Spread Sheets for Laterals Spacing Design_-, With an Application on Mit Kenana Area in Egypt

Alaa Nabil El-Hazek*

¹Department of Civil Engineering, Faculty of Engineering, Benha University, Shoubra 11689, Egypt

ABSTRACT

Mit Kenana area, 40 km North of Cairo, represents the eastern fringes of the Nile Delta in Egypt. Existing laterals spacing design of Mit Kenana area is reviewed. Then spread sheets are employed to obtain laterals spacing, which is referred to as spread sheet design. In this paper, Microsoft Excel software, as instance for spread sheets, is employed to get the laterals spacing design of steady state subsurface drainage systems. The most suitable and popular Hooghoudt equation is used to get the spacing L, including the equivalent depth. Given data are depth to the impermeable layer, radius of the pipe lateral, hydraulic conductivities of the soil above and below drain level, elevation of the water table midway between the drains, and drainage rate. Then, the lateral spacing L is assumed. Calculations are done through the spread sheet and the final result of L is obtained. Check for the obtained L is established with respect to the assumed value. Also, another check is employed for the equivalent depth d_e.

Mit Kenana area, 40 km North of Cairo, represents the eastern fringes of the Nile Delta in Egypt. Existing design of Mit Kenana area is reviewed. Then spread sheets are employed to obtain laterals spacing, which is referred to as spread sheet design. Almost identical results are accomplished by spread sheet design compared with the existing design.

Laterals spacing design for steady state subsurface drainage systems employing spread sheets is efficient, accurate, quick, easy and simple.

Keywords: spread sheets, subsurface drainage, steady state, laterals, equivalent depth.

1. INTRODUCTION

Agricultural drainage is defined as the removal of excess gravitational water from agricultural lands for crop production purposes. Agricultural drainage is generally divided into two categories, surface drainage and subsurface drainage. Surface drainage removes water from the soil surface by promoting gravitational flow overland and through channels to be collected and conveyed to an outlet. Subsurface drainage removes excess soil water to gravity or a pumped outlet [1].

Comment [DMO1]: The deleted portions of the paper may be helpful to beef-up the INTRODUCTION.

Water available to plants is held in soil by capillarity, while excess water flows by gravity into drains. For subsurface drainage, laterals (field drains) are used to control the depth of the water table in the root zone by removing excess groundwater [2].

For cropped irrigated and rainfed lands of the world, only about 14% is provided by some type of drainage. About 300 million ha, mainly in the arid and tropical humid zones of the developing countries, needs artificial drainage. Till the year 2030, drainage should be improved in at least 10 -15 million ha, which might require investing at least € 750 million annually. It is expected that one third of this area will be provided with subsurface drainage systems [3].

In Egypt, 100% of cropped area is irrigated, while 88% of this area is drained [4]. Annually, about 63,000 ha are provided by new subsurface drainage systems while old drainage systems are rehabilitated in about 12,600 ha.

In this paper, Microsoft Excel software, as instance for spread sheets, is employed to get the laterals spacing design of steady state subsurface drainage systems. The most suitable and popular Hooghoudt equation is used to get the laterals spacing, including the equivalent depth. Spread sheets are formulated to obtain laterals spacing design of steady state subsurface drainage systems.

2. MATERIALS AND METHODS

2.1 Study Area

Mit Kenana area is located about 40 km North of Cairo [115] and it represents the eastern fringes of the Nile Delta, as shown in Figure 1-A... It occupies an area of (350 ha),... with a main irrigation and drainage infrastructure, as shown in Ffigure 13. The soils in the area consist of three layers. The third layer is considered impermeable layer as it has a hydraulic conductivity less than one tenth of that of the second layer. The hydraulic conductivity of the two upper layers is constant through the area with a value of 3 m/day. The third layer is considered impermeable layer as it has a hydraulic conductivity less than one tenth of that of the second layer. The hydraulic conductivity less than one tenth of that of the second layer. The hydraulic conductivity less than one tenth of that of the second layer. The area is divided into sectors according to the depth to the impermeable layer (D_i), as shown in Figure 1-B that illustrates also the boundaries of the area.

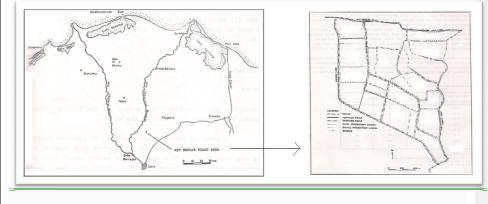
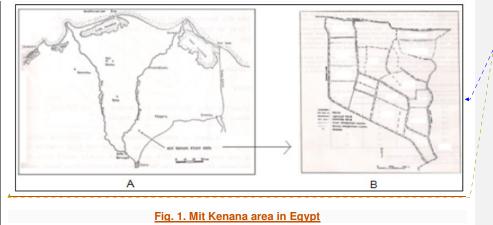



Fig. 3. Mit Kenana area in Egypt

Formatted: Font color: Text 1

Formatted: Font: Bold

Comment [DMO2]: Not found in the figure.

Formatted: Font: +Body CS, 10 pt, Font color: Text 1

Formatted: Justify Low

Comment [DMO3]: Not found in the figure.

The area is divided into sectors according to the depth to the impermeable layer (D_i), as shown in Ffigure 13. The drain depth (D_d) is 1.2 m in a major part of the area due to limitations of topography and water level in the open drain. In some parts the drain depth has the values of 1.0 m and 1.4 m.

The values for water table depth (Dw) are 0.8 m, 0.9 m and 1.1 m.

The drainage rate (Q) is 0.0015 m/day.

The lateral spacing design is established and the subsurface drainage system is accomplished for Mit Kenana area [115]. This design is referred to as existing design in this paper, Figure 2 shows the principle of the subsurface drainage infrastructure of the area.

For the Nile Delta in Egypt, including Mit Kenana area, the water table depth of 0.8 m achieves good conditions for the cultivated crops [126]. Also, the drainage rate of 0.0012 m/day is acceptable.

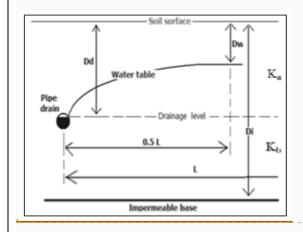
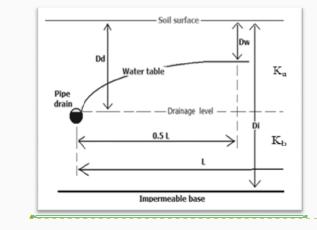


Fig. 2. Principle of subsurface drainage infrastructure at Mit Kenana area

2.2 Equations Employed in the Study


Formatted: Font: +Body CS, 11 pt, Bold

The movement of water into the drains is mainly affected by the hydraulic conductivity of the soil and drain spacing, depth, and size. The study employed the most suitable and popular Hooghoudt equation [7] for drainage design (Eqn. 1).

 $\frac{Q L^2 = 8 K_b (D_i - D_d) (D_d - D_w) + 4 K_a (D_d - D_w)^2}{(D_d - D_w)^2}$ (1)

Where:

-	
Q	<u>= steady state drainage discharge rate (m/day)</u>
L	= spacing between the drains (m)
K _b	= hydraulic conductivity of the soil below drain level (m/day)
d _e	= equivalent depth, a function of L, $(D_i - D_d)$, and r
Di	= depth of the impermeable layer (m)
<u>D</u>	= depth of the drains (m)
Dw	= steady state depth of the water table midway between the drains (m)
Ka	= hydraulic conductivity of the soil above drain level (m/day)
r _o	= drain radius (m)

Fig. 11. Irrigation and rainage infrastructure at Mit Kenana area Hooghoudt equation

To account for the extra head loss due to radial flow to the drains, two simplifications were followed in Hooghoudt theory. The first was assuming an imaginary impervious layer above the real one, which decreases the thickness of the layer through which the water flows towards the drains. The second was treating horizontal and radial flow to drains as an equivalent flow to imaginary ditches with their bottoms on an imaginary impervious layer at a reduced depth. In other words, the equivalent depth (d_e) represents an imaginary thinner soil layer through which the same amount of water will flow horizontally per unit time as in the actual situation. In equation 1, replacing the term ($D_1 - D_d$) by (d_e).

 $QL^{2} = 8 K_{b} d_{g} (D_{d} - D_{w}) + 4 K_{g} (D_{d} - D_{w})^{2} \dots (2)$

To determine the equivalent depth, a relationship was derived by Hooghoudt between the equivalent depth (d_e), the spacing (L), the depth to the impervious layer ($D_i - D_d$), and the radius of the drain (r_0). To simplify this relationship, tables were established for the most common sizes of drain pipes, from which the equivalent depth (d_e) can be attained.

Formatted: Font: 10 pt, Not Bold Formatted: Font: 10 pt, Not Bold Formatted: Font: 10 pt

Formatted: Font: (Default) +Body, 11 pt

Exact solutions for the equivalent depth required for Hooghoudt equation can be calculated from the following two equations, where $D = (D_i - D_d)$ [68].

For D <l 4,<="" th=""><th>$de = \frac{1}{2}$</th><th>D 3.D. D</th><th>(</th><th>3)</th></l>	$de = \frac{1}{2}$	D 3.D. D	(3)
		$\frac{J}{\pi L} \ln \frac{J}{\pi r_0} + 1$		

$$\underline{\text{For D>L/4,}} de = \frac{\pi L}{8 \ln \frac{L}{\pi r_0}}$$
(4)

2. 3 Spread Sheets for Laterals Spacing Design of Steady State Subsurface **Drainage Systems**

Microsoft Excel software, as instance for spread sheets, is employed to get the laterals spacing design of steady state subsurface drainage systems. Equation 2 is used to get the spacing L, substituting by equation 3 to obtain the equivalent depth.

