Original Research Article

2

4

1

In vitro Cytotoxicity and Antiplasmodial activity of fractions from Anthocleista djalonensis A. Chev. Acetone root extract

5 6 7

8 9

Abstract

10

AlM: Malaria caused by plasmodium falciparum is one of the killer diseases in Africa today and the uncontrollable spread of drug resistance and limited drugs with therapeutic efficacy makes it necessary to discover agents against this deadly parasite. Traditionally Anthocleista djalonensis root extract is used in the treatment of Malaria in many parts of Africa and has demonstrated to be a source of antiplasmodial agents. This study aims at identifying possible antiplasmodial agents from chromatographic root fractions of Anthocleista djalonensis of the Genatianceae family as well as to evaluate their cytotoxicity against HeLa cells.

Place and Duration of study: The study was undertaken in the Department of Organic Chemistry, Rhodes University, Grahamstown, South Africa. The duration period was between March and July 2016.

Methodology: The Anthocleista djalonensis roots were collected from Arochukwu, Abia State, Nigeria. The acetone extract was obtained from successive maceration of the methanolic crude extract with hexane, ethyl acetate and acetone. The concentration (0.01-100 µg/mL range) of the chromatographic fractions from acetone root extract of Anthocleista djalonensis were tested for antimalarial activity against Plasmodium falciparium (P.falciparum). Cytotoxicity against HeLa cells was also evaluated using resazurin based assay.

Results: The Five fractions obtained from the chromatographic fractionation of acetone extract labelled A1, A2, A3, A4, and A5 with percentage yield (13.02, 26.66, 24.70, 0.05 and 26.66 % respectively) showed excellent antiplasmodial activity. The antimalarial bioassay test showed fractions A1, A2, A3, A4 and A5 with IC₅₀ value of 0.0360 ± 0.0100, 8.1299 ± 2.0358, 46.2482 ± 1.2720, 0.0151 ± 0.0010, and 9.8013 ± 0.8171 µg/mL respectively. CC₅₀ values of 44.2010 ± 8.6790, 50.0000 ± 5.6412, 71.6221 ± 2.9600, 36.7212 ± 5.8900 and 0.5132 ± 3.770 µg mL⁻¹ were recorded for fractions A1, A2, A3, A4 and A5 respectively. Fractions were classified as marginally active (A3) showing SI of 1.540 ± 0.0091, partially active (A2 and A5) with SI 6.150 ± 0.0200 and 4.133 ± 0.015 and as active (A1, A4,) exhibiting SI of 1227.805 ± 8.210 and 2431.867 ± 1.589 respectively. A1 and A4 showed SI > 10 and IC₅₀ < 10 ug/mL. Chloroquine, used as a reference antimalarial drug, tested in parallel had an IC₅₀ of 0.0125 ± 0.0001 µM and was comparable with A1 and A4.

Conclusion: The chromatographic fractions from acetone root extract of *Anthocleista djalonensis* are potential sources for antimalarial agents of lead compounds for the development of antiplasmodial drugs.

Keywords: Antiplasmodial activity; Cytotoxicity; IC₅₀; Fractionation; Anthocleista dialonensis

14 15 16

12

13

1. INTRODUCTION

17 18 19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

Medicinal plants contain chemical substances or constituents that have pharmacological activities [1-7]. These activities include anti-cancer [8,9] anti-tumor [10] anti-oxidant [11] and anti-microbial activities [12, 2]. Healing with medicinal plants is as old as mankind itself. The connection between man and his search for drugs in nature dates from the far past. Awareness of medicinal plants usage is a result of the many years of struggles against illnesses by which man learned to pursue drugs in barks, seeds, fruit bodies, and other parts of the plants [13]. Contemporary science has acknowledged their active action, and it has included in modern pharmacotherapy a range of drugs of plant origin, known by ancient civilizations and used throughout the millennia. The knowledge of the development of ideas related to the usage of medicinal plants as well as the evolution of awareness has increased the ability of pharmacists and physicians to respond to the challenges that have emerged with the spreading of professional services in facilitation of man's life [13]. The medicinal plant Anthocleista djalonensis, A. Chev –Gentianaceae is a large tree which grows up to 20 feet; bole up to 4cm in diameter, stilt-rooted, twig sometimes erect, spines above the leaf axils and with white flowers that are scented [14]. Traditionally, the plant is used to treat wound, malaria, constipation, dysentery, diarrhea, hepatitis, skin infection, and inflammation [15]. Ethnobotanical investigation revealed the use of Anthocleista dialonensis for the treatment of cancer [16]. Three compounds (monoterpene diol, djalonenol and iridoid glucoside djalonenoside) were isolated from Anthocleista djalonensis [17]. These compounds when tested in addition with six semisynthetic derivatives for cytotoxicity of constituents, dialonenol and iridoid glucoside demonstrated cytotoxic effect on the brain tumor fibroblasts (18). The root of A. dialonensis are used traditionally to treat malaria jaundice, diabetes and abscesses [15] Reports of

