harvested and plant height (cm), 57

plant diameter (cm), leaf size (cm), leaf width (cm), root height (cm), plant weight (gr), and number of leaves were measured. Dry material content of the plants was obtained by washing them with pure water and drying them in 65^oC for 48 hours. After the dry weight was determined necessary elemental analyses were conducted on grained samples by using ICP-OES device [10]. The collected data were analyzed by using MSTAT program.

64

65

3. RESULTS AND DISCUSSION

3.1. The Effects of Vermicompost Application on Some Biological Properties of Lettuce Plant

68

69 The effects of increasing doses of vermicompost application on the height, diameter, 70 number of leaves, leaf size, leaf width and the weight of lettuce plant were presented on 71 Table 1. The effects on the biological properties of the lettuce plant vary depending on 72 the amount of doses (Table 2).

73

74 **Table 1. Effect of vermicompost** on some biological properties of lettuce plant,

Dose	Plant heigh t (cm)	Diam eter (cm)	Root length (cm)	Num. of leaves	Length of leaf (cm)			Leaf width (cm)			Plant fresh weight <mark>(gm)</mark>
					Int.	Med	Ext.	Int.	Med	Ext.	
0	24.2ns	32.2b	18.7ns	20.6b	11.2ns	16.2b	16.9b	8.1ns	13.7b	15.0ns	126.4b
4000	26.6ns	34.8a	17.5ns	22.0a	11.0ns	16.7a	16.5b	8.1ns	14.7a	15.0ns	138.6a
8000	25.2ns	34.3a	19.3ns	21.8a	11.2ns	17.0a	17.4ab	8.9ns	15.4a	15.2ns	142.8a
12000	24.2ns	34.6a	18.0ns	22.2a	11.2ns	16.7a	17.0b	8.4ns	15.2a	15.4ns	122.7b

75 *: values average of three replications, **: each parameter was evaluated individually, ***: significant

77

Significant rise in the plant width, the number of leaves, leaf size, leaf width, and the plant fresh weight was observed upon the increasing doses of vermicompost application. On the other hand, upon the vermicompost application decrease in the

at the level of 5 %.

height and root size of the lettuce plant was determined comparing to the control
group. These results are concordant to the research indications by Yourtchi et al. [11].

In Bangladesh the effects of various doses of vermicompost on cauliflower farming have been investigated. 0, 1.5, 3 and 6 tones/ha doses of vermicompost were applied to the plants, and certain biological features were measured such as maximum plant height, the number of leaves, fruit width, fruit height, total weight, commercial weight, and crop yield of stem. According to the results, the maximum yield was obtained from the field on which 6 tones/ha of vermicompost was applied [12].

90 91

3.2. The Effects of Vermicompost Application on Some Macro Nutrient Element (N, P, K, Ca, Mg) Contents of The Lettuce Plant

92 93

The effects of vermicompost application on the some macro nutrient element contentsof the lettuce plant were presented in average of three replications in Table 2.

- 96
- 97 98

Table 2. Effectofvermicompostapplicationonsomemacronutrientelement (N, P, K, Ca, Mg)contents oflettuceplant, %.

	(,	, , , , , , , , , , , , , , , , , , ,	
Doses	Ν	Р	K	Ca	Mg
0	5.43	0.92	10.95	1.42	0.21
4000	5.30	0.81	9.24	1.25	0.18
8000	5.09	0.71	9.86	1.24	0.18
12000	5.11	0.67	9.61	1.42	0.20

99

As it can be seen on Table 2, not significant mutation was discovered in N, P, K, Ca and Mg contents of the plant upon the increasing doses of vermicompost application. These effects were not considered as significant. The short probation period which is 30 days and plants' inability to obtain enough nutrient elements from soil could be demonstrated as the reason.

105 A study by Bai and Malakout [13] reveals that a significant increase in 106 nitrogen, phosphorus, and potassium contents of the some vegetables were determined 107 with the application of increasing doses of vermicompost.

1084. CONCLUSION

109

This study exposes that the increasing doses of vermicompost application multiply the crop yield, fresh weight and diameter, number of leaves, size and width of leaves of the lettuce plant. However, the plant's nitrogen, phosphorus, potassium, calcium, and magnesium contents do not receive an important fluctuation. This study proves that vermicompost can be used in agricultural production by exhibiting the example of lettuce farming.

117 ACKNOWLEDGEMENT

119 This article was prepared from the project supported by the NKUBAP unit.

121 COMPETING INTERESTS

- 123 Authors have declared that no competing interests exist.
- 125 **REFERENCES**

118

120

122

124

- Adediran AJ, Taiwo BL, Akande OM, Sobule AR, Idowu JO. Application of organic and inorganic fertilizer for sustainable maize and cowpea yields in Nigeria. J. Plant Nutr., 2004;27:1163–1181.
- Naeem M, Iqbal J, Bakhsh MAA. Comparative study of inorganic fertilizers and organic manures on yield and yield components of Mungbean (*Vigna radiat* L.). J. Agric. Soc. Sci. 2006;2:227–229.
- 132 3. Addiscott TM. Nitrate. Agriculture and Environment. 2005. Wallingford,
 133 Oxfordshire, UK, CABI Publishing.
- 4. Lemaire G, Gastal FF. Quantifying crop responses to nitrogen deficiency and
 avenues to improve nitrogen use efficiency. In: Sadras V, Calderini D, (Eds.),
 Crop Physiol., Academic Press, USA, 2009; pp: 171–211.
- 5. Gollany HT, Molina JE, Clapp CE, Allmaras RR, Layese MF, Baker JM, Cheng
 HH. Nitrogen leaching and denitrification in continuous corn as related to
 residue management and nitrogen fertilization. Envir. Manage. 2004;33:289–
 298.
- 6. Beman JM, Arrigo K, Matson PM. Agricultural runoff fuels large phytoplankton
 blooms in vulnerable areas of the ocean, Nature, 2005; 434: 211–214.
- 7. Zand-Parsa S, Sepaskhah AR, Ronaghi A. Development and evaluation of
 integrated water and nitrogen model for maize. Agric. Water Manage., 2006;
 81: 227–256.
- 146 8. Ruiz JM, Romero L. Cucumber yield and nitrogen metabolism in response to
 147 nitrogen supply. Scientia Hortic., 1999; 82: 309–316.
- 148 9. FAO/WHO. Toxicological evaluation of certain food additives and contaminants.
- Geneva, World Health Organization, Joint FAO/WHO Expert Committee on
 Food Additives, 1996, WHO Food Additives Series No. 35.
- 151 10. Kacar B, İnal A. Bitki Analizleri. Nobel Yayın, No: 849, 2010; 659s, Ankara.

- 152 11. Yourtchi MS, Hadii MHS, Darzi MT. Effect of nitrogen fertilizer and vermin-
- compost on vegetative growth, yield and NPK uptake by tuber of potato
 (*Agriacv.*). Int. J. Agric. Crop Sci. 2013;5(18):2033-2040.
- 155 12. Jahan FN, Shahjalal ATM, Paul AK, Mehraj H, Uddin AFMJ. Efficiency of
- vermicompost and conventional compost on growth and yield of cauliflower.
 Bangladesh Res. Public. J. 2014;(1):33-38.
- 13. Bai BA, Malakout MJ. The Effect of different organic manures on some yield and
 yield quality parameters in onion. Iran Soil and Water Sci. J. 2007;21(1): 43- 53.
- 160