For the hypothetical case shown in Table 1, given data are D, r_0 , K_a , K_b , h and Q, where: depth to the impermeable layer, (D_j - D_d), m D:

radius of the pipe lateral, m ro:

K_a:

hydraulic conductivity of the soil above drain level, m/day hydraulic conductivity of the soil below drain level, m/day K_b:

elevation of the water table midway between the drains, (D_d - D_w), m h:

drainage rate, m/day 0:

Then, the lateral spacing L is assumed. Calculations are done through the spread sheet and the final result of L is obtained. Check for the obtained L is established with respect to the assumed value. Also, another check is employed for the equivalent depth d_e, where D/L < 0.25 as stated in equation 3.

<u>As shown in Table 1, the depth to impermeable layer (D) is 2.5 m, the lateral pipe radius (r₀)</u> is 0.1 m, hydraulic conductivities of the soil above and below drain level (Ka and Ka) are the same with the value of 1 m/day, elevation of the water table midway between the drains (h) is 0.2 m, and drainage rate (Q) is 0.001 m/day.

It is assumed first that the lateral spacing (Lassumed) is 50 m. Then calculations through the spread sheet obtain a value of 58.29 m for the spacing (L) with 16.5% difference with respect to the assumed value. Other values are assumed for L till difference with respect to the assumed value becomes close to zero. Thus the spread sheets design for lateral spacing is 59 m, with only 0.19% difference with respect to the assumed value. Also the check for the equivalent depth (d_e) is satisfied, where the value of D/L is less than 0.25.

Table 1. Spread sheet for laterals spacing design of steady state subsurface drainage systems

		<u>D, m</u>	<u>2.5</u>	<u>2.5</u>	<u>2.5</u>	<u>2.5</u>	<u>2.5</u>	2
		<u>r_o, m</u>	<u>0.1</u>	<u>0.1</u>	<u>0.1</u>	<u>0.1</u>	<u>0.1</u>	_
	<u>Given</u>	<u>K_a, m/day</u>	<u>1</u>	<u>1</u>	<u>1</u>	<u>1</u>	<u>1</u>	2
	Gi	<u>K_b, m/day</u>	<u>1</u>	<u>1</u>	<u>1</u>	<u>1</u>	<u>1</u>	_
		<u>h, m</u>	<u>0.2</u>	<u>0.2</u>	<u>0.2</u>	<u>0.2</u>	<u>0.2</u>	_
		<u>Q, m/day</u>	<u>0.001</u>	<u>0.001</u>	<u>0.001</u>	<u>0.001</u>	<u>0.001</u>	_
	Assumed	Lassumed, m	<u>50</u>	<u>55</u>	<u>58</u>	<u>59</u>	<u>60</u>	_
			<u>25</u>	<u>25</u>	<u>25</u>	<u>25</u>	<u>25</u>	_
	lat Ca		<u>3.218875</u>	<u>3.218875</u>	<u>3.218875</u>	<u>3.218875</u>	<u>3.218875</u>	_
1								

	1						
		<u>8.208133</u>	<u>8.208133</u>	<u>8.208133</u>	<u>8.208133</u>	<u>8.208133</u>	
		<u>4.708133</u>	<u>4.708133</u>	<u>4.708133</u>	<u>4.708133</u>	<u>4.708133</u>	
		<u>0.235406</u>	<u>0.214006</u>	<u>0.202936</u>	<u>0.199497</u>	<u>0.196172</u>	
		<u>1.235406</u>	<u>1.214006</u>	<u>1.202936</u>	<u>1.199497</u>	<u>1.196172</u>	
	<u>d_e, m</u>	2.023625	2.059297	<u>2.078247</u>	<u>2.084206</u>	<u>2.09</u>	
	_	0.16	<u>0.16</u>	<u>0.16</u>	<u>0.16</u>	<u>0.16</u>	
		3.237800	3.294876	3.325195	3.334730	3.344000	
		3.397800	3.454876	3.485195	3.494730	3.504000	
		<u>3397.800</u>	<u>3454.876</u>	<u>3485.195</u>	<u>3494.730</u>	3504.000	
<u>s</u>	<u>L, m</u>	<u>58.2906</u>	<u>58.77819</u>	59.03554	59.11624	59.19459	
Results	Check L	16.5813	6.869449	1.785421	0.197028	-1.34234	
B	Check de	0.05	0.045454	0.043103	0.042372	0.041666	
- Check L = ((L-Lassumed)/Lassumed)*100 Check de: D/L < 0.25							

2.4 Spread Sheets for Laterals Spacing Design for the Mit Kenana Area

Spread sheets are employed to obtain laterals spacing for the Mit Kenana area, which is referred to as spread sheets design. Twenty two different laterals spacing designs are calculated according to the data of Mit Kenana area. These designs are included in Table 2. Also, three spread sheets designs are shown in Tables 3, 4 and 5 as samples for this technique.

Table 2. Spread sheets design of laterals spacing for Mit Kenana area

	Laterals Spacing, m	
<u>D_d=1.0 m, h=0.2 m</u>	<u>D_d=1.2 m, h=0.3 m</u>	<u>D_d=1.4 m, h=0.3 m</u>
<u>31</u>	<u>34</u>	
<u>37</u>	<u>38</u>	
<u>50 *</u>	<u>55</u>	<u>46</u>
<u>52</u>	<u>59</u>	<u>51 *</u>
<u>58</u>	<u>66</u>	<u>59</u>
77	<u>93</u>	<u>88</u>
<u>97</u>	<u>119</u>	<u>116</u>
<u>137</u>	<u>174</u>	<u>172 *</u>
	31 37 50 * 52 58 77 97	D_d =1.0 m, h=0.2 m D_d =1.2 m, h=0.3 m3134373850 *5552595866779397119

* Spread sheets that obtained these results are shown in Tables 3. 4 and 5

 Table 3. Spread sheets design, depth of impermeable layer is 1.7 m, drain depth is 1.0

 m, and elevation of the water table midway between the drains is 0.2 m

	<u>D, m</u>	<u>0.7</u>	<u>0.7</u>	<u>0.7</u>	<u>0.7</u>	-
뒤	<u>r_o, m</u>	<u>0.1</u>	<u>0.1</u>	<u>0.1</u>	<u>0.1</u>	
<u>Give</u>	<u>Ka, m/day</u>	<u>3</u>	<u>3</u>	<u>3</u>	<u>3</u>	
	<u>K_b, m/day</u>	<u>3</u>	<u>3</u>	<u>3</u>	<u>3</u>	
	<u>h, m</u>	<u>0.2</u>	<u>0.2</u>	<u>0.2</u>	<u>0.2</u>	

I		Q , m/day	<u>0.0015</u>	<u>0.0015</u>	<u>0.0015</u>	<u>0.0015</u>	_
	Assumed	Lassumed, m	<u>30</u>	<u>49</u>	<u>50</u>	<u>51</u>	_
1			<u>7</u>	<u>7</u>	<u>7</u>	<u>Z</u>	
			<u>1.9459101</u>	<u>1.9459101</u>	<u>1.9459101</u>	<u>1.9459101</u>	
			<u>4.9620709</u>	<u>4.9620709</u>	<u>4.9620709</u>	<u>4.9620709</u>	
	히		<u>1.4620709</u>	<u>1.4620709</u>	<u>1.4620709</u>	<u>1.4620709</u>	
	ate		<u>0.034115</u>	<u>0.0208867</u>	<u>0.020469</u>	<u>0.0200676</u>	
	Calculated		<u>1.034115</u>	<u>1.0208867</u>	<u>1.020469</u>	<u>1.0200676</u>	1
	Cal	<u>d_e, m</u>	<u>0.6769073</u>	<u>0.6856784</u>	<u>0.6859591</u>	<u>0.686229</u>	
			<u>0.48</u>	<u>0.48</u>	<u>0.48</u>	<u>0.48</u>	
			<u>3.2491551</u>	<u>3.2912564</u>	<u>3.2926037</u>	<u>3.2938992</u>	
			<u>3.7291551</u>	<u>3.7712564</u>	<u>3.7726037</u>	<u>3.7738992</u>	
			<u>2486.1034</u>	<u>2514.171</u>	<u>2515.0691</u>	<u>2515.9328</u>	1
l	<u>ts</u>	<u>L, m</u>	<u>49.86084</u>	<u>50.141509</u>	<u>50.150465</u>	<u>50.159075</u>	_
l	Results	Check L	<u>66.202801</u>	<u>2.3296107</u>	0.3009301	<u>-1.6488724</u>	_
l	č	Check de	<u>0.0233333</u>	<u>0.0142857</u>	<u>0.014</u>	<u>0.0137255</u>	_
	<u>Check L = ((L-Lassumed)/Lassumed)*100</u> <u>Check de: D/L < 0.25</u>						
	Table 4. Sp	read sheets des	ign, depth of	impermeabl	e layer is 1.8	s m, drain dep	<u>th is 1.4</u>