antibacterial and wound healing activity [19,15], in vitro anthelmintic [20] and antimalarial 40 41 activity[21, 22] of the plant have been published. 42 Malaria, the most prevalent and most pernicious parasitic disease of humans, is estimated to kill 43 between one and two million people (mainly children) each year [23]. One of the greatest obstacles to 44 the control of malaria has been the spread of resistance to drugs used on a large scale [24]. 45 Chloroquine, though effective as a blood schizontocidal drug, is ineffective or partially effective in 46 resistant cases [25]. The emergence of strains of *Plasmodium falciparum* resistant to chloroquine and 47 many other drugs in succession have stimulated efforts to identify new anti- malarial agents [25]. 48 Previous pharmacological and bioactivity study of *Anthocleista djalonensis* root extracts has 49 necessitated this investigation. In this study, the activity of chromatographic fractions from the 50 acetone root extract against P. falciparum was assayed and the cytotoxicity on HeLa cells was also 51 evaluated in order to determine the selectivity of anti-malarial action. Plasmodium falciparum 52 responsible for malaria in human was quite suitable for this study. 53 54 55 2. MATERIAL AND METHODS 56 57 2.1. Plant materials 58 The roots of Anthocleista dialonensis were obtained from Arochukwu, Abia state, 59 Nigeria. The taxanomic classification of the selected plant was established by Mr Ibe Ndukwe 60 of the Taxonomy Section, Forestry Department, Michael Okpara University of Agriculture 61 Umudike, Abia State, Nigeria. Voucher samples of the plants are deposited in the Herbarium 62 of Michael Okpara University of Agriculture Umudike, Abia State, Nigeria. The roots were 63 dried under shade for three weeks. 64 2.2. Acetone extract preparation 65 The dried plant samples were pulverized to coarse powder using a laboratory mill (Model 4 66 Arthur Thomas, USA). The 93 g (AF00) was extracted successively with Hexane (4 x 100 67 mL), Ethyl acetate (4 x 100 mL), acetone (4 x 100 mL) by maceration. The extracts were

concentrated individually with Rota vapor at 35°C to give AF01, AF02, AF03, respectively with AF00 as the crude extract.

70

71

72

73

74

75

76

77

78

79

80

81

68

69

2.3. Fractionation of Acetone extract

Acetone extract being the most active of all the extracts was made candidate for column chromatography (The activity of this extract will be Published elsewhere). About 30 g of concentrated acetone extract was fractionated using chromatography column. Packaging was done using an 80 g column of silica gel. Best eluent (hexane, dichloromethane and methanol) were used as mobile phase with a gradient system. Eluates were collected in several bottles of 50 mL, each of which was given a number then analyzed by TLC. The spots separated in TLC were observed with 254 nm UV light. The Rf and eluates which had the same pattern spots appearance on TLC were combined as one fraction then concentrated. Percentages of fractions were calculated using the formula:

% Fraction = Weight of Fraction (g)/Weight of plant extract x 100

82

83

84

85

86

87

88

89

90

91

92

93

94

2.4. HeLa cell culture and treatment [26]

Human cervix adenocarcinoma cells (HeLa) obtained (from ATCC CCL-2 LGC standard Wesel, Germany) were cultured in a 5%CO2 incubator at 37°C in DMEM medium 10% supplemented with fetal bovine serum and antibiotics (penicillin/streptomycin/fungizone). The cells were split every 3-5 days (when the cells have reached close to full confluency), and were detached from the culture flask surface using trypsin/EDTA, and the majority aspirated off. Medium was added to the flask and the remainder of the cells, and the flask returned to incubation. The confluency and state of the cells were regularly assessed using an inverted light microscope. Cells were cryo-preserved by detaching the cells from the culture flask in trypsin/EDTA, pelleting the cells, transferring them to cryo-tubes in 10% DMSO in fetal bovine serum, and placing the tubes in a -80 freezer. For the cytotoxicity assay a range of concentrations of extract (1-1000 μ g mL⁻¹) was used for 24 h treatment for the determination of 50% cytotoxic concentration (CC₅₀).

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

95

96

2.5. *In vitro* Cytotoxicity assay

Cytotoxic activity was determined by resazurin reduction based assay [27]. HeLa cells were used for the determination of the CC₅₀ value of the cytotoxicity of chromatographic fractions from Anthocleista djalonensis. To assess the overt cytotoxicity of the compounds, extracts were incubated at various concentrations in 96-well plates containing HeLa (human cervix adenocarcinoma) cells for 24 hours. The numbers of cells surviving on drug exposure were also determined by using the resazurin based reagent and reading resorufin fluorescence in a multiwell plate reader. Reagent was prepared by dissolving high purity resazurin in DPBS (pH 7.4) to 0.15 mg/mL. The resazurin solution was filtered and sterilized through a 0.2 μm filter into a sterile, light protected container. The resazurin solution was stored and protected from light at 4 °C for frequent use or at -20 °C for long term storage. Cells and test compounds were prepared in opaque-walled 96-well plates containing a final volume of 100 μL/well. An optional set of wells were prepared with medium only for background subtraction and instrument gain adjustment. This was incubated for desired period of exposure. 20 µl resazurin solution was added to each well. This was incubated for 1 to 4 hours at 37 °C. The fluorescence was recorded using a 560 nm excitation / 590 nm emission filter set.

2.6. Plasmodium falciparum cultivation

Chloroquine sensitive and resistant strains of *P. falciparum* 3D7, respectively, obtained from Rhodes University Gramhamstown, South Africa was kept in continuous *in vitro* culture

according to the modified candle-jar method of Trager and Jensen [28]. Human red blood cells (blood type A+) in RPMI 1640 medium (Sigma Chemical Co., USA) supplemented with 25 mM HEPES 4-(2-hydroxyethyl)-1-piperazineethanesulphonic acid (Sigma), 0.2 per cent sodium bicarbonate (Sigma), and 15 per cent complement inactivated human AB+ serum were used for parasite culture.

2.7. *In vitro* antiplasmodial assay

Anti-malarial test was carried out using the Immunocapture parasite lactate dehydrogenase (IcpLDH) assay method as described by Makler et al., [29]. Extracts with concentration (0.01-100 ug/mL) were added to parasite cultures in 96-well plates and incubated for 48 h in a 37 °C CO₂ incubator. After 48 h the plates were removed from the incubator. Twenty μL of culture was removed from each well and mixed with 125 μL of a mixture of Malstat solution and NBT/PES solution in a fresh 96-well plate. These solutions measure the activity of the parasite lactate dehydrogenase (pLDH) enzyme in the cultures. A purple product was formed when pLDH was present, and this product was quantified in a 96-well plate reader by absorbance at 620 nm (Abs₆₂₀). The Abs₆₂₀ reading in each well is thus an indication of the pLDH activity in that well and also the number of parasites in that well. Each sample was tested in duplicates. For each concentration, % parasite viability – the PLDH activity in treated wells relative to untreated controls was calculated.

