Original Research Article

Spread Sheets for Laterals Spacing Design, With an Application on Mit Kenana Area in Egypt

6 **ABSTRACT**

8 In this paper, Microsoft spread sheet software Excel is employed to get the laterals spacing design of steady state 9 subsurface drainage systems. The most suitable and popular Hooghoudt equation is used to get the spacing L, 10 including the equivalent depth. Given data are depth to the impermeable layer, radius of the pipe lateral, hydraulic 11 conductivities of the soil above and below drain level, elevation of the water table midway between the drains, and 12 drainage rate. Then, the lateral spacing L is assumed. Calculations are done through the spread sheet and the final 13 result of L is obtained. Check for the obtained L is established with respect to the assumed value. Also, another 14 check is employed for the equivalent depth d_e .

Mit Kenana area, 40 km North of Cairo, represents the eastern fringes of the Nile Delta in Egypt. Existing design of
 Mit Kenana area is reviewed. Then spread sheets are employed to obtain laterals spacing, which is referred to as
 spread sheet design. Identical results are accomplished compared with the existing design.

18 It is concluded that laterals spacing design for steady state subsurface drainage systems employing spread sheets is
 19 efficient, accurate, quick, easy and simple.

20

1

2

3

4

5

7

21 *Keywords:* spread sheets, subsurface drainage, steady state, laterals, equivalent depth.

22 23 1. INTRODUCTION

24

Agricultural drainage is defined as the removal of excess gravitational water from agricultural lands for crop production purposes. Agricultural drainage is generally divided into two categories, surface drainage and subsurface drainage. Surface drainage removes water from the soil surface by promoting gravitational flow overland and through channels to be collected and conveyed to an outlet. Subsurface drainage removes excess soil water to gravity or a pumped outlet, [1].

Water available to plants is held in soil by capillarity, while excess water flows by gravity into drains. For subsurface drainage, laterals (field drains) are used to control the depth of the water table in the root zone by removing excess groundwater, [2].

For cropped irrigated and rainfed lands of the world, only about 14% is provided by some type of drainage. About
300 million ha, mainly in the arid and tropical humid zones of the developing countries, needs artificial drainage.
Till the year 2030, drainage should be improved in at least 10 -15 million ha, which might require investing at least
€ 750 million annually. It is expected that one third of this area will be provided with subsurface drainage systems,
[3].

38

2. LATERALS SPACING DESIGN OF STEADY STATE SUBSURFACE DRAINAGE SYSTEMS 40

The movement of water into the drains is mainly affected by the hydraulic conductivity of the soil and drain spacing,
depth, and size. Hooghoudt equation, as shown in figure 1, [4], is still the most suitable and popular equation for
drainage design.

For steady state condition, the rate of recharge to the aquifer is assumed to be steady and equals the discharge of the drain. So, the water table position does not change as long as the recharge continues, [5].

47	$Q L^2 = 8 K_b (D_i - D_d) (D_d - D_w) + 4 K_a (D_d - D_w)^2$	(1)
48		

49	Where:	
50	Q	= steady state drainage discharge rate (m/day)
51	L	= spacing between the drains (m)
52	K _b	= hydraulic conductivity of the soil below drain level (m/day)
53	d _e	= equivalent depth, a function of L, (D_i-D_d) , and r
54	Di	= depth of the impermeable layer below drain level (m)
55	D_d	= depth of the drains (m)
56	D_w	= steady state depth of the water table midway between the drains
57	Ka	= hydraulic conductivity of the soil above drain level (m/day)
50	r	- drain radius (m)

 $\begin{array}{l} 58 \quad r_0 \qquad = \text{drain radius (m)} \\ 59 \end{array}$

(m)

Fig. 1. Hooghoudt equation

For account for the extra head loss due to radial flow to the drains, two simplifications were followed in Hooghoudt theory. The first was assuming an imaginary impervious layer above the real one, which decreases the thickness of the layer through which the water flows towards the drains. The second was treating horizontal and radial flow to drains as an equivalent flow to imaginary ditches with their bottoms on an imaginary impervious layer at a reduced depth. In other words, the equivalent depth (d_e) represents an imaginary thinner soil layer through which the same amount of water will flow horizontally per unit time as in the actual situation. In equation 1, replacing the term (D_i -D_d) by (d_e),

71
72
$$QL^2 = 8 K_b d_e (D_d - D_w) + 4 K_a (D_d - D_w)^2$$
(2)

74 To determine the equivalent depth, a relationship was derived by Hooghoudt between the equivalent depth (d_e) , the 75 spacing (L), the depth to the impervious layer $(D_i - D_d)$, and the radius of the drain (r_0) . To simplify this relationship, 76 tables were established for the most common sizes of drain pipes, from which the equivalent depth (d_e) can be 77 attained.