Main <th

	<u>D, m</u>	<u>0.4</u>	<u>0.4</u>	<u>0.4</u>
	<u>r_o, m</u>	<u>0.1</u>	<u>0.1</u>	<u>0.1</u>
<u>Given</u>	<u>K_a, m/day</u>	<u>3</u>	<u>3</u>	<u>3</u>
<u>ថ</u>	<u>K_b, m/day</u>	<u>3</u>	<u>3</u>	<u>3</u>
	<u>h, m</u>	<u>0.3</u>	<u>0.3</u>	<u>0.3</u>
	Q, m/day	<u>0.0015</u>	<u>0.0015</u>	<u>0.0015</u>
Assumed	Lassumed, m	<u>50</u>	<u>51</u>	<u>52</u>
		<u>4</u>	<u>4</u>	<u>4</u>
		1.3862944	<u>1.3862944</u>	<u>1.3862944</u>
		<u>3.5350506</u>	<u>3.5350506</u>	<u>3.5350506</u>
히		<u>0.0350506</u>	<u>0.0350506</u>	<u>0.0350506</u>
ate		<u>0.0002804</u>	<u>0.0002749</u>	<u>0.0002696</u>
Calculated		<u>1.0002804</u>	<u>1.0002749</u>	<u>1.0002696</u>
Cal	<u>d_e, m</u>	<u>0.3998879</u>	0.3998901	<u>0.3998922</u>
		<u>1.08</u>	<u>1.08</u>	<u>1.08</u>
		<u>2.8791927</u>	<u>2.8792085</u>	<u>2.8792237</u>
		<u>3.9591927</u>	<u>3.9592085</u>	<u>3.9592237</u>
		<u>2639.4618</u>	<u>2639.4723</u>	<u>2639.4825</u>

<u>Results</u>	<u>L, m</u> <u>Check L</u> <u>Check de</u>	51.375692 2.7513849 0.008	51.375795 0.7368532 0.0078431	<u>51.375894</u> -1.2002041 0.0076923	-	
- - - Check L = ((L-Lassumed)/Lassumed)*100 Check de: D/L < 0.25						

Table 5. Spread sheets design, depth of impermeable layer is 10.0 m, drain depth is 1.4 m, and elevation of the water table midway between the drains is 0.3 m

	<u>D, m</u>	<u>8.6</u>	<u>8.6</u>	<u>8.6</u>	<u>8.6</u>
	<u>r_o, m</u>	<u>0.1</u>	<u>0.1</u>	<u>0.1</u>	<u>0.1</u>
<u>Given</u>	<u>K_a, m/day</u>	<u>3</u>	<u>3</u>	<u>3</u>	<u>3</u>
Gi	<u>K_b, m/day</u>	<u>3</u>	<u>3</u>	<u>3</u>	<u>3</u>
	<u>h, m</u>	<u>0.3</u>	<u>0.3</u>	<u>0.3</u>	<u>0.3</u>
	Q, m/day	<u>0.0015</u>	<u>0.0015</u>	<u>0.0015</u>	<u>0.0015</u>
Assumed	Lassumed, m	<u>90</u>	<u>155</u>	172	<u>173</u>
		<u>0.3142857</u>	<u>0.3142857</u>	<u>0.3142857</u>	<u>0.3142857</u>
		<u>27.363636</u>	<u>27.363636</u>	<u>27.363636</u>	<u>27.363636</u>
		<u>3.309215</u>	<u>3.309215</u>	<u>3.309215</u>	<u>3.309215</u>
71		<u>0.2432323</u>	<u>0.1412317</u>	<u>0.1272727</u>	<u>0.126537</u>
ated		<u>0.8049081</u>	<u>0.467366</u>	<u>0.4211728</u>	<u>0.4187383</u>
Calculated		<u>1.8049081</u>	<u>1.467366</u>	<u>1.4211728</u>	<u>1.4187383</u>
Cal	<u>d_e, m</u>	<u>4.7647857</u>	<u>5.8608419</u>	<u>6.0513401</u>	<u>6.061724</u>
		<u>1.08</u>	<u>1.08</u>	<u>1.08</u>	<u>1.08</u>
		<u>34.306457</u>	<u>42.198062</u>	<u>43.569648</u>	<u>43.644413</u>
		<u>35.386457</u>	<u>43.278062</u>	<u>44.649648</u>	<u>44.724413</u>
		<u>23590.971</u>	<u>28852.041</u>	<u>29766.432</u>	<u>29816.275</u>
S	<u>L. m</u>	<u>153.59353</u>	<u>169.85889</u>	<u>172.52951</u>	<u>172.6739</u>
Results	Check L	<u>70.659473</u>	<u>9.5863784</u>	<u>0.3078554</u>	<u>-0.1884978</u>
		0.095556	0.055484	0.05	0.049711

Check L = ((L-Lassumed)/Lassumed)*100

<u>Check de: D/L < 0.25</u>

Fig. 2. Scheme of subsurface drainage systems in Egypt

3. RESULTS AND DISCUSSION

Three samples for spread sheets design are illustrated in Tables 3, 4 and 5. For each table, given data are the depth to impermeable layer ($D = D_1 - D_d$), the lateral pipe radius ($r_0 = 0.1$

Comment [DMO4]: There is no DISCUSSION seen in under this portion (RESULTS AND DISCUSSION).

m), hydraulic conductivities of the soil above and below drain level ($K_a = K_b = 3 \text{ m/day}$), elevation of the water table midway between the drains (h), and drainage rate (Q = 0.0015 m/day). The values of (D) and (h) are varying according to the location within the area.

The lateral spacing is assumed first ($L_{assumed}$), then calculations through the spread sheet obtain another value for the spacing (L). The percentage difference between (L) and ($L_{assumed}$) with respect to ($L_{assumed}$) is done to check (L). Other values are assumed for (L) till the difference becomes close to zero.

Also the check for the equivalent depth (d_e) is satisfied, where the value of (D/L) has to be less than 0.25.

As shown in Tables 3 and 2, depth to impermeable layer (D) is 0.7 m (D = $D_1 - D_d = 1.7 - 1.0$). It is assumed first that the lateral spacing (L_{assumed}) is 30 m. After calculations through the spread sheet, the required spacing is 50 m with only 0.3% difference with respect to the assumed value. The check for the equivalent depth (d_e) is satisfied, where the value of (D/L) is 0.014 (less than 0.25).

Similarly, as shown in Tables 4 and 2, depth to impermeable layer (D) is 0.4 m (D = D₁ – D₁ = 1.8 – 1.4). It is assumed first that the lateral spacing (L_{assumed}) is 50 m. After calculations through the spread sheet, the required spacing is 51 m with only 0.7% difference with respect to the assumed value. The check for the equivalent depth (d_e) is satisfied, where the value of (D/L) is 0.0078 (less than 0.25).

Finally, as shown in Tables 5 and 2, depth to impermeable layer (D) is 8.6 m (D = $D_I - D_d = 10.0 - 1.4$). It is assumed first that the lateral spacing ($L_{assumed}$) is 90 m. After calculations through the spread sheet, the required spacing is 172 m with only 0.3% difference with respect to the assumed value. The check for the equivalent depth (d_e) is satisfied, where the value of (D/L) is 0.05 (less than 0.25).

Existing design of Mit Kenana area is reviewed according to the design data. Both existing design and spread sheets design are tabulated in Tables 6, 7 and 8.

Comment [DMO5]: Back your discussions with literature.

Table 6. Existing and spread sheets design for laterals spacing [Drain Depth (D_{d}) = 1.0 m & Elevation of water table midway between drains (h) = 0.2 m]

Donth of Importmodulo Lover (D) m	Laterals Spacing, m				
Depth of Impermeable Layer (D ₁), m	Existing Design	Spread Sheet Design			
<u>1.20</u>	<u>30</u>	31			
<u>1.35</u>	<u>37</u>	<u>37</u>			
<u>1.70</u>	<u>50</u>	<u>50</u>			
<u>1.80</u>	<u>52</u>	<u>52</u>			
<u>2.00</u>	<u>58</u>	<u>58</u>			
<u>3.00</u>	77	77			
<u>4.50</u>	<u>97</u>	<u>97</u>			
<u>10.00</u>	<u>137</u>	<u>137</u>			

Table 7. Existing and spread sheets design for laterals spacing [Drain Depth (D_d) = 1.2 m & Elevation of water table midway between drains (h) = 0.3 m]

Donth of Importmobile Lover (D) m	Laterals Spacing, m				
Depth of Impermeable Layer (D ₁), m	Existing Design	Spread Sheet Design			
<u>1.20</u>	34	<u>34</u>			
<u>1.35</u>	<u>37</u>	<u>38</u>			
<u>1.70</u>	<u>55</u>	<u>55</u>			
<u>1.80</u>	<u>59</u>	<u>59</u>			
<u>2.00</u>	<u>66</u>	<u>66</u>			
<u>3.00</u>	<u>93</u>	<u>93</u>			

<u>4.50</u>	<u>120</u>	<u>119</u>
<u>10.00</u>	<u>174</u>	<u>174</u>

Table 8. Existing and spread sheets design for laterals spacing [Drain Depth (D_d) = 1.4 m & Elevation of water table midway between drains (h) = 0.3 m]

Death of Importantial Syster (D) m	Laterals Spacing, m		
Depth of Impermeable Laver (D _i), m	Existing Design	Spread Sheet Design	
<u>1.70</u>	<u>46</u>	<u>46</u>	
<u>1.80</u>	<u>50</u>	<u>51 *</u>	
<u>2.00</u>	<u>59</u>	<u>59</u>	
<u>3.00</u>	<u>88</u>	<u>88</u>	
4.50	<u>116</u>	<u>116</u>	
<u>10.00</u>	<u>172</u>	<u>172 *</u>	

As shown in Table 6, eight different laterals spacing designs are calculated according to the data of Mit Kenana area. Similarly, Table 7 includes eight different laterals spacing designs. Finally, Table 8 contains six different laterals spacing designs.