2.8. Data analysis

All experiments were performed in duplicates and presented as the Mean \pm SD. Statistical analysis of the data was carried out by one way ANOVA (Graph Pad Prism 5.02 Software). A value of p< 0.05, p<0.01,p<0.001 and p<0.0001 were considered to be significant, very significant and highly significant, respectively. Linear regression analysis was used to calculate CC_{50} and IC_{50} . The antiplasmodial activities of fractions were expressed by the inhibitory concentrations (IC_{50}) of the drug that induced 50% reduction in parasitaemia

compared to the control (100 %) parasitaemia. The activity was analysed according to the classification for antiplasmodial activity by Valdes [30]. Therefore extract exhibiting IC₅₀ $_{P.falciparum} > 100 \mu g/mL$ was considered inactive. Extract showing IC₅₀ $_{P.falciparum} < 100 \mu g/mL$ was classified as follows: - Marginally active at SI < 4, partially active at SI 4-10 and active at SI > 10. Active extract showing IC₅₀ $_{P.falciparum} < 10 \mu g/mL$ was to be selected for further bioassay-guided fractionation. Selectivity index was calculated as the ratio of cytotoxicity of extract on $_{P.falciparum} < 10 \mu g/mL$ of the extract against $_{P.falciparum} < 10 \mu g/mL$ was to be selected for further bioassay-guided fractionation. Selectivity index was calculated as the ratio of cytotoxicity of extract on $_{P.falciparum} < 10 \mu g/mL$ was to be selected for further bioassay-guided fractionation. Selectivity index was calculated as the ratio of cytotoxicity of extract on $_{P.falciparum} < 10 \mu g/mL$ was to be selected for further bioassay-guided fractionation. Selectivity index was calculated as the ratio of cytotoxicity of extract on $_{P.falciparum} < 10 \mu g/mL$ was to be selected for further bioassay-guided fractionation. Selectivity index was calculated as the ratio of cytotoxicity of extract on $_{P.falciparum} < 10 \mu g/mL$ was to be selected for further bioassay-guided fractionation. Selectivity index was calculated as the ratio of cytotoxicity of extract on $_{P.falciparum} < 10 \mu g/mL$ was to be selected for further bioassay-guided fractionation.

3. RESULTS AND DISCUSSION

3.1. Fractionation of acetone extract

Fractionation of the acetone extract using column chromatography produced five fractions (Table 1). Fraction grouping was based on the TLC analysis using hexane, dichloromethane and methanol as eluents. Based on Table 1, the yield of fractions obtained ranged from 0.05-26.66%. Fraction number A2 and A5 had the highest yield of 26.66% followed by fraction A3, A1 and A4. The smallest yield was fraction A4 (0.05%). From the TLC analysis all fractions had many number of spots and none with a single spot. The fractions were observed to have different colours visually. This may be due to different types of constituents found in each fraction.

Table 1: Yield of Fractions of A.djalonensis Acetone root extract

Fractions	Weight(g)	% Yield	Colour of Fraction	Rf
A1	3.90	13.02	White	0.66
A2	8.00	26.66	light yellow	0.56
A3	7.43	24.70	Yellow	0.62
A4	1.50	0.05	Brown	0.70
A5	8.00	26.66	Dark brown	0.61

168 Rf= Retardation factor

3.2. In vitro assays

Cytotoxicity and antimalarial activity was determined from CC_{50} and IC_{50} value of the fractions. The CC_{50} and IC_{50} value is always inversely proportional to the cytotoxicity and anti plasmodial activity respectively. This meant the higher the CC_{50} and IC_{50} values, the lower the activities and vice versa. The results showed that there was a positive correlation between the concentrations of fractions with the percentage of *HeLa* cells and *P. falciparum* parasite cell viability (Fig. 6 and 12).

Table 2 shows the CC₅₀ and IC₅₀ values of all five chromatographic fractions of

A.djalonensis acetone extract.

Fractions	P.falciparum (IC ₅₀)	HeLa Cells(CC ₅₀) SI Class	sification
	μg/mL	μg/mL		
A1	0.0360 ± 0.0100	44.2010 ± 8.6790	1227.8055 ± 8.2100**	Active
A2	8.1299 ± 2.0358*	50.0000 ± 5.6412**	6.150 ± 0.0200****	Partially active
A3	46.2482 ± 1.2720**	71.6221 ± 2.9600**	1.540 ± 0.0091****	Marginally active
A4	0.0151 ± 0.001	36.7212 ± 5.8900	2431.8675 ± 1.5890****	Active
A5	9.8013 ± 0.8171**	40.5132 ± 3.7700*	4.133 ± 0.0150****	Partially active
CON	0.0125 ± 0.0001	18.6430 ± 1.6969	1491.2000 ± 3.009	Active

A1-A5 = fractions from acetone root extract of *Anthocleista djalonensis*.CON = control, IC_{50} = The half maximal inhibitory concentration, CC_{50} = The 50% Cytotoxic concentration, SI = selective index. Results were expressed as mean \pm STD.*p<0.05, **p<0.01, ***p<0.001and ****p<0.0001 compared to positive control. Marginally active at SI < 4, partially active at SI < 10 and active at SI > 10

3.2.1. *In vitro* Cytotoxicity assay

The test results on HeLa cells indicated growth inhibition by the fractions of acetone root extract from A.djalonensis. All Fractions A1, A2, A3,A4 and A5 had $CC_{50} \le 100$. The highest cytotoxicity activity was demonstrated by A4 with CC_{50} value of 36.72 μ g/mL followed by A5, A1and A2 with CC_{50} value of 40.51 μ g/mL, 44.20 μ g/mL and 50.00 μ g/mL respectively. Fraction A3 showed the lowest cytotoxicity with CC_{50} value of 71.62 μ g/mL (Fig1-6).

