Original Research Article

2

1

- Intercharacter correlation between budding success
- in Hevea brasiliensis Muell. Arg. and seven weather

5 characters

ABSTRACT

7

Aim: To evaluate the relationship between budding success and weather factors

Place and Duration of Study: Nursery site of the Rubber Research Institute of Nigeria, Benin City, Nigeria for three years.

Methodology: Seven weather characters were evaluated for correlation with budding success in Rubber Research Institute of Nigeria, Benin City, Nigeria. The seven weather characters were rainfall, relative humidity (RH) at 0900hrs and 1500hrs, minimum and maximum temperature, evaporation and radiation. Budding was carried out in the rootstock nursery and data on budding success was recorded over a period of six months for three consecutive years. Data for the corresponding six months was collated and for three years. Intercharacter correlation was calculated for budding success and the seven weather characters. The t-test was applied to test significance of the correlation coefficients.

Results: There was positive correlation between budding success and relative humidity at 0.74 to 0.82, while correlation between budding success was negatively correlated with evaporation at -0.83 to -0.88. Correlation between budding success and radiation was also negative at -0.77. Each significant weather character was significant in correlation with temperature. In this case, relative humidity was negatively correlated with temperature at -0.79 to -0.99. Correlation between evaporation and temperature was positive at 0.81 to 0.98 and radiation had significant positive correlation with temperature at 0.81 to 0.98.

Conclusion: The significant correlation coefficients between budding success and three weather characters suggest influence of climate change on budding success for production of planting materials of *Hevea brasiliensis*. This is an indication of appropriate location considerations for nursery facilities in order to enhance budding success. Path analysis to detect direct and indirect effects of the

significant weather factors on budding success will be evaluated in further study.

Keywords: Hevea, weather, budding, correlation, nursery, planting materials

1. INTRODUCTION

Hevea brasiliensis is valued for the natural rubber and it is the major source of natural elastomer world wide. It is an economic crop in many tropical countries such as Nigeria, Cote d'Ivoire, Cameroun and Liberia in West Africa, India, Thailand, Malaysia and China in Asia. H. brasiliensis produces viable seeds, yet it is propagated as budded material because of the heterozygosity [1]. The rubber tree is an outcrossing plant and hence undergoes segregation to produce seeds. The implication is that the seeds produced will be different from the mother tree genetically. In order to preserve the genetic integrity of the improved genetic materials, budding is practiced.

Climate change is a common phenomenon all over the world and there is noticeable change in weather pattern affecting a number of agricultural practices and hence models such as ecosystem based management and climate smart agriculture have been recommended [2, 3]. Budding success is liable to effect of climate change and this affects the production and availability of planting materials for farmers. This is more relevant as the bulk of farm activities in developing countries is nature dependent. The challenge caused by influence of climate change on budding success is therefore the bases of this study. The objective is to evaluate the response of budding success to six weather characters.

2. MATERIAL AND METHODS

2.1 Study site and data collection

The study was conducted at the nursery of the Rubber Research Institute of Nigeria, Iyanomo, Benin City. Budding was carried out and record of budding success was taken as described by Oghide [4]. Budding was in seven months from April to October each year. There was weather data collection for corresponding months as recorded by the Federal Department of Meteorological Services, Lagos, Nigeria. The weather characters were rainfall, minimum and maximum temperature, relative humidity at 0900hr and 1500hr, evaporation and radiation. The study was carried out in three consecutive years.

2.2 Analysis

Correlation between budding success and each weather character was calculated in each year and for combined data. The T-test of significant correlation was applied.

3. RESULTS AND DISCUSSION

Intercharacter correlation coefficients among budding success and the six weather characters are presented in Tables 1 - 4 for the various years and combined data. There was significant variation for correlation between budding success and relative humidity, evaporation and radiation (Tables 1 and 4). In a study conducted by Omokhafe and Emuedo [5], relative humidity was a critical factor affecting latex yield in *Hevea brasiliensis*. There was positive correlation between budding success and relative humidity at 0.74 to 0.82 (Table 1) and this is an indication of high budding success with increasing relative humidity. This justifies concentration of budding activities during the period of high humidity from April to September in many rubber producing countries. Budding during the period of low humidity is often with supplementary water such as irrigation [6].