From these obtained results, it can be seen that both existing design and spread sheets design are almost identical with negligible differences in limited designs.

The steady state condition is followed in Egypt, where the rate of recharge to the aquifer is assumed to be steady and equals the discharge of the drain. So, the water table position does not change as long as the recharge continues [9].

Spread sheets are efficient, accurate, and simple way that can be applied to solve many issues in hydraulics and water resources. For instance, Microsoft Excel software, as a common popular spread sheet, was employed to get the best hydraulic trapezoidal sections for open channels with different side slopes [10]. Also, an additional solution was obtained concerning the velocity of water through the trapezoidal best hydraulic sections.

Many attempts were done to calculate the equivalent depth in order to get the laterals spacing for the subsurface drainage systems. Chieng et al [11] introduced some graphs for the equivalent depth versus the depth to impermeable layer for a range of pipe sizes and spacing between laterals. Efficient values for the equivalent depth are obtained by the technique employed in this paper.

Also, a drain spacing formula has been derived considering the variation in flow and the area above the drain level in the radial flow zone [12]. The extent of radial flow zone is found to be $2/\pi$ times the thickness of soil layer below the drains. Hooghoudt equation based on equivalent depth is accurate enough to be used for drain spacing, but the computed water surface profile in the radial flow zone differs considerably from that computed by the new method.

4. CONCLUSIONS

Laterals spacing design for steady state subsurface drainage systems employing spread sheets is efficient, accurate, quick, easy and simple. It can be widely used to get the required spacing between the laterals (field drains). Applying this technique on Mit Kenana area in Egypt obtained almost identical results compared with the existing design. This technique can be applied to get the laterals spacing design quickly and accurately. It can be also used to obtain efficiently the equivalent depth for steady state subsurface drainage systems.

5. REFERENCES

[1] United States Department of Agriculture (USDA), Natural Resources Conservation Service (NRCS), 2011. "Engineering Field Handbook (EFH)". NOTICE 210-WI-121.

[2] McCarty, L.B., Hubbard Jr., L. R. and Quisenberry, V., 2016. "Applied Soil Physical Properties, Drainage, and Irrigation Strategies". Springer International Publishing, Switzerland, 73-137.

[3] Nijland, H.J., Croon F.W. and Ritzema, H.P., 2005. "Subsurface Drainage Practices: Guidelines for the implementation, operation and maintenance of subsurface pipe drainage systems". Wageningen, Alterra, ILRI Publication no. 60, pp. 608.

[104] Ritzema, H.P., 2007. "Performance Assessment of Subsurface Drainage Systems – Case Studies from Egypt and Pakistan". Wageningen, Alterra, The Netherlands, 137pp.

[115] Drainage Research Institute, WRC, Ministry of Water Resources and Irrigation, Egypt, and Directorate General for International Cooperation, Ministry of Foreign Affairs, Netherlands, 1992. "Subsurface Drainage System Design Mit Kenana Pilot Area". Technical Report No. 72.

[126] Abdel-Dayem, S. and Ritzema, H.P., 1990. "Verification of Drainage Design Criteria in the Nile Delta, Egypt". Irrigation and Drainage Systems 4: 117-131.

[47] Ritzema, H.P., 1994. "Subsurface flow to drains". Wageningen, Alterra, The Netherlands, 236-304.

[68] Smedema, L.K. and Rycroft, D.W., 1983. "Land Drainage: Planning and design of agricultural drainage systems". Cornell University Press, New York, 376 pages. [59] Indian Council of Agricultural Research,

www.ecoursesonline.iasri.res.in/mod/page/view.php?id=124524, 31/1/2017.

[6] Smedema, L.K. and Rycroft, D.W., 1983. "Land Drainage: Planning and design of

agricultural drainage systems". Cornell University Press, New York, 376 pages.

[910] Alaa Nabil El-Hazek, 2012. "Best Hydraulic Sections for Open Channels employing Spread Sheets." VII – International Conference on Environmental Hydrology with 1st Symposium on Environmental Impacts on the Nile Water Resources, Cairo, Egypt.

[711] Chieng, S.T., R.S. Broughton, and S.R. Ami, 1981. "Graphical Solutions to Drainage Equations". Canadian Agricultural Engineering, Volume 23, No 2, 91-96.

[812] G. C. Mishra and Vivekanand Singh, 2007. "A new drain spacing formula". Hydrological Sciences Journal, 52:2, 338-351, DOI: 10.1623/hysj.52.2.338

[9] Alaa Nabil El-Hazek, 2012. "Best Hydraulic Sections for Open Channels employing Spread Sheets." VII — International Conference on Environmental Hydrology with 1st Symposium on Environmental Impacts on the Nile Water Resources, Cairo, Egypt.

[10] Ritzema, H.P., 2007. "Performance Assessment of Subsurface Drainage Systems – Case Studies from Egypt and Pakistan". Wageningen, Alterra, The Netherlands, 137pp. [11] Drainage Research Institute, WRC, Ministry of Water Resources and Irrigation, Egypt,

and Directorate General for International Cooperation, Ministry of Foreign Affairs, Netherlands, 1992. "Subsurface Drainage System Design Mit Kenana Pilot Area". Technical Report No. 72.

[12] Abdel-Dayem, S. and Ritzema, H.P., 1990. "Verification of Drainage Design Criteria in the Nile Delta, Egypt". Irrigation and Drainage Systems 4: 117-131.

Comment [DMO6]:

 Revise your references after the corrections in the text.
 The references are not in line with the style of the Journal.

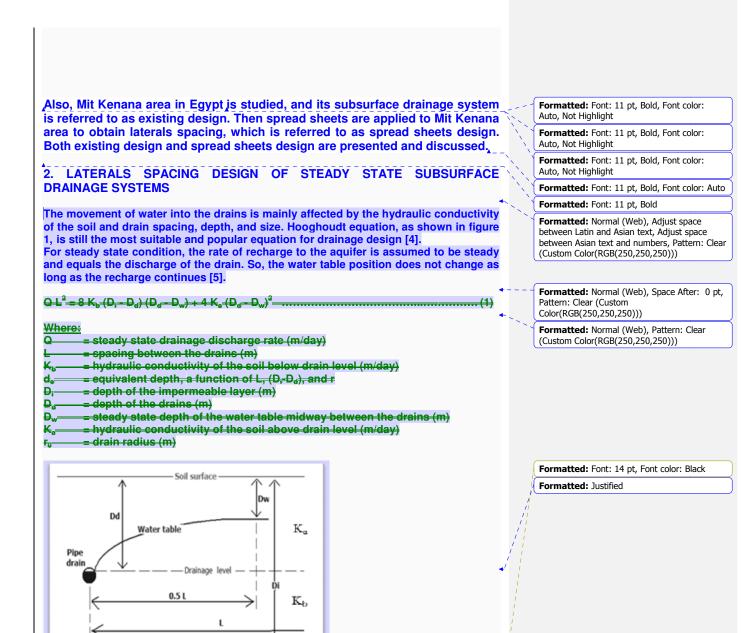


Fig. 1. Hooghoudt equation

Impermeable base

To account for the extra head loss due to radial flow to the drains, two simplifications were followed in Hooghoudt theory. The first was assuming an imaginary impervious layer above the real one, which decreases the thickness of the layer through which the water flows towards the drains. The second was treating horizontal and radial flow to drains as an equivalent flow to imaginary ditches with their bottoms on an imaginary impervious layer at a reduced depth. In other words, the equivalent depth (d_a) represents an imaginary thinner soil layer through which the same amount of water will flow horizontally per unit time as in the actual situation. In equation 1, replacing the term ($D_i - D_d$) by (d_a),

 $\mathbf{Q} = \mathbf{L}^2 = \mathbf{S} + \mathbf{K}_{\mathbf{b}} - \mathbf{d}_{\mathbf{0}} - \mathbf{D}_{\mathbf{w}} + \mathbf{A} + \mathbf{K}_{\mathbf{w}}$

8 ln

To determine the equivalent depth, a relationship was derived by Hooghoudt between the equivalent depth (d_e), the spacing (L), the depth to the impervious layer ($D_i - D_d$), and the radius of the drain (r_e). To simplify this relationship, tables were established for the most common sizes of drain pipes, from which the equivalent depth (d_e) can be attained.

Exact solutions for the equivalent depth required for Hooghoudt equation can be calculated from the following two equations, where $D = (D_t - D_d)$ [6].

For $D_{cl}/A = \frac{P}{P}$	(2)
$-\frac{\partial \mathcal{L}}{\partial t} = \frac{\partial \mathcal{L}}{\partial t} = \frac{\partial \mathcal{L}}{\partial t}$	
$\frac{\pi L}{\pi r_{\phi}}$	
#	
For D>L/4, $dc = \frac{\pi r}{L}$	(4)

Many attempts were done to calculate the equivalent depth in order to get the laterals spacing for the subsurface drainage systems. Chieng et al [7], introduced some graphs for the equivalent depth versus the depth to impermeable layer for a range of pipe sizes and spacing between laterals.