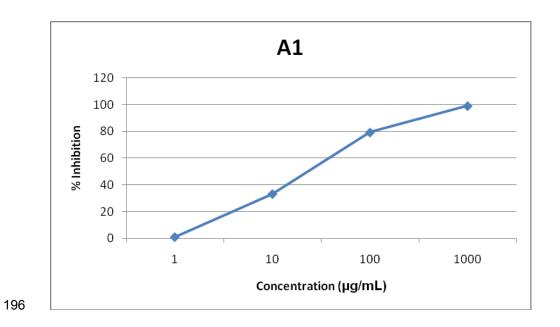


Fig 1:Cytotoxicity of fraction A1 against HeLa cells at different concentration (µg/mL)

198

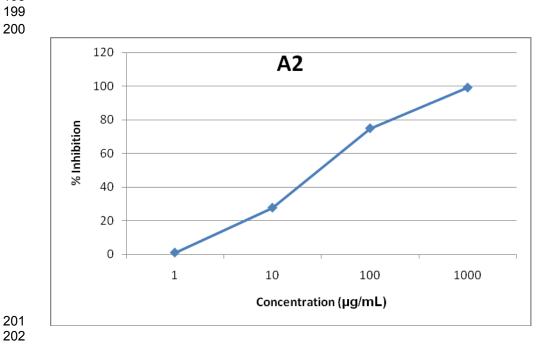


Fig 2: Cytotoxicity of fraction A2 against HeLa cells at different concentration (µg/mL)

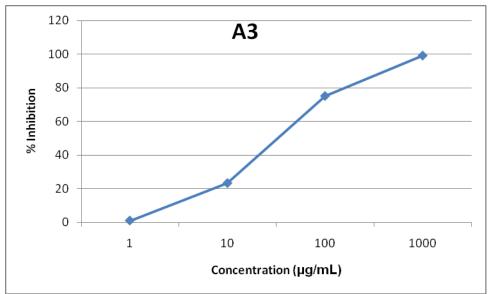


Fig 3: Cytotoxicity of fraction A3 against HeLa cells at different concentration (µg/mL)

211

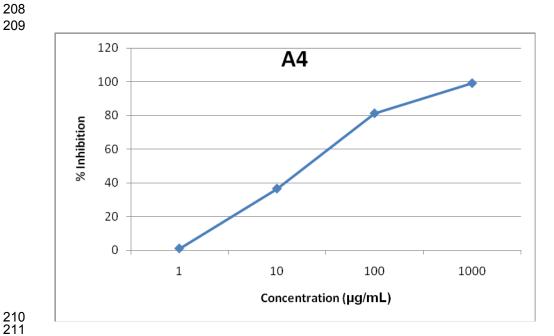


Fig 4: Cytotoxicity of fraction A4 against HeLa cells at different concentration (µg/mL)

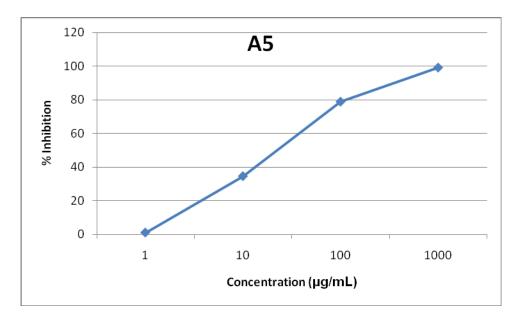


Fig 5: Cytotoxicity of fraction A5 against HeLa cells at different concentration (µg/mL)

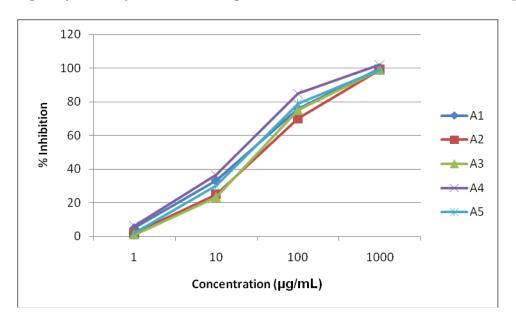


Fig 6: Cytotoxicity of all five fractions against HeLa cells at different concentration (µg/mL)

The test results of *in vitro* anti-malarial activity showed that all fractions of *A.djalonensis* acetone extract had the ability to inhibit the growth of *P. falciparum* (Fig 7-11). The IC₅₀ values and selectivity indices (SI = ratio of cytotoxicity to anti-malarial activity) of extracts are shown in Table 2. The IC₅₀ values for fractions A1, A2, A3, A4, and A5 were 0.036 μ g/mL, 8.129 μ g/mL, 46.248 μ g/mL, 0.0151 μ g/mL and 9.801 μ g/mL respectively. Fractions were classified as marginally active (A3) showing SI of 1.540, partially active (A2 and A5) with SI of 6.150 and 4.133 respectively and as active (A1and A4) exhibiting SI of 1227.805 and 2431.867 respectively. Furthermore, A1 and A4 showed SI > 10 and IC₅₀ < 10 μ g/mL. Chloroquine, used as a reference anti-malarial drug, tested in parallel had an IC₅₀ of 0.0125 μ g and was comparable with A1 and A4 (IC50: 0.0360 μ gm/L and 0.0151 μ g/mL). This showed A1 and A4 as being very prospective fractions to be developed as anti-malarial agents.