Final Exact solutions for the equivalent depth required for Hooghoudt equation can be calculated from the following two equations, [6], where $D = (D_i - D_d)$.

80

73

81 For D<L/4, $d = \frac{D}{\frac{8D}{\pi L} \ln \frac{D}{\pi r_0} + 1}$ (3)

82
83 For D>L/4,
$$d = \frac{\pi L}{8 \ln \frac{L}{\pi r_0}}$$
(4)

Many attempts were done to calculate the equivalent depth in order to get the laterals spacing for the subsurface
drainage systems. Chieng et al, [7], introduced some graphs for the equivalent depth versus the depth to
impermeable layer for a range of pipe sizes and spacing between laterals.

88 A drain spacing formula has been derived considering the variation in flow and the area above the drain level in the 89 radial flow zone, [8]. The extent of radial flow zone is found to be $2/\pi$ times the thickness of soil layer below the 90 drains. Hooghoudt equation based on equivalent depth is accurate enough to be used for drain spacing, but the

91 computed water surface profile in the radial flow zone differs considerably from that computed by the new method.

9293 3. SPREAD SHEETS FOR LATERALS SPACING DESIGN OF STEADY STATE SUBSURFACE

94 DRAINAGE SYSTEMS

95

96 Spread sheets are efficient, accurate, and simple way that can be applied to solve many issues in hydraulics and 97 water resources. For instance, Microsoft Excel software, as a common popular spread sheet, was employed to get the 98 best hydraulic trapezoidal sections for open channels with different side slopes, [9]. Also, an additional solution was 99 obtained concerning the velocity of water through the trapezoidal best hydraulic sections.

100 In this paper, Microsoft spread sheet software Excel is employed to get the laterals spacing design of steady state 101 subsurface drainage systems. Equation 2 is used to get the spacing L, substituting by equation 3 to obtain the 102 equivalent depth.

- 103 As shown in figure 2, given data are D, r_0 , K_a , K_b , h and Q, where:
- 104 D: depth to the impermeable layer, $(D_i D_d)$, m
- 105 r_0 : radius of the pipe lateral, m
- 106 K_a: hydraulic conductivity of the soil above drain level, m/day
- 107 K_b: hydraulic conductivity of the soil below drain level, m/day
- 108 h: elevation of the water table midway between the drains, $(D_d D_w)$, m
- 109 Q: drainage rate, m/day

110 Then, the lateral spacing L is assumed. Calculations are done through the spread sheet and the final result of L is 111 obtained. Check for the obtained L is established with respect to the assumed value. Also, another check is 112 employed for the equivalent depth d_e , where D/L < 0.25 as stated in equation 3.

For the case shown in figure 2, the depth to impermeable layer is 2.5 m, the lateral pipe radius is 0.1 m, hydraulic conductivities of the soil above and below drain level are the same with the value of 1 m/day, elevation of the water table midway between the drains is 0.2 m, and drainage rate is 0.001 m/day.

116 It is assumed first that the lateral spacing is 50 m. Then calculations through the spread sheet obtain a value of 58.29

117 m for L with 16.5% difference with respect to the assumed value. Other values are assumed for L till difference with

respect to the assumed value becomes close to zero. Thus the required spacing is 59 m with only 0.19% difference

with respect to the assumed value. Also the check for d_e is satisfied, where the value of D/L is less than 0.25.