A drain spacing formula has been derived considering the variation in flow and the area above the drain level in the radial flow zone [8]. The extent of radial flow zone is found to be $2/\pi$ times the thickness of soil layer below the drains. Hooghoudt equation based on equivalent depth is accurate enough to be used for drain spacing, but the computed water surface profile in the radial flow zone differs considerably from that computed by the new method.

3. Spread Sheets For Laterals Spacing Design Of Steady State Subsurface Drainage Systems

Spread sheets are efficient, accurate, and simple way that can be applied to solvemany issues in hydraulics and water resources. For instance, Microsoft Excel software, as a common popular spread sheet, was employed to get the best hydraulic trapezoidal sections for open channels with different side slopes [9]. Also, an additional solution was obtained concerning the velocity of water through the trapezoidal best hydraulic sections.

In this paper, Microsoft Excel software, as instance for spread sheets, is employed to get the laterals spacing design of steady state subsurface drainage systems. Equation 2 is used to get the spacing L, substituting by equation 3 to obtain the equivalent depth.

For the hypothetical case shown in table 1, given data are D, r₀, K_a, K_b, h and Q, where:

Formatted: Normal (Web), Pattern: Clear (Custom Color(RGB(250,250,250)))

D_w)²

Formatted: Normal (Web), Adjust space between Latin and Asian text, Adjust space between Asian text and numbers, Pattern: Clear (Custom Color(RGB(250,250,250)))

Formatted: Normal (Web), Adjust space between Latin and Asian text, Adjust space between Asian text and numbers, Pattern: Clear (Custom Color(RGB(250,250,250)))

Formatted: Normal (Web), Pattern: Clear (Custom Color(RGB(250,250,250)))

- D: depth to the impermeable layer, (D_i D_d), m
- ro: radius of the pipe lateral, m
- Ka: hydraulic conductivity of the soil above drain level, m/day
- K_b: hydraulic conductivity of the soil below drain level, m/day
- h: elevation of the water table midway between the drains, (D_d D_w), m
- Q: drainage rate, m/day

Then, the lateral spacing L is assumed. Calculations are done through the spread sheet and the final result of L is obtained. Check for the obtained L is established with respect to the assumed value. Also, another check is employed for the equivalent depth d_{e_1} where D/L < 0.25 as stated in equation 3.

As shown in table 1, the depth to impermeable layer (D) is 2.5 m, the lateral pipe radius (r_0) is 0.1 m, hydraulic conductivities of the soil above and below drain level (K_a and K_b) are the same with the value of 1 m/day, elevation of the water table midway between the drains (h) is 0.2 m, and drainage rate (Q) is 0.001 m/day.

It is assumed first that the lateral spacing ($L_{assumed}$) is 50 m. Then calculations through the spread sheet obtain a value of 58.29 m for the spacing (L) with 16.5% difference with respect to the assumed value. Other values are assumed for L till difference with respect to the assumed value becomes close to zero. Thus the spread sheets design for lateral spacing is 59 m, with only 0.19% difference with respect to the assumed value. Also the check for the equivalent depth (d_e) is satisfied, where the value of D/L is less than 0.25.

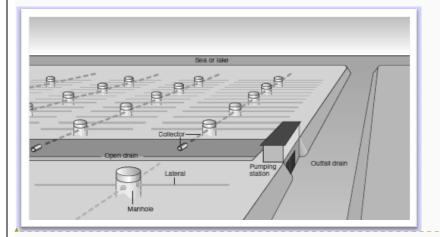
Table 1. Spread sheet for laterals spacing design of steady state subsurface drainagesystems

	D, m	2.5	2.5	2.5	2.5	2.5
	r ₀ , m	0.1	0.1	0.1	0.1	0.1
	K _a , m/day	1	1	1	1	1
	K _b , m/day	1	1	1	1	1
Given	h, m	0.2	0.2	0.2	0.2	0.2
Giv	Q, m/day	0.001	0.001	0.001	0.001	0.001
Assumed	Lassumed,	50		50	50	
_	m	<mark>50</mark>	55	58	59	60
		25	25	25	25	25
		3.218875	3.218875	3.218875	3.218875	3.218875
		8.208133	8.208133	8.208133	8.208133	8.208133
		4.708133	4.708133	4.708133	4.708133	4.708133
		0.235406	0.214006	0.202936	0.199497	0.196172
		1.235406	1.214006	1.202936	1.199497	1.196172
	d _e , m	2.023625	2.059297	2.078247	2.084206	2.09
.		0.16	0.16	0.16	0.16	0.16
ate		3.237800	3.294876	3.325195	3.334730	3.344000
Calculated		3.397800	3.454876	3.485195	3.494730	3.504000
<u>Ca</u>		3397.800	3454.876	3485.195	3494.730	3504.000
N	L, m	58.2906	58.77819	59.03554	59.11624	59.19459
Results	Check L	16.5813	6.869449	1.785421	0.197028	-1.34234
Be	Check de	0.05	0.045454	0.043103	0.042372	0.041666

Formatted: Normal (Web), Adjust space between Latin and Asian text, Adjust space between Asian text and numbers, Pattern: Clear (Custom Color(RGB(250,250,250)))

Formatted: Justified Formatted: Normal (Web), Adjust space between Latin and Asian text, Adjust space between Asian text and numbers, Pattern: Clear (Custom Color(RGB(250,250,250)))

Formatted: Normal (Web), Justified, Pattern: Clear (Custom Color(RGB(250,250,250)))


Formatted: Normal (Web), Justified, Pattern: Clear (Custom Color(RGB(250,250,250)))

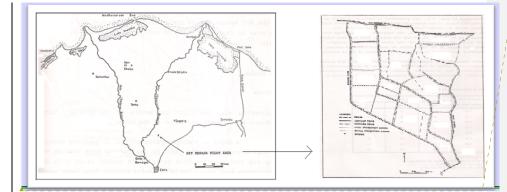
Formatted: Normal (Web), Justified, Pattern: Clear (Custom Color(RGB(250,250,250))) Check L = ((L-Lassumed)/Lassumed)*100

Check de: D/L < 0.25

4. MIT KENANA AREA IN EGYPT

In Egypt, 100% of cropped area is irrigated, while 88% of this area is drained [10]. Annually, about 63,000 ha are provided by new subsurface drainage systems while old drainage systems are rehabilitated in about 12,600 ha. A scheme of the employed subsurface drainage systems in Egypt is shown in figure 2.

Formatted: Normal (Web), Justified, Pattern: Clear (Custom Color(RGB(250,250,250)))


Formatted: Normal (Web), Justified, Pattern: Clear (Custom Color(RGB(250,250,250)))

Formatted: Normal (Web), Justified, Adjust space between Latin and Asian text, Adjust space between Asian text and numbers, Pattern: Clear (Custom Color(RGB(250,250,250)))

Formatted: Font: (Default) +Headings CS, 14 pt, Font color: Text 1

Fig. 2. Scheme of subsurface drainage systems in Egypt

Mit Kenana area is located about 40 km North of Cairo [11] and it represents the eastern fringes of the Nile Delta. It is 830 feddan (350 ha), with a main irrigation and drainage infrastructure, as shown in figure 3. The soils in the area consist of three layers. The third layer is considered impermeable layer as it has a hydraulic conductivity less than one tenth of that of the second layer. The hydraulic conductivity of the two upper layers is constant through the area with a value of 3 m/day.

Formatted: Font: (Default) +Headings CS, 14 pt, Font color: Text 1

Fig. 3. Mit Kenana area in Egypt

The area is divided into sectors according to the depth to the impermeable layer (D_t) , as shown in figure 3. The drain depth (D_d) is 1.2 m in a major part of the area due to limitations of topography and water level in the open drain. In some parts the drain depth has the values of 1.0 m and 1.4 m.

The values for water table depth (D_w) are 0.8 m, 0.9 m and 1.1 m.

The drainage rate (Q) is 0.0015 m/day.

The lateral spacing design is established and the subsurface drainage system is accomplished for Mit Kenana area [11]. This design is referred to as existing design in this paper.

For the Nile Delta in Egypt, including Mit Kenana area, the water table depth of 0.8 m achieves good conditions for the cultivated crops [12]. Also, the drainage rate of 0.0012 m/day is acceptable.

5. Spread Sheets For Laterals Spacing Design Of Mit Kenana Area In Egypt

Spread sheets are employed to obtain laterals spacing for Mit Kenana area, which is referred to as spread sheets design. Twenty two different laterals spacing designs are calculated according to the data of Mit Kenana area. These designs are included in table 2. Also, three spread sheets designs are shown in tables 3, 4 and 5 as samples for this technique.