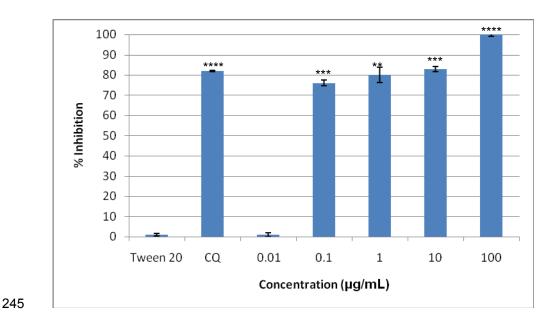


Fig 7: Activity of fraction A1 against *P.falciparum* at different concentration of **0.01,0.1,1,10,100 \mug/mL**. CQ (0.1 μ g/mL) was used as positive control and negative control was treated with tween 20. Results were expressed as mean \pm STD. **p<0.01, ***p<0.001and ****p<0.0001 compared to negative control

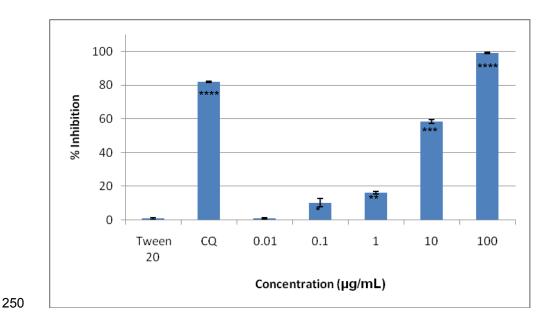


Fig 8: Activity of fraction A2 against *P.falciparum* at different concentration of $0.01,0.1,1,10,100 \, \mu g/mL$. CQ (0.1ug/mL) was used as positive control and negative control was treated with Tween 20. Results were expressed as mean \pm STD. *p<0.05, **p<0.01, ***p<0.001and ****P<0.0001 compared to negative control.

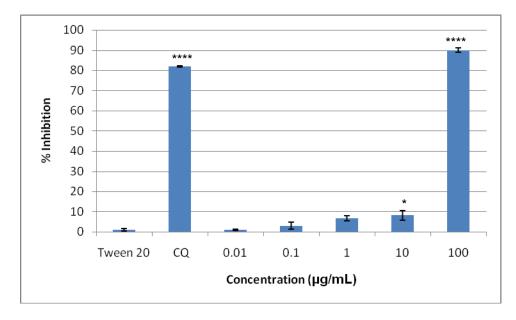


Fig 9: Activity of fraction A3 against *P.falciparum* at different concentration of $0.01,0.1,1,10,100 \mu g/mL$. CQ (0.1ug/mL) was used as positive control and negative control was treated with tween 20. Results were expressed as mean \pm STD. **p<0.05,****p<0.0001 compared to negative control.

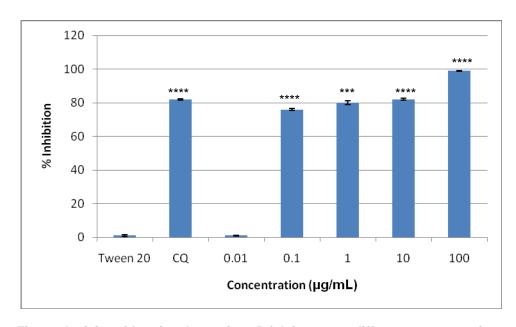


Fig 10: Activity of fraction A4 against *P.falciparum* at different concentration of 0.01,0.1,1,10,100 μ g/mL. CQ (0.1ug/mL) was used as positive control and negative control was treated with tween 20. Results were expressed as mean \pm STD. ***p < 0.01 and ****p < 0.0001compared to negative control.

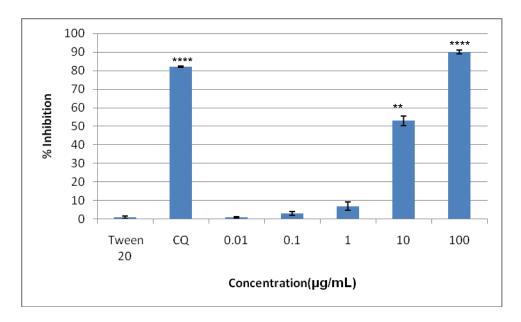


Fig 11: Activity of fraction A5 against *P.falciparum* at different concentration of 0.01,0.1,1,10,100 μ g/mL. CQ (0.1 μ g/mL) was used as positive control and negative control was treated with tween 20. Results were expressed as mean \pm STD. **p < 0.01 and *****p<0.0001 compared to negative control

280 **3.3 Discussion**

281

282

283

284

285

286

287

288

289

290

291

292

293

294

295

296

297

298

299

300

301

302

303

304

Resistance to anti-malarial drugs has often threatened malaria elimination efforts and historically has led to the short-term resurgence of malaria incidences and deaths [31]. Antimalarial drug resistance develops when spontaneously occurring parasite mutants with reduced susceptibility are selected, and are then transmitted [32]. Chloroquine resistance is associated with mutations in the polymorphic gene encoding aputative chloroguine transporter and located on chromosome "7" [31]. Chloroquine-resistant Plasmodium falciparum malaria is a major health problem. P. falciparum infections acquired in most of Africa, and some parts of Asia and South America cannot be treated with chloroquine [33]. Increasing drug resistance in plasmodium falciparum and a resurgence of malaria in tropical areas have effected a change in treatment of malaria [34]. A combination of antimalarial drugs is responsive to *P.falciparum* with high grade resistance to chloroquine. Artemisinin and its semi-synthetic derivatives are anti-malarial drugs effective against CQ-resistant P. falciparum as single therapeutic agents. However, to minimize the risks of recrudescence and the development of resistance, a combination treatment with a second antimalarial drug is recommended [35]. Newer drug combination of compounds from biodiversity to combat malarial disease and drug resistant strand are urgently needed. The long-established use of quinine and the more recent introduction of artemisinin and its derivatives as highly effective antimalarials demonstrates that plant species are an important resource for the discovery of new antimalarial agents[36]. Anthocleista djalonensis of Gentianceae family is one plant with diverse medicinal uses. Some activities of the leaf stem [22] and roots [15, 21] parts of the plant against malaria have been reported. The phytochemical screening of the root extract of Anthocleista dialonensis carried out indicated the presence of saponins, flavonoids, tannins, reducing sugar, steroids, phlobatanins, volatile oils and alkaloids which are active components present in the plant that makes it medicinal [36].