	D, m	2.5	2.5	2.5	2.5	2.5
	r ₀ , m	0.1	0.1	0.1	0.1	0.1
ven	K _a , m/day	1	1	1	1	1
Gi	К _b , m/day	1	1	1	1	1
	h, m	0.2	0.2	0.2	0.2	0.2
	Q, m/day	0.001	0.001	0.001	0.001	0.001
Assumed	Lassumed, m	50	55	58	59	60
		25	25	25	25	25
_		3.218875	3.218875	3.218875	3.218875	3.218875
ated		8.208133	8.208133	8.208133	8.208133	8.208133
culź		4.708133	4.708133	4.708133	4.708133	4.708133
Cal		0.235406	0.214006	0.202936	0.199497	0.196172
		1.235406	1.214006	1.202936	1.199497	1.196172
	d _e , m	2.023625	2.059297	2.078247	2.084206	2.09

	0.16	0.16	0.16	0.16	0.16
	3.237800	3.294876	3.325195	3.334730	3.344000
	3.397800	3.454876	3.485195	3.494730	3.504000
	3397.800	3454.876	3485.195	3494.730	3504.000
L, m	58.2906	58.77819	59.03554	59.11624	59.19459
Check L	16.5813	6.869449	1.785421	0.197028	-1.34234
Check de	0.05	0.045454	0.043103	0.042372	0.041666
Lassumed)/Lassu	med)*100			Check de:	D/L < 0.25
	L, m Check L Check de Lassumed)/Lassu	0.16 3.237800 3.397800 3397.800 L, m 58.2906 Check L 16.5813 Check de 0.05 Lassumed)/Lassumed)*100	0.16 0.16 3.237800 3.294876 3.397800 3.454876 3397.800 3454.876 3397.800 3454.876 L, m 58.2906 58.77819 Check L 16.5813 6.869449 Check de 0.05 0.045454	0.16 0.16 0.16 3.237800 3.294876 3.325195 3.397800 3.454876 3.485195 3397.800 3454.876 3485.195 3397.800 3454.876 3485.195 L, m 58.2906 58.77819 59.03554 Check L 16.5813 6.869449 1.785421 Check de 0.05 0.045454 0.043103 Lassumed)/Lassumed)*100 100 100 100	0.16 0.16 0.16 0.16 0.16 3.237800 3.294876 3.325195 3.334730 3.397800 3.454876 3.485195 3.494730 3397.800 3454.876 3485.195 3494730 3397.800 3454.876 3485.195 3494.730 L, m 58.2906 58.77819 59.03554 59.11624 Check L 16.5813 6.869449 1.785421 0.197028 Check de 0.05 0.045454 0.043103 0.042372

121 122

Fig. 2. Spread sheet for laterals spacing design of steady state subsurface drainage systems

123

4. MIT KENANA AREA IN EGYPT

In Egypt, 100% of cropped area is irrigated, while 88% of this area is drained, [10]. Annually, about 63,000 ha are
 provided by new subsurface drainage systems while old drainage systems are rehabilitated in about 12,600 ha. A
 scheme of the employed subsurface drainage systems in Egypt is shown in figure 3.

129

130 131

132

133

Fig. 3. Scheme of subsurface drainage systems in Egypt

Mit Kenana area is located about 40 km North of Cairo, [11], and it represents the eastern fringes of the Nile Delta. It is 830 feddan (350 ha), with a main irrigation and drainage infrastructure, as shown in figure 4. The soils in the area consist of three layers. The third layer is considered impermeable layer as it has a hydraulic conductivity less than one tenth of that of the second layer. The hydraulic conductivity of the two upper layers is constant through the area with a value of 3 m/day.

140 141

Fig. 4. Mit Kenana area in Egypt

142 143

The area is divided into sectors according to the depth to the impermeable layer (D_i) , as shown in figure 4. The drain depth (D_d) is 1.2 m in a major part of the area due to limitations of topography and water level in the open drain. In

- some parts the drain depth has the values of 1.0 m and 1.4 m.
- 147 The values for water table depth (D_w) are 0.8 m, 0.9 m and 1.1 m.
- 148 The drainage rate (Q) is 1.5 mm/day.
- 149 The lateral spacing design is established, [11], and the subsurface drainage system is accomplished for Mit Kenana 150 area. This design is referred to as existing design in this paper.
- For the Nile Delta in Egypt, including Mit Kenana area, the water table depth of 0.8 m achieves good conditions for the cultivated crops, [12]. Also, the drainage rate of 1.2 mm/day is acceptable.

154 5. SPREAD SHEETS FOR LATERALS SPACING DESIGN OF MIT KENANA AREA IN 155 EGYPT

156

153

157 Existing design of Mit Kenana area is reviewed according to the divided sectors and the design data shown in the 158 previous item. Then spread sheets are employed to obtain laterals spacing, which is referred to as spread sheet 159 design. Both existing design and spread sheet design are tabulated in table 1.