Table 2. Spread sheets design of laterals spacing for Mit Kenana area

Depth of Impermeable	Laterals Spacing, m				
Layer (D _I), m	D _d =1.0 m, h=0.2 m	D _d =1.2 m, h=0.3 m	D _d =1.4 m, h=0.3 m		
1.20	31	34	📣		
1.35	37	38	*		
1.70	50 *	55	46 🔸		
1.80	52	59	51 * 🔸		
2.00	58	66	<mark>59</mark> ◆		
3.00	77	93	88 🔸		
4.50	97	119	<mark>116</mark> ◀		
10.00	137	174	172 * 🔸		

* Spread sheets that obtained these results are shown in tables 3, 4 and 5

Formatted: Justified

Formatted: Normal (Web), Adjust space between Latin and Asian text, Adjust space between Asian text and numbers, Pattern: Clear (Custom Color(RGB(250,250,250)))

Formatted: Justified

Formatted: Normal (Web), Adjust space between Latin and Asian text, Adjust space between Asian text and numbers, Pattern: Clear (Custom Color(RGB(250,250,250)))

Formatted: Normal (Web), Justified, Space After: 0 pt, Line spacing: single, Pattern: Clear (Custom Color(RGB(250,250,250)))

Formatted: Normal (Web), Justified, Space After: 0 pt, Line spacing: single, Pattern: Clear (Custom Color(RGB(250,250,250)))

Formatted: Normal (Web), Justified, Space After: 0 pt, Line spacing: single, Pattern: Clear (Custom Color(RGB(250,250,250)))

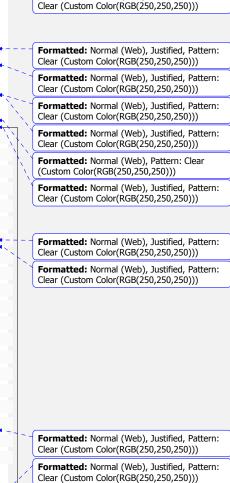
Formatted: Normal (Web), Justified, Space After: 0 pt, Line spacing: single, Pattern: Clear (Custom Color(RGB(250,250,250)))

Formatted: Normal (Web), Justified, Space After: 0 pt, Line spacing: single, Pattern: Clear (Custom Color(RGB(250,250,250)))

Formatted: Normal (Web), Justified, Space After: 0 pt, Line spacing: single, Pattern: Clear (Custom Color(RGB(250,250,250)))

Formatted: Normal (Web), Justified, Space After: 0 pt, Line spacing: single, Pattern: Clear (Custom Color(RGB(250,250,250)))

Formatted: Normal (Web), Justified, Space After: 0 pt, Line spacing: single, Pattern: Clear (Custom Color(RGB(250,250,250)))


Formatted: Normal (Web), Justified, Pattern: Clear (Custom Color(RGB(250,250,250)))

D, m ro, m Ka, m/day Kb, m/day Kb, m/day N, m Q, m/day Lassumed Lassumed L, m Check L Check L Check L Check de Sheck L = ((L-Lassum) Sheck L, m Check de	0.7 0.1 3 0.2 0.0015 7 1.9459 4.9620 1.4620 0.0341 1.0341 0.6769 0.48 3.2491	094.9620709091.462070950.020886751.0208867	4.9620709 1.4620709 0.020469 1.020469 0.6859591	0.7 0.1 3 0.2 0.0015 51 7 1.9459101 4.9620709 1.4620709 0.0200676 1.0200676 1.0200676			Formatted: Normal (Web), Justified, Patte Clear (Custom Color(RGB(250,250,250))) Formatted: Normal (Web), Justified, Patte Clear (Custom Color(RGB(250,250,250)))
Baseline Ka, m/day Kb, m/day h, m Q, m/day SSUMEd Lassumed Image: Stress of the	3 3 0.2 0.0015 7 1.9459 4.9620 1.4620 0.0341 1.0341 0.6769 0.48	3 3 0.2 0.0015 49 7 01 1.9459101 09 4.9620709 09 1.4620709 5 0.0208867 5 1.0208867 73 0.6856784	3 3 0.2 0.0015 50 7 1.9459101 4.9620709 1.4620709 0.020469 1.020469 0.6859591	3 3 0.2 0.0015 51 7 1.9459101 4.9620709 1.4620709 0.0200676 1.0200676			Clear (Custom Color(RGB(250,250,250))) Formatted: Normal (Web), Justified, Patter
Image: second system Ka, m/day Kb, m/day h, m N, m Q, m/day Ssumed Lassumed Image: second system L, m Image: second system L, m Image: second system Check L Check L = ((L-Lassum) ble 4. Spread sheets and elevation of the Image: second system D, m r ₀ , m Ka, m/day Kb, m/day Kb, m/day	3 0.2 0.0015 7 1.9459 4.9620 1.4620 0.0341 1.0341 0.67690 0.48	3 0.2 0.0015 49 7 01 1.9459101 09 4.9620709 09 1.4620709 5 0.0208867 5 1.0208867 73 0.6856784	3 0.2 0.0015 50 7 1.9459101 4.9620709 1.4620709 0.020469 1.020469 1.020469	3 0.2 0.0015 51 7 1.9459101 4.9620709 1.4620709 0.0200676 1.0200676			Clear (Custom Color(RGB(250,250,250))) Formatted: Normal (Web), Justified, Patter
in iteration h, m iteration Q, m/day ssumed Lassumed iteration Lassumed iteration de, m iteration L, m iteration L, m iteration Check L check L = ((L-Lassum) ble 4. Spread sheets and elevation of the iteration i	0.2 0.0015 30 7 1.9459 4.9620 1.4620 0.0341 1.0341 0.67699 0.48	0.2 0.0015 49 7 01 1.9459101 09 4.9620709 09 1.4620709 5 0.0208867 5 1.0208867 73 0.6856784	0.2 0.0015 50 7 1.9459101 4.9620709 1.4620709 0.020469 1.020469 1.020469	0.2 0.0015 51 7 1.9459101 4.9620709 1.4620709 0.0200676 1.0200676]		Clear (Custom Color(RGB(250,250,250))) Formatted: Normal (Web), Justified, Patter
ssumed Lassumed generation dent generation L, m generation L, m generation Check L Check L Check de heck L = ((L-Lassum) ble 4. Spread sheets and elevation of the D, m r ₀ , m K _a , m/day K _b , m/day	0.0015 , m 30 7 1.9459 4.9620 1.4620 0.0341 1.0341 0.6769 0.48	0.0015 49 7 01 1.9459101 09 4.9620709 09 1.4620709 5 0.0208867 5 1.0208867 73 0.6856784	0.0015 50 7 1.9459101 4.9620709 1.4620709 0.020469 1.020469 0.6859591	0.0015 51 7 1.9459101 4.9620709 1.4620709 0.0200676 1.0200676			Clear (Custom Color(RGB(250,250,250))) Formatted: Normal (Web), Justified, Patter
ssumed Lassumed game de, m game L, m game L, m game Check L Check L Check de heck L = ((L-Lassum ble 4. Spread sheets and elevation of the D, m r ₀ , m K _a , m/day K _b , m/day	7 1.9459 4.9620 1.4620 0.0341 1.0341 0.6769 0.48	49 7 01 1.9459101 09 4.9620709 09 1.4620709 5 0.0208867 5 1.0208867 73 0.6856784	50 7 1.9459101 4.9620709 1.4620709 0.020469 1.020469 0.6859591	51 7 1.9459101 4.9620709 1.4620709 0.0200676 1.0200676]		Clear (Custom Color(RGB(250,250,250))) Formatted: Normal (Web), Justified, Patter
ssumed Lassumed game de, m game L, m game L, m check L Check L check L = ((L-Lassum ble 4. Spread sheets and elevation of the D, m r ₀ , m K _a , m/day K _b , m/day	7 1.9459 4.9620 1.4620 0.0341 1.0341 0.6769 0.48	7 01 1.9459101 09 4.9620709 09 1.4620709 5 0.0208867 5 1.0208867 73 0.6856784	7 1.9459101 4.9620709 1.4620709 0.020469 1.020469 0.6859591	7 1.9459101 4.9620709 1.4620709 0.0200676 1.0200676			Clear (Custom Color(RGB(250,250,250))) Formatted: Normal (Web), Justified, Patte
ble 4. Spread sheets and elevation of the D, m r ₀ , m K _a , m/day K _b , m/day	1.9459 4.9620 1.4620 0.0341 1.0341 0.6769 0.48	01 1.9459101 09 4.9620709 09 1.4620709 5 0.0208867 5 1.0208867 73 0.6856784	1.9459101 4.9620709 1.4620709 0.020469 1.020469 0.6859591	1.9459101 4.9620709 1.4620709 0.0200676 1.0200676			Clear (Custom Color(RGB(250,250,250))) Formatted: Normal (Web), Justified, Patte
ble 4. Spread sheets and elevation of the D, m r ₀ , m K _a , m/day K _b , m/day	4.9620 1.4620 0.0341 1.0341 0.6769 0.48	09 4.9620709 09 1.4620709 5 0.0208867 5 1.0208867 73 0.6856784	4.9620709 1.4620709 0.020469 1.020469 0.6859591	4.9620709 1.4620709 0.0200676 1.0200676	_		
ble 4. Spread sheets and elevation of the D, m r ₀ , m K _a , m/day K _b , m/day	1.4620 0.0341 1.0341 0.6769 0.48	09 1.4620709 5 0.0208867 5 1.0208867 73 0.6856784	1.4620709 0.020469 1.020469 0.6859591	1.4620709 0.0200676 1.0200676			Clear (Custom Color(RGB(250,250,250)))
ble 4. Spread sheets and elevation of the D, m r ₀ , m K _a , m/day K _b , m/day	0.0341 1.0341 0.6769 0.48	50.020886751.0208867730.6856784	0.020469 1.020469 0.6859591	0.0200676 1.0200676			
ble 4. Spread sheets and elevation of the D, m r ₀ , m K _a , m/day K _b , m/day	1.0341 0.6769 0.48	51.0208867730.6856784	1.020469 0.6859591	1.0200676			
stimser L, m stimser Check L Check L Check de heck L = ((L-Lassum ble 4. Spread sheets and elevation of the D, m r ₀ , m K _a , m/day K _b , m/day	0.6769 0.48	73 0.6856784	0.6859591		L		
stimser L, m stimser Check L Check L Check de heck L = ((L-Lassum ble 4. Spread sheets and elevation of the D, m r ₀ , m K _a , m/day K _b , m/day	0.48			0.686229			
L, m Check L Check de heck L = ((L-Lassum ble 4. Spread sheets and elevation of the D, m r_0 , m K_a , m/day K_b , m/day		0.48	0.40				
L, m Check L Check de heck L = ((L-Lassum ble 4. Spread sheets and elevation of the D, m r_0 , m K_a , m/day K_b , m/day	3 2491		0.48	0.48	_		
L, m Check L Check de heck L = ((L-Lassum ble 4. Spread sheets and elevation of the D, m r_0 , m K_a , m/day K_b , m/day	0.2.701	51 3.2912564	3.2926037	3.2938992			
L, m Check L Check de heck L = ((L-Lassum ble 4. Spread sheets and elevation of the D, m r_0 , m K_a , m/day K_b , m/day	3.7291	51 3.7712564	3.7726037	3.7738992			
Check L Check L Check de neck L = ((L-Lassum ole 4. Spread sheets and elevation of the D, m r_0 , m K_a , m/day K_b , m/day	2486.1	34 2514.171	2515.0691	2515.9328			
neck L = ((L-Lassum ole 4. Spread sheets and elevation of the D, m r_0 , m K_a , m/day K_b , m/day	49.860	4 50.141509	50.150465	50.159075		11	Formatted: Normal (Web), Justified, Patt
neck L = ((L-Lassum ole 4. Spread sheets and elevation of the D, m r_0 , m K_a , m/day K_b , m/day	66.202	01 2.3296107	0.3009301	-1.6488724			Clear (Custom Color(RGB(250,250,250)))
ble 4. Spread sheets and elevation of the D, m r ₀ , m K _a , m/day K _b , m/day	0.0233	33 0.0142857	0.014	0.0137255			
ble 4. Spread sheets and elevation of the D, m r ₀ , m K _a , m/day K _b , m/day				Check de:	: D/L <		
ble 4. Spread sheets and elevation of the D, m r ₀ , m K _a , m/day K _b , m/day	ed)/Lassume)*100		0.25	: D/L <		Formatted: Normal (Web), Justified, Patt Clear (Custom Color(RGB(250,250,250)))
and elevation of the D, m r ₀ , m K _a , m/day K _b , m/day	, ,	,				•	Formatted: Normal (Web), Justified, Patte
and elevation of the D, m r ₀ , m K _a , m/day K _b , m/day	design dent		la lavar in d	O un dunia da	with in 1 4		Clear (Custom Color(RGB(250,250,250)))
r _o , m K _a , m/day K _b , m/day					eptn is 1.4		Formatted: Normal (Web), Justified, Patt Clear (Custom Color(RGB(250,250,250)))
K _a , m/day K _b , m/day	0.4	0.4	0.4				Formatted: Normal (Web), Pattern: Clear (Custom Color(RGB(250,250,250)))
K _a , m/day K _b , m/day	0.1	0.1	0.1			``````````````````````````````````````	Formatted: Normal (Web), Justified, Patt
K _b , m/day	3	3	3				Clear (Custom Color(RGB(250,250,250)))
	3	3	3				
🚡 h, m	0.3	0.3	0.3				
h, m Q, m/day		0.0015	0.0015				
ssumed Lassumed	0.0015	51	52			.	Formatted: Normal (Web), Justified, Patt
	0.0015	4	4				Clear (Custom Color(RGB(250,250,250)))
d	0.0015	44 1.3862944	1.3862944				Formatted: Normal (Web), Justified, Patter Clear (Custom Color(RGB(250,250,250)))