In vivo activity of the root extracts and fractions against P. berghei may have been reported [21], yet this is the first scientific study of the fractions from the root of *Anthocleista djalonensis* on *Plasmodium falciparum* (the parasite responsible for human malaria). In this study we investigated the anti-malarial and cytotoxicity activity of acetone chromatographic fractions of *A.djalonensis*. Fractions A2, A3, and A5 with low SI (1.33, 1.68 and 1.30) revealed that the anti-malarial activity was dependent on the cytotoxicity and independent on the activity against the parasites. While A1and A4 with high SI (441.25 and 1560.03) meant that activity against the parasites was attributed to the parasites themselves and not cytotoxicity. According to Soh [37], high selective index means safer therapy. Hence a cutoff point of 4 certified safe anti-malarial use. Whereas, SI greater than 10 and IC $_{50}$ values below 10 μ g/mL should be promising sources of anti-malarial molecules. Activity against *HeLa* cells and *P. falciparum* in a high percentage of tested fractions were observed. Activity was directly proportional to the concentration. Obviously, *in vitro* study presumes a direct action on the parasite [38].

Although, anti-malarial activity has been detected in some parts of *A.djalonensis* plants like the stem and leaves [22], this is the first report for the chromatographic fractions of acetone root of *A.djalonensis plant*. Phytochemical analysis of these fractions from acetone root extract of *A.djalonensis* suggests the presence of triterpenoids, flavonoids and anthraquinones [17] as chemical classes with widely demonstrated effective antimalarial activity [39]. Flavonoids act by inhibiting the fatty acid biosynthesis (FAS II) of the parasite [40,41] as well as inhibiting the influx of *L*-glutamine and myoinositol into infected erythrocytes [43]. Antimalarial activity of anthoquinone could be due to nitric oxide generation from macrophages using polysaccharide. In combination of high concentration of this oxide with sub-optimal doses of chloroquine, the parasitaemia in chloroquine resistant malarial infection was suppressed [43]. While triterpenoids mechanism of action is in the arresting of parasite development, inhibition of the hemozoin polymerization on the parasite

331	[44, 45] and the lactase dehydrogenase of the <i>Plasmodium falciparium</i> (an essential enzyme
332	used to generate energy within the parasite) [46, 47].
333	The high activity of fraction A1 and A4 is an indication that these fractions are promising
334	sources as anti-malarial agents.
335	
336 337 338	4. CONCLUSION
330	4. CONOLOGICIA
339	The chromatographic root fractions of Anthocleista djalonensis showed potent anti-malarial
340	and cytotoxic activities. The results highlighted the safety in the use of the plant of which
341	can become a source of lead compounds of high therapeutic efficacy for malarial diseases.
342	The remarkable anti malarial activity of A.djalonensis encourages the investigation of native
343	and naturalized African plants to explore as a potential source of anti malarial drugs.
344	However, fractions were selected for further purification, isolation and identification of active
345	chemical classes with proved efficacy against P. falciparum.
346 347 348 349	
350	COMPETING INTERESTS
351 352	Authors have declared that no competing interests exist.
353 354 355 356 357	
358 359	REFERENCES
360 361	1. Tyler V. Herb of Choice:The Therapeutic Use of Phytomedicinals, Pharmaceutical
362	Products Press: New York, NY,1994; p.119.

363	
364	2. Wink M1, Ashour ML, El-Readi MZ. Secondary Metabolites from Plants Inhibiting
365	ABC Transporters and Reversing Resistance of Cancer Cells and Microbes to
366	Cytotoxic and Antimicrobial Agents. Front. Microbiol., 2012; 3:130. Doi:
367	10.3389/fmicb.2012.00130;
368	
369	3. Kumar S, Malhotra R, Kumar D. Euphorbia hirta: Its chemistry, traditional and
370	medicinal uses, and pharmacological activities. Pharmacogn Rev. 2010; 4(7): 58-
371	61. Doi: 10.4103/0973-7847.65327;PMCID: PMC3249903;
372 373	
374	4. Atanasov AG, Waltenberger B, Pferschy-Wenzig E, Linder T, Wawrosch C, Uhrin
375	P, et al. Discovery and resupply of pharmacologically active plant-derived natural
376	products: A review. Biotechnol Adv. 2015 ; 33(8): 1582-1614. doi:
377	10.1016/j.biotechadv.2015.08.001;PMCID: PMC4748402;EMSID: EMS65118
378 379	5. Thimmappa R, Geisler K, Louveau T, O'Maille P, Osbourn A. "Triterpene
380	biosynthesis in plants". Annu Rev Plant Biol.2014; 65: 225-
381	57.doi:10.1146/annurev-arplant-050312-120229;PMID 24498976;
382	6. Augustin JM, Kuzina V, Andersen SB, Bak S. "Molecular activities, biosynthesis and
383	evolution of triterpenoid saponins". Phytochemistry. 2011;72 (6): 435–57.
384	PMID 21333312; doi:10.1016/j.phytochem.2011.01.015;
385	
386	7. Dhami N. "Trends in Pharmacognosy: A modern science of natural medicines".
387	Journal of Herbal Medicine.2013; 3 (4): 123–131.
388	doi:10.1016/j.hermed.2013.06.001;
389 390	