160 The data of the area implied twenty two different laterals spacing designs as shown in the table. Three spread sheet 161 designs are shown in figures 5, 6, and 7 as samples. It is obvious that both existing design and spread sheet design 162 are approximately identical with negligible differences in limited designs.

- 163
- 164 165

Table 1. Existing and spread sheet designs for laterals spacing

	Drain Depth, m						
	1.	00	1.2	20	1.4	0	
Depth	Elevation of the water table midway between the drains, m						
to	0.2		0.	0.3		3	
Impermeable Layer, m	Impermeable Layer, m		Laterals Spacing, m				
	Existing Design	Spread Sheet Design	Existing Design	Spread Sheet Design	Existing Design	Spread Sheet Design	
1 20	30	31					
1.20			34	34			
1 35	37	37					
1.33			37	38			
1.70	50	50 *					

			55	55		
					46	46
	52	52				
1.80			59	59		
					50	51 *
	58	58				
2.00			66	66		
					59	59
	77	77				
3.00			93	93		
					88	88
	97	97				
4.50			120	119		
					116	116
	137	137				
10.00			174	174		
					172	172 *

* Spread sheets that obtained these results are shown in figures 5, 6 and 7

	D , m	0.7	0.7	0.7	0.7	
	r ₀ , m	0.1	0.1	0.1	0.1	
ven	K _a , m/day	3	3	3	3	
Ü	K _b , m/day	3	3	3	3	
	h, m	0.2	0.2	0.2	0.2	
	Q, m/day	0.0015	0.0015	0.0015	0.0015	
Assumed	Lassumed, m	30	49	50	51	
		7	7	7	7	
		1.9459101	1.9459101	1.9459101	1.9459101	
		4.9620709	4.9620709	4.9620709	4.9620709	
_		1.4620709	1.4620709	1.4620709	1.4620709	
ated		0.034115	0.0208867	0.020469	0.0200676	
cula	-	1.034115	1.0208867	1.020469	1.0200676	
Cal	d _e , m	0.6769073	0.6856784	0.6859591	0.686229	
		0.48	0.48	0.48	0.48	
		3.2491551	3.2912564	3.2926037	3.2938992	
		3.7291551	3.7712564	3.7726037	3.7738992	
	-	2486.1034	2514.171	2515.0691	2515.9328	
lts	L, m	49.86084	50.141509	50.150465	50.159075	
tesu	Check L	66.202801	2.3296107	0.3009301	-1.6488724	
R	Check de	0.0233333	0.0142857	0.014	0.0137255	
Check $L = (($	L-Lassumed)/Lassu	med)*100			Check de: D/L <).25

Fig. 5. Spread sheet design, depth to impermeable layer is 1.7 m, drain depth is 1.0 m, and elevation of the water table midway between the drains is 0.2 m

	D , m	0.4	0.4	0.4
Given	r ₀ , m	0.1	0.1	0.1
	K _a , m/day	3	3	3
	K _b , m/day	3	3	3
	h, m	0.3	0.3	0.3
	Q, m/day	0.0015	0.0015	0.0015
Assumed	Lassumed, m	50	51	52
		4	4	4
ited		1.3862944	1.3862944	1.3862944
		3.5350506	3.5350506	3.5350506
		0.0350506	0.0350506	0.0350506
		0.0002804	0.0002749	0.0002696
lcula		1.0002804	1.0002749	1.0002696
Cal	d _e , m	0.3998879	0.3998901	0.3998922
		1.08	1.08	1.08
		2.8791927	2.8792085	2.8792237
		3.9591927	3.9592085	3.9592237
		2639.4618	2639.4723	2639.4825
Its	L, m	51.375692	51.375795	51.375894
kesu	Check L	2.7513849	0.7368532	-1.2002041
H	Check de	0.008	0.0078431	0.0076923
Check L = ((L-Lassumed)/Lassu	umed)*100		Check de: D/L

172 Fig. 6. Spread sheet design, depth to impermeable layer is 1.8 m, drain depth is 1.4 m, and elevation of the water table midway between the drains is 0.3 m 173