0.0002804	0.0002749	0.0002696
		0.0002090
1.0002804	1.0002749	1.0002696
0.3998879	0.3998901	0.3998922
1.08	1.08	1.08
2.8791927	2.8792085	2.8792237
3.9591927	3.9592085	3.9592237
2639.4618	2639.4723	2639.4825
51.375692	51.375795	51.375894
2.7513849	0.7368532	-1.2002041
0.008	0.0078431	0.0076923
	0.3998879 1.08 2.8791927 3.9591927 2639.4618 51.375692 2.7513849	0.39988790.39989011.081.082.87919272.87920853.95919273.95920852639.46182639.472351.37569251.3757952.75138490.7368532

Table 5. Spread sheets design, depth of impermeable layer is 10.0 m, drain depth is 1.4 m, and elevation of the water table midway between the drains is 0.3 m

	D, m	8.6	8.6	8.6	8.6	
	r _o , m	0.1	0.1	0.1	0.1	
	K _a , m/day	3	3	3	3	
	K _b , m/day	3	3	3	3	
Given	h, m	0.3	0.3	0.3	0.3	
Gi	Q, m/day	0.0015	0.0015	0.0015	0.0015	
Assumed	L <i>assumed,</i> m	90	155	172	173	1 :
		0.3142857	0.3142857	0.3142857	0.3142857	
		27.363636	27.363636	27.363636	27.363636	
		3.309215	3.309215	3.309215	3.309215	
		0.2432323	0.1412317	0.1272727	0.126537	
		0.8049081	0.467366	0.4211728	0.4187383	
		1.8049081	1.467366	1.4211728	1.4187383	
	d _e , m	4.7647857	5.8608419	6.0513401	6.061724	
v		1.08	1.08	1.08	1.08	
Calculated		34.306457	42.198062	43.569648	43.644413	
IC		35.386457	43.278062	44.649648	44.724413	
<mark>5</mark>		23590.971	28852.041	29766.432	29816.275	
N	L, m	153.59353	169.85889	172.52951	172.6739	
Results	Check L	70.659473	9.5863784	0.3078554	-0.1884978	
Be	Check de	0.095556	0.055484	0.05	0.049711	
Check L =	((L-Lassumed)/L	assumed)*10	00		Check de: D/L	< 0.25 -
6. RESUL	TS AND DISC	USSION				4

Formatted: Normal (Web), Justified, Pattern:

Formatted: Normal (Web), Justified, Pattern: Clear (Custom Color(RGB(250,250,250)))

Formatted: Normal (Web), Justified, Pattern: Clear (Custom Color(RGB(250,250,250))) Three samples for spread sheets design are illustrated in tables 3, 4 and 5. For each table, given data are the depth to impermeable layer ($D = D_1 - D_d$), the lateral pipe radius ($r_0 = 0.1$ m), hydraulic conductivities of the soil above and below drain level ($K_a = K_b = 3$ m/day), elevation of the water table midway between the drains (h), and drainage rate (Q = 0.0015 m/day). The values of (D) and (h) are varying according to the location within the area.

The lateral spacing is assumed first ($L_{assumed}$), then calculations through the spread sheet obtain another value for the spacing (L). The percentage difference between (L) and ($L_{assumed}$) with respect to ($L_{assumed}$) is done to check (L). Other values are assumed for (L) till the difference becomes close to zero.

Also the check for the equivalent depth (d_e) is satisfied, where the value of (D/L) has to be less than 0.25.

As shown in tables 3 and 2, depth to impermeable layer (D) is 0.7 m (D = $D_I - D_d = 1.7 - 1.0$). It is assumed first that the lateral spacing ($L_{assumed}$) is 30 m. After calculations through the spread sheet, the required spacing is 50 m with only 0.3% difference with respect to the assumed value. The check for the equivalent depth (d_e) is satisfied, where the value of (D/L) is 0.014 (less than 0.25).

Similarly, as shown in tables 4 and 2, depth to impermeable layer (D) is 0.4 m (D = $D_I - D_d = 1.8 - 1.4$). It is assumed first that the lateral spacing ($L_{assumed}$) is 50 m. After calculations through the spread sheet, the required spacing is 51 m with only 0.7% difference with respect to the assumed value. The check for the equivalent depth (d_e) is satisfied, where the value of (D/L) is 0.0078 (less than 0.25).

Finally, as shown in tables 5 and 2, depth to impermeable layer (D) is 8.6 m (D = $D_I - D_d$ = 10.0 - 1.4). It is assumed first that the lateral spacing (L_{assumed}) is 90 m. After calculations through the spread sheet, the required spacing is 172 m with only 0.3% difference with respect to the assumed value. The check for the equivalent depth (d_e) is satisfied, where the value of (D/L) is 0.05 (less than 0.25).

Existing design of Mit Kenana area is reviewed according to the design data. Both existing design and spread sheets design are tabulated in tables 6, 7 and 8.