391	8. Greenwell M, Rahman P.K.S.M. Medicinal Plants: Their Use in Anticancer
392	Treatment.Int J Pharm Sci Res. 2015; 6(10): 4103–4112. doi:
393	10.13040/IJPSR.0975-8232.6(10).4103-12; PMCID: PMC4650206; EMSID:
394	EMS65383
395	
396	9. Mohammad S. Anti-cancer agents from medicinal plants Bangladesh Journal of
397	Pharmacology 2006;Vol 1, No 2
398	
399	10. Melo JG, Santos AG, Amorim ELC, Nascimento SC, Albuquerque UP. Medicinal
400	Plants Used as Antitumor Agents in Brazil: An Ethnobotanical Approach Evid
401	Based Complement Alternat Med. 2011; 2011:1-14. PMID 365359;
402	http://dx.doi.org/10.1155/2011/365359;
403 404	
405	11. Van Wyke BE, Wink C, Wink M. Phytomedicines, Herbal Drugs and Plant Poisons
406	of the World. Royal Botanic Gardens, Kew, UK; University of Chicago Press,
407	USA,2015; pp 52-80.
408	
409	12. Ortega-Ramirez LA, Rodriguez-Garcia I, Leyva JM, Cruz-Valenzuela MR, Silva-
410	Espinoza BA, Gonzalez-Aguilar GA. Potential of medicinal plants as antimicrobial
411	and antioxidant agents in food industry: a hypothesis. J Food Sci. 2014
412	;79(2):R129-37. doi: 10.1111/1750-3841.12341.
413	PMID:24446991DOI:10.1111/1750-3841.12341;
414 415	
416	13. Petrovska BB. Historical review of medicinal plants usage.Pharmacogn Rev,
417	2012; 6(11): 1–5 Doi: 10.4103/0973-7847.95849; PMCID: PMC3358962
418	

419	14. Jensen SR, Schripsema J. Chemotaxonomy and pharmacology of Gentianaceae.
420	In book: Gentianaceae - Systematics and Natural History, Chapter: 6, Publisher:
421	Cambridge Univ. Press.2002; pp.573-631
422 423	15. Okoli AS, Iroegbu CU. Evaluation of extracts of Anthocleista djalonensis, Nauclea
424	latifolia and Uvaria afzalii for activity against bacterial isolates from cases of non-
425	gonococcal urethritis. Journal of Ethnopharmacology, 2004; 92(1):135-44. DOI:
426	10.1016/j.jep.2003.12.015;
427 428	16. Gbadamosi, Idayat Titilayo and Erinoso, Sakiru Morenikeji. A review of twenty
429	ethnobotanicals used in the management of breast cancer in Abeokuta, Ogun
430	State, Nigeria. African Journal of Pharmacy and Pharmacology, 2016; Vol. 10(27),
431	pp. 546-564, DOI:
432	10.5897/AJPP2015.4327;http://www.academicjournals.org/AJPP;
433 434	17. Onocha PA, Okorie, DA, Conolly JD, Croft DSJ. Monoterpene diol, iridoid,
435	glucoside and dibenzoaldpha-pyrone from Anthocleeista djalonensis.
436	Photochemistry, 1995; 40(4), 1183-1189
437 438	18. Onocha PA, Okorie DA, Connolly JD, Krebs HC, Meier B, Habermehl GG.
439	Cytotoxic activity of the constituents of Anthocleista djalonensis and their
440	derivatives. Nigerian Journal of Natural Products and Medicine.2003; 7:58-
441	60.http://dx.doi.org/10.4314/njnpm.v7i1.11710
442 443	19. Chah KF, Eze CA, Emuelosi CE, Esimone CO. Antibacterial and wound healing
444	properties of methanolic extracts of some Nigerian Medicinal Plants. J
445	Ethnopharmacol. 2006;104:164-7.
446 447	

448 449	20.	Nweze NE, Ngongeh LA. <i>In vitro</i> Anthelmintic Activity of <i>Anthocleista djalonensis</i> . Nig Vet J. 2007;28:9–13.
450 451	21.	Akpan EJ, Okokon JE, and Etuk IC. Antiplasmodial and antipyretic studies on root
452		extracts of Anthocleista djalonensis against Plasmodium berghei. Asian Pacific
453		Journal of Tropical Disease, 2012; Doi:10.1016/S2222-1808(12)60009-7;
454 455	22.	Bassey AS, Okokon JE, Etim EI, Umoh FU, Bassey E. Evaluation of the <i>in vivo</i>
456		antimalarial activity of ethanolic leaf and stembark extracts of Anthocleista
457		djalonensis Indian J Pharmacol. 2009 ; 41(6): 258-261. Doi: 10.4103/0253-
458		7613.59924 PMCID: PMC2846499;
459 460		
461	23.	White NJ. Antimalarial drug resistance J Clin Invest. 2004 Apr 15; 113(8): 1084-
462		1092. Doi: 10.1172/JCI200421682;PMCID: PMC385418;
463		
464	24.	Travassos MA and Miriam K. Laufer. Resistance to antimalarial drugs: molecular,
465		pharmacological and clinical considerations Pediatr Res. 2009 ; 65(5 Pt 2): 64R-
466		70R. Doi: 10.1203/PDR.0b013e3181a0977e; PMCID: PMC2837525;NIHMSID;
467		NIHMS108692;
468 469	25.	Bickii J, Njifutie N, Foyere JA, Basco LK, Ringwald P. <i>In vitro</i> antimalarial activity
470		of limonoids from Khaya grandifoliola C.D.C. (Meliaceae) J. Ethnopharmacol,
471		2000; 69: 27-33. https://doi.org/10.1016/S0378-8741(99)00117-8;
472		
473	26.	Paul J. Methods in enzymology, Vol. LVIII, Cell culture.edited by Jakoby WB,
474		Pastan IH, Academic Press, New York, San Francisco and London, 1979 (642
475		pages) ISBN 0 12 1819582.
476		
477		