Table 1. Correlation coefficient of % budding success with weather characters in year I

Weather	% Budding		Min.	Max.	Rh	Rh	
factor	Success	Rainfall	Temp.	Temp.	0900hrs	1500hrs	Evaporation
Rainfall	0.39						
Min. Temp	-0.63	-0.41					
Max. Temp	-0.69	-0.58	0.69				
Rh 0900 hrs	0.74*	0.49	-0.90*	-0.91*			
Rh 1500 hrs	0.82*	0.66	-0.85*	-0.91*	0.96*		
Evaporation	-0.88*	-0.59	0.87*	0.84*	0.09	-0.96*	
Radiation	-0.77 *	-0.64	0.85*	0.94*	-0.95*	-0.98*	0.93*

^{*:} Correlation coefficients are significant at P = .05

Budding success was negatively correlated with evaporation at -0.83 to -0.88 (Tables 1 and 4). There was significant relationship between evaporation and relative humidity at correlation of -0.91 to -0.98 (Tables 1, 2 and 4). This suggests high evaporation will be accompanied by low relative humidity which can lead to desiccation/dryness of the budding union of scion and rootstock and hence low

70

71

72

73

74

75

76

77

78

budding success. This negative impact of evaporation on budding success was reported by Singh etal [7].

68 Table 2. Correlation coefficient of % budding success with weather characters in year II

Weather	% Budding		Min.	Max.	Rh	Rh	
factor	Success	Rainfall	Temp.	Temp.	0900hrs	1500hrs	Evaporation
Rainfall	0.02						
Min. Temp	-0.55	0.07					
Max. Temp	-0.23	-0.1	0.91*				
Rh 0900hrs	0.35	0.26	-0.84*	-0.94*			
Rh 1500hrs	0.16	0.31	-0.83*	-0.97*	0.90*		
Evaporation	-0.29	-0.25	0.87*	0.98*	-0.98*	-0.97*	
Radiation	-0.01	-0.1	0.81*	0.98*	-0.90*	-0.95*	0.94*

^{*:} Correlation coefficients are significant at P = 0.05

Radiation is a critical primary factor resulting in climate change [8]. According to Hartl-Meier et al [9], increased radiation induces warmer and dryer ecosystem and this can adversely affect plants especially a grafted system. This is evident in this study with significant negative correlation between budding success and radiation at -0.77 (Table 1). In addition, radiation was negatively correlated with relative humidity at -0.90 to -0.99 (Tables 1 - 4). The relationship between radiation and temperature was positive at 0.81 to 0.98 (Tables 1 - 4). The indirect effects of temperature and relative humidity operating through radiation will be further investigated using path analysis as proposed by Omokhafe and Emuedo [10].

Table 3. Correlation coefficient of % budding success with weather characters in year III

Weather	% Budding		Min.	Max.	Rh	Rh	
factor	Success	Rainfall	Temp.	Temp.	0900hrs	1500hrs	Evaporation
Rainfall	-0.12						
Min. Temp	-0.35	-0.25					
Max. Temp	-0.57	0.61	0.78*				
Rh 0900hrs	0.27	-0.65	-0.52	-0.93*			
Rh 1500hrs	0.22	-0.22	-0.79*	-0.98*	0.86*		
Evaporation	-0.71	0.42	0.60	0.81*	-0.76	-0.72	

Radiation	-0.35	0.48	0.59	0.95*	-0.92*	-0.13	0.82*	

*: Correlation coefficients are significant at P = 0.05

Among other weather factors, relative humidity was negatively correlated with temperature at -0.79 to -0.99 (Tables 1 - 4). The combined effects of temperature and relative humidity have been reported to affect tolerance of the rubber plant to climate change [11, 12]. This was further expressed as Temperature-Relative humidity index (THI) described by Mu et al. [13] and Meiyappan et al. [14]. The THI will be applied in subsequent study. Correlation between evaporation and temperature was positive at 0.81 to 0.98 (Tables 1 - 4). Radiation had significant positive correlation with temperature at 0.81 to 0.98 (Tables 1 - 4). The consistent relationship between temperature and the first three weather factors (evaporation, relative humidity and radiation) is a reflection of the position of temperature in climate change. The first concern of climate change is global warming and it is measured as change in temperature [15].

Table 4. Correlation coefficient of % budding success with weather characters across the three years

Weather	% Budding		Min.	Max.	Rh	Rh	
factor	Success	Rainfall	Temp.	Temp.	0900hrs	1500hrs	Evaporation
Rainfall	0.42						
Min. Temp	-0.69	-0.76*					
Max. Temp	-0.63	-0.69	0.91*				
Rh 0900hrs	0.64	0.64	-0.90*	-0.99*			
Rh 1500hrs	0.59	0.81*	-0.94*	-0.98*	0.96*		
Evaporation	-0.83*	-0.77*	0.96*	0.93*	-0.92*	-0.91*	
Radiation	-0.64	-0.65	0.93*	0.97*	-0.95*	-0.99*	0.89*

^{*:} Correlation coefficients are significant at P = 0.05

4. CONCLUSION

There was a significant relationship between budding success and each of evaporation, relative humidity and radiation. These three weather characters had significant correlation with temperature. These results suggest appropriate cultural practices to avoid or minimise the hazards of climate