	D, m	8.6	8.6	8.6	8.6
	r ₀ , m	0.1	0.1	0.1	0.1
ven	K _a , m/day	3	3	3	3
Ü	K _b , m/day	3	3	3	3
	h, m	0.3	0.3	0.3	0.3
	Q , m/day	0.0015	0.0015	0.0015	0.0015
Assumed	Lassumed, m	90	155	172	173
		0.3142857	0.3142857	0.3142857	0.3142857
		27.363636	27.363636	27.363636	27.363636
ed		3.309215	3.309215	3.309215	3.309215
ılat		0.2432323	0.1412317	0.1272727	0.126537
alcı		0.8049081	0.467366	0.4211728	0.4187383
C		1.8049081	1.467366	1.4211728	1.4187383
	d _e , m	4.7647857	5.8608419	6.0513401	6.061724
		1.08	1.08	1.08	1.08

esults	L, m Check L	34.306457 35.386457 23590.971 153.59353 70.659473	42.198062 43.278062 28852.041 169.85889 9.5863784	43.569648 44.649648 29766.432 172.52951 0.3078554	43.644413 44.724413 29816.275 172.6739 -0.1884978
$\mathbf{\tilde{z}}$	Check de	0.095556	0.055484	0.05	0.049711 Check de: D/L

- 175
- 176 177
- 170
- 178

3

179 **6. CONCLUSIONS**

180

181 It is concluded that laterals spacing design for steady state subsurface drainage systems employing spread sheets is 182 efficient, accurate, quick, easy and simple. It can be widely used to get the required spacing between the laterals 183 (field drains). Applying this technique on Mit Kenana area in Egypt obtained identical results compared with the 184 existing design. This technique can be applied to get the laterals spacing design quickly and accurately. It can be 185 also used to obtain efficiently the equivalent depth for steady state subsurface drainage systems.

Fig. 7. Spread sheet design, depth to impermeable layer is 10.0 m, drain depth is 1.4 m, and elevation of the water table midway between the drains is 0.3 m

187 **7. REFERENCES**

188

186

[1] USDA Natural Resources Conservation Service, 2011. WI 650.1905 Scope and Effect Equations, EFH NOTICE
 210-WI-121.

[2] L.B. McCarty et al., 2016, Applied Soil Physical Properties, Drainage, and Irrigation Strategies, Springer
 International Publishing Switzerland DOI 10.1007/978-3-319-24226-2_2

- [3] Nijland, H.J., F.W. Croon and H.P. Ritzema, 2005. Subsurface Drainage Practices: Guidelines for the
 implementation, operation and maintenance of subsurface pipe drainage systems. Wageningen, Alterra, ILRI
 Publication no. 60, pp. 608.
- 196 [4] www.en.wikipedia.org/wiki/Drainage_equation
- 197 [5] www.ecoursesonline.iasri.res.in/mod/page/view.php?id=124524
- 198 [6] Smedema, L.K. and Rycroft, D.W. 1983. "Land Drainage: Planning and design of agricultural drainage
 199 systems". Cornell University Press, New York, 376 pages.
- [7] Chieng, S.T., R.S. Broughton, and S.R. Ami, 1981. "Graphical Solutions to Drainage Equations". Canadian
 Agricultural Engineering, Volume 23, No 2, 91-96.
- [8] G. C. Mishra and V. Singh, 2007. "A new drain spacing formula". Hydrological Sciences Journal, 52:2, 338-351,
 DOI: 10.1623/hysj.52.2.338
- 204 [9] El-Hazek, A. N. (2012). "Best Hydraulic Sections for Open Channels employing Spread Sheets." VII –
- International Conference on Environmental Hydrology with 1st Symposium on Environmental Impacts on the Nile
 Water Resources, Cairo, Egypt.
- [10] Ritzema, H.P., 2007. "Performance Assessment of Subsurface Drainage Systems Case Studies from Egypt
 and Pakistan". Wageningen, Alterra, The Netherlands, 137pp.
- 209 [11] Drainage Research Institute, WRC, Ministry of Water Resources and Irrigation, Egypt, and Directorate General
- 210 for International Cooperation, Ministry of Foreign Affairs, Netherlands, 1992. "Subsurface Drainage System Design
- 211 Mit Kenana Pilot Area". Technical Report No. 72.
- [12] S. Abdel-Dayem and H.P. Ritzema, 1990. "Verification of Drainage Design Criteria in the Nile Delta, Egypt".
- **213** Irrigation and Drainage Systems 4: 117-131.