Table 6. Existing and spread sheets design for laterals spacing

[Drain Depth (D_d) = 1.0 m & Elevation of water table midway between drains (h) = 0.2 m]+

Depth of Impermeable Layer (D ₁), m	Laterals Spacing, m		
Depth of impermeable Layer (D), in	Existing Design	Spread Sheet Design	
1.20	30	31 🔸	
1.35	37	37 🔫	
1.70	50	50 🔸	
1.80	52	52 🔸	
2.00	58	58 🗸	
3.00	77	77 🔫	
4.50	97	97 🔫	
10.00	137	137 🔸	

Table 7. Existing and spread sheets design for laterals spacing [Drain Depth (D_d) = 1.2 m & Elevation of water table midway between drains (h) = 0.3 m]-

Depth of Impermeable Layer (D _I), m	Laterals Spacing, m		
Depth of impermeable Layer (D _I), in	Existing Design	Spread Sheet Design	
1.20	34	34 🔸	
1.35	37	38 🔸	
1.70	55	55 🔸	

Formatted: Normal (Web), Pattern: Clear (Custom Color(RGB(250,250,250)))

Formatted: Normal (Web), Adjust space between Latin and Asian text, Adjust space between Asian text and numbers, Pattern: Clear (Custom Color(RGB(250,250,250)))

Formatted: Justified

Formatted: Normal (Web), Justified, Adjust space between Latin and Asian text, Adjust space between Asian text and numbers, Pattern: Clear (Custom Color(RGB(250,250,250)))

Formatted: Normal (Web), Justified, Space After: 0 pt, Line spacing: single, Pattern: Clear (Custom Color(RGB(250,250,250)))

Formatted: Normal (Web), Justified, Space After: 0 pt, Line spacing: single, Pattern: Clear (Custom Color(RGB(250,250,250)))

Formatted: Normal (Web), Justified, Space After: 0 pt, Line spacing: single, Pattern: Clear (Custom Color(RGB(250,250,250)))

Formatted: Normal (Web), Justified, Space After: 0 pt, Line spacing: single, Pattern: Clear (Custom Color(RGB(250,250,250)))

Formatted: Normal (Web), Justified, Space After: 0 pt, Line spacing: single, Pattern: Clear (Custom Color(RGB(250,250,250)))

Formatted: Normal (Web), Justified, Space After: 0 pt, Line spacing: single, Pattern: Clear (Custom Color(RGB(250,250,250)))

Formatted: Normal (Web), Justified, Space After: 0 pt, Line spacing: single, Pattern: Clear (Custom Color(RGB(250,250,250)))

Formatted: Normal (Web), Justified, Space After: 0 pt, Line spacing: single, Pattern: Clear (Custom Color(RGB(250,250,250)))

Formatted: Normal (Web), Adjust space between Latin and Asian text, Adjust space between Asian text and numbers, Pattern: Clear (Custom Color(RGB(250,250,250)))

Formatted: Justified

Formatted

m.

Formatted: Normal (Web), Justified, Adjust space between Latin and Asian text, Adjust space between Asian text and numbers, Pattern: Clear (Custom Color(RGB(250,250,250)))

Formatted: Normal (Web), Justified, Space After: 0 pt, Line spacing: single, Pattern: Clear (Custom Color(RGB(250,250,250)))

Formatted: Normal (Web), Justified, Space After: 0 pt, Line spacing: single, Pattern: Clear (Custom Color(RGB(250,250,250)))

... [1]

1.80	59	59	4
2.00	66	66	•
3.00	93	93	▲ ``
4.50	120	119	• ` .
10.00	174	174	

Table 8. Existing and spread sheets design for laterals spacing [Drain Depth (D_d) = 1.4 m & Elevation of water table midway between drains (h) = 0.3 m]-

Donth of Importantial Over (D) m	Laterals Spacing, m			
Depth of Impermeable Layer (D _I), m	Existing Design	Spread Sheet Design		
1.70	46	46 🔸		
1.80	50	51 * 🔸		
2.00	59	59 🔸		
3.00	88	88 🔸		
4.50	116	116 🔹		
10.00	172	172 * 🔸		

As shown in table 6, eight different laterals spacing designs are calculated according to the data of Mit Kenana area. Similarly, table 7 includes eight different laterals spacing designs. Finally, table 8 contains six different laterals spacing designs. From these results, it can be seen that both existing design and spread sheets designare almost identical with negligible differences in limited designs.

7. CONCLUSIONS

Laterals spacing design for steady state subsurface drainage systems employing spread sheets is efficient, accurate, quick, easy and simple. It can be widely used to get the required spacing between the laterals (field drains). Applying this technique on Mit Kenana area in Egypt obtained almost identical results compared with the existing design. This technique can be applied to get the laterals spacing design guickly and accurately. It can be also used to obtain efficiently the equivalent depth for steady state subsurface drainage systems.

8. REFERENCES

[1] United States Department of Agriculture (USDA), Natural Resources Conservation Service (NRCS), 2011. "Engineering Field Handbook (EFH)". NOTICE 210-WI-121.

[2] McCarty, L.B., Hubbard Jr., L. R. and Quisenberry, V., 2016. "Applied Soil Physical Properties, Drainage, and Irrigation Strategies". Springer International Publishing, Switzerland, 73-137.

[3] Nijland, H.J., Croon F.W. and Ritzema, H.P., 2005. "Subsurface Drainage Practices: Guidelines for the implementation, operation and maintenance of subsurface pipe drainage systems". Wageningen, Alterra, ILRI Publication no. 60, pp. 608.

[4] Ritzema, H.P., 1994. "Subsurface flow to drains". Wageningen, Alterra, The Netherlands, 236-304.

[5] Indian Council of Agricultural Research,

www.ecoursesonline.iasri.res.in/mod/page/view.php?id=124524, 31/1/2017.

[6] Smedema, L.K. and Rycroft, D.W., 1983. "Land Drainage: Planning and design of agricultural drainage systems". Cornell University Press, New York, 376 pages.

[7] Chieng, S.T., R.S. Broughton, and S.R. Ami, 1981. "Graphical Solutions to Drainage Equations". Canadian Agricultural Engineering, Volume 23, No 2, 91-96.

Formatted: Normal (Web), Justified, Space After: 0 pt, Line spacing: single, Pattern: Clear (Custom Color(RGB(250,250,250)))

Formatted: Normal (Web), Justified, Space After: 0 pt, Line spacing: single, Pattern: Clear (Custom Color(RGB(250,250,250)))

Formatted: Normal (Web), Justified, Space After: 0 pt, Line spacing: single, Pattern: Clear (Custom Color(RGB(250,250,250)))

Formatted: Normal (Web), Justified, Space After: 0 pt, Line spacing: single, Pattern: Clear (Custom Color(RGB(250,250,250)))

Formatted: Normal (Web), Justified, Space After: 0 pt, Line spacing: single, Pattern: Clear (Custom Color(RGB(250,250,250)))

Formatted: Normal (Web), Adjust space between Latin and Asian text, Adjust space between Asian text and numbers, Pattern: Clear (Custom Color(RGB(250,250,250)))

Formatted: Justified

Formatted: Normal (Web), Justified, Adjust space between Latin and Asian text, Adjust space between Asian text and numbers, Pattern: Clear (Custom Color(RGB(250,250,250)))

Formatted: Normal (Web), Justified, Space After: 0 pt, Line spacing: single, Pattern: Clear (Custom Color(RGB(250,250,250)))

Formatted: Normal (Web), Justified, Space After: 0 pt, Line spacing: single, Pattern: Clear (Custom Color(RGB(250,250,250)))

Formatted: Normal (Web), Justified, Space After: 0 pt, Line spacing: single, Pattern: Clear (Custom Color(RGB(250,250,250)))

Formatted: Normal (Web), Justified, Space After: 0 pt, Line spacing: single, Pattern: Clear (Custom Color(RGB(250,250,250)))

Formatted: Normal (Web), Justified, Space After: 0 pt, Line spacing: single, Pattern: Clear (Custom Color(RGB(250,250,250)))

Formatted: Normal (Web), Justified, Space After: 0 pt, Line spacing: single, Pattern: Clear (Custom Color(RGB(250,250,250)))

Formatted: Normal (Web), Adjust space between Latin and Asian text, Adjust space between Asian text and numbers, Pattern: Clear (Custom Color(RGB(250,250,250)))

Formatted: Normal (Web), Pattern: Clear (Custom Color(RGB(250,250,250)))

Formatted: Normal (Web), Adjust space between Latin and Asian text, Adjust space between Asian text and numbers, Pattern: Clear (Custom Color(RGB(250,250,250)))

[8] G. C. Mishra and Vivekanand Singh, 2007. "A new drain spacing formula". Hydrological Sciences Journal, 52:2, 338-351, DOI: 10.1623/hysj.52.2.338

[9] Alaa Nabil El-Hazek, 2012. "Best Hydraulic Sections for Open Channels employing Spread Sheets." VII – International Conference on Environmental Hydrology with 1st Symposium on Environmental Impacts on the Nile Water Resources, Cairo, Egypt.

[10] Ritzema, H.P., 2007. "Performance Assessment of Subsurface Drainage Systems – Case Studies from Egypt and Pakistan". Wageningen, Alterra, The Netherlands, 137pp. [11] Drainage Research Institute, WRC, Ministry of Water Resources and Irrigation, Egypt, and Directorate General for International Cooperation, Ministry of Foreign Affairs, Netherlands, 1992. "Subsurface Drainage System Design Mit Kenana Pilot Area". Technical Report No. 72.

[12] Abdel-Dayem, S. and Ritzema, H.P., 1990. "Verification of Drainage Design Criteria in the Nile Delta, Egypt". Irrigation and Drainage Systems 4: 117-131. **Formatted:** Normal (Web), Pattern: Clear (Custom Color(RGB(250,250,250)))

Formatted: Normal (Web), Justified, Adjust space between Latin and Asian text, Adjust space between Asian text and numbers, Pattern: Clear (Custom Color(RGB(250,250,250)))

Comment [DMO7]: These deleted portions could be part of the INTRODUCTION and also the RESULTS AND DISCUSSION

Page 19: [1] Formatted

мо

12-May-17 5:00:00 PM

Normal (Web), Justified, Space After: 0 pt, Line spacing: single, Pattern: Clear (Custom Color(RGB(250,250,250)))