102	chan	ge on production of planting materials of Hevea brasiliensis. This will be enhanced by better				
103	understanding of the indirect effects of temperature either through THI or path analysis.					
104 105	REF	ERENCES				
106 107	1.	Soman TA, Mydin KK, Jacob, J. Root trainer planting technique for <i>Hevea</i> – A review. Rubber				
108		Sci., 2013; 26: 175 – 187.				
109 110	2.	Barrow E, Moiseev A, Raza A. Learning framework for IUCN's work on EbA (Ecosystem Based				
111		Adaptation). International Union for Conservation of Nature, 2013; 2p.				
112 113	3.	FAO Climate smart agriculture source book. Food and Agricultural Organisation of the United				
114		Nations, 2013; 570p.				
115 116	4.	Oghide A. Rubber nursery establishment. Rubber value chain training on nursery				
117		establishment, budding, rubber based intercropping, mixed farming, tapping, nursery operators				
118		and processor. Rubber Research Institute of Nigeria, Benin City, Nigeria. 2016; 10p.				
119 120	5.	Omokhafe KO, Emuedo OA. Evaluation of influence of five weather characters on latex yield in				
121		Hevea brasiliensis. International Journal of Agricultural Research, 2006a; 1: 234 – 239.				
122 123	6.	Omokhafe KO, Oghide A, Imoren EA. Investment opportunities in the upstream sector of the				
124		natural rubber industry. Third Palm Oil, Rubber and Cocoa Conference, Labadi Beach Hotel,				
125		Accra, Ghana. Organised by Centre for Management Technology, Singapore, 2015; 16p.				
126 127	7.	Singh M, Jacob J, Chandrashekar TR, Annamalainathan K. Performance of rubber plantation				
128		raised from bud grafted clones and polycross seeds under different moisture regimes in north				
129		Konkan region of Maharashtra. In: RRII (ed.) Climate change and rubber cultivation: R & D				
130		Priorities. Rubber Research Institute of India, Kottayam, Kerala, India, 2010; 111p.				
131 132	8.	Stephens GL, Li J, Wild M, Clayson CA, Loeb N, Kato S, L'Ecuyer T, Stackhouse Jr PW,				
133		Lebsock M, Andrews T. An update on Earth's energy balance in light of the latest global				
134		observations. Nature Geoscience, 2012; 5: 691 – 696.				
135 136	9.	Hartl-Meier C, Dittmar C, Zang C, Rothe A. Mountain forest growth response to climate change				
137		in the Northern Limestone Alps. Trees, 2014; 28:819–829.				

138 10. Omokhafe KO, Emuedo OA. The use of path analysis to facilitate breeding procedure in Hevea 139 brasiliensis. Thirteenth Annual Conference of Genetics Society of Nigeria, National Centre for 140 Genetic Resources and Biotechnology, Ibadan, Nigeria, 2006; pp. 1-3. 141 142 Mathew J, Abraham T, Jose VT, Mondal, GC, Raj S, Sailajadevi T. Prevalence of pests and 11. 143 diseases of Hevea brasiliensis in India - Past and present. In: RRII (ed.) Climate change and 144 rubber cultivation: R & D Priorities. Rubber Research Institute of India, Kottayam, Kerala, India, 145 2010; 111p. 146 147 12. Roy CB, Sailajadevi T, Raj S, Gogoi NK, Mathew J. Fishing for Phytophthora from 148 plantations in Tripura (North East India) - Is climate inimical to the development of 149 Phytophthora in NE India? In: RRII (ed.) Climate change and rubber cultivation: R & D 150 Priorities. Rubber Research Institute of India, Kottayam, Kerala, India, 2010; 111p. 151 152 Mu JE, McCarl, BA, Wein, AM. Adaptation to climate change: changes in farmland use and 13. 153 stocking rate in the U.S. Mitigation Adapt. Strat. Global Change, 2013; 18: 6 154 http://dx.doi.org/10.1007/s11027-012-9384-4 155 156 14. Meiyappan P, Dalton M, O'Neill BC, Jain AK. Spatial modeling of agricultural land use change 157 at global scale. Ecological Modelling, 2014; 291: 152-174. 158 159 15. Hartmann DL., Klein-Tank AMG, Rusticucci M, Alexander LV, Brönnimann S, Charabi, Y, 160 Dentener FJ, Dlugokencky EJ, Easterling DR, Kaplan A, Soden, BJ, Thorne PW, Wild M, Zhai 161 PM. Observations: Atmosphere and surface, pp. 161 - 254. In: Stocker TF, Qin D, Plattner GK, 162 Tignor M, Allen SK, Boschung J, Nauels A, Xia Y, Bex V, Midgley PM. (eds.) Climate Change: 163 The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of 164 the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, 165 United Kingdom and New York, NY, USA, 2013.