478	27.	Pesch K L, Simmert U. "Combined assays for lactose and galactose by enzymatic
479		reactions". Milchw. Forsch., 1929; 8: 551.
480 481	28.	Trager W, Jensen JB. Human parasites in continuous culture. Sciences1976; 193:
482		673- 5.
483 484	29.	Makler MT, Piper RC, Milhous WK. Lactate Dehydrogenase and the Diagnosis of
485		Malaria. Trends in parasitology,1998;Volume 14, Issue 9, p376–377, 1. Doi:
486		http://dx.doi.org/10.1016/S0169-4758(98)01284-8;
487 488	30.	Valdés AF, Martínez JM, Lizama RS, Gaitén YG, Rodríguez DA, Juan Abreu
489		Payrol JA. In vitro antimalarial activity and cytotoxicity of some selected cuban
490		medicinal plants, Rev. Inst. Med. trop. S. Paulo, 2010;vol.52 no.4.
491		http://dx.doi.org/10.1590/S0036-46652010000400006;
492 493	31.	Petersen I, Eastman R, Michael lanzer. Drug-resistant malaria: Molecular
494		mechanisms and implications for public health. FEBS Letters 2011; Volume 585,
495		Issue 11, Pages 1551-1562 https://doi.org/10.1016/j.febslet.2011.04.042;
496 497	32.	White N. Antimalarial drug resistance and combination chemotherapy. Philos Trans
498		R Soc Lond B Biol Sci.1999; 354:739-749. PMID:10365399;
499		PMCID:PMC1692562; DOI:10.1098/rstb.1999.0426;
500 501	33.	White NJ. The treatment of malaria. N Engl J Med., 1996 ;335(11):800-
502		6Doi:10.1056/NEJM199609123351107;PMID:8703186;
503 504	34.	WHO. WHO briefing on Malaria Treatment Guidelines and artemisinin
505		monotherapies.Geneva: WHO, 2009 [online]
506		Availablefrom:http:/www.who.int/malaria/publications/atoz/meetingbriefing19april.p
507		df

508 509	35.	Wright CW. Plant derived antimalarial agents: New leads and challenges
510		Phytochemistry Reviews (2005) 4: 55–61Springer 2005.DOI: 10.1007/s11101-005-
511		3261-7
512 513	36.	Leke L, Onaji RA, Ahmad G, Uchenna OM. Phytochemical Screening and Anti-
514		Microbial Activity Studies of the Root Extract of Anthocleista Djalonensis (Cabbage
515		Tree) International Journal of Chemistry, 2012; Vol. 4, No. 4.
516		doi:10.5539/ijc.v4n4p37;
517 518		
519	37.	Soh PN, Benoit-Vical F. Are West African plants a source of future antimalarial
520		drugs? J Ethnopharmacol.2007;114:130-40.
521		https://doi.org/10.1016/j.jep.2007.08.012
522 523	38.	Benoit-Vical F. Ethnomedicine in malaria treatment. I Drugs. 2005;8:45-52 Krettli
524		AU.
525 526		
527	39.	Batista R, Silva AJ, and Oliveira AB. Plant-Derived Antimalarial Agents: New Leads
528		and Efficient.Phytomedicines. Part II. Non-Alkaloidal Natural Products Mol. 2009;
529		14, 3037-3072; doi:10.3390/molecules14083037;
530		
531	40.	Freundlich JS, Anderson JW, Sarantakis D, Shieh HM, Yu M, Valderramos JC, et
532		al. Synthesis, biological activity, and X-ray crystal structural analysis of diaryl ether
533		inhibitors of malarial enoyl acyl carrier protein reductase: part 1: 4'-substituted
534		triclosan derivatives. Bioorg Med Chem Lett. 2005; 15: 5247-5252. Doi
535		10.1016/j.bmcl.2005.08.044;
536 537		

538	41.	Perozzo R, Kuo M, Sidhu ABS, Valiyaveettil JT, Bittman R, Jacobs WR. Structural
539		elucidation of the specificity of the antibacterial agent triclosan for malarial enoyl
540		acyl carrier protein reductase. Biol Chem. 2002; 277: 13106-13114.
541		Doi10.1074/jbc.M112000200.
542		
543	42.	Elford BC. L-Glutamine influx in malaria-infected erythrocytes: a target for
544		antimalarials?. Parasitol Today. 1986; 2: 309-312. Doi 10.1016/0169-
545		4758(86)90126-2.
546		
547	43.	Awasthi A, Kumar A, Upadhyay S-N, Yamada T, Matsunaga Y. Nitric oxide
548		protects against chloroquine resistant Plasmodium yoelii nigeriensis parasites in
549		vitro. Exp. Parasitol. 2003;105. 3-4: Pp. 184-91.
550 551		
552	44.	Shuaibu MN, Wuyep PA, Yanagi T, Hirayama K, Tanaka T, et al. The use of
553		microfluorometric method for activity-guided isolation of antiplasmodial compound
554		from plant extracts. Parasitology Research 2008;102: 1119-1127.
555		
556	45.	Onyeibor O, Croft SL, Dodson HI, Feiz-Haddad M, Kendrick H, et al. Synthesis of
557		some cryptolepine analogues, assessment of their antimalarial and cytotoxic
558		activities, and consideration of their antimalarial mode of action. Journal of
559		Medicinal Chemistry 2005;48: 2701-2709.
560		
561	46.	Kirby GC, Paine A, Warhurst DC, Noamese BK, Phillipson JD. In vitro and in vivo
562		antimalarial activity of cryptolepine, a plant-derived indoloquinoline. Phytotherapy
563		Research 1994;9: 359-363.
564		

47. Royer RE, Deck IM, Campos NM, Hunsaker LA, Vander Jagt DL. Biologically active derivates of Gossypol: Synthesis and Antimalarial activities of Periacylatedgossylic Nitriles. Journal of Medicinal Chem.1986; 29: 1799